• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superfluid states in α–T3 lattice?

    2021-06-26 03:03:16YuRongWu吳玉容andYiCaiZhang張義財(cái)
    Chinese Physics B 2021年6期

    Yu-Rong Wu(吳玉容) and Yi-Cai Zhang(張義財(cái))

    School of Physics and Materials Science,Guangzhou University,Guangzhou 510006,China

    Keywords: superfluid states,flat band,α–T3 lattice,particle–hole symmetry

    1. Introduction

    The discovery of graphene has great significance in the developments of condensed matter physics. Graphene was first proposed in 1947,[1]and Novoselv and Geim experimentally prepared it in 2004.[2]Graphene is a two-dimensional material composed of carbon atoms which are arranged in a hexagonal to form a honeycomb lattice. In graphene, Dirac-Weyl Hamiltonian with pseudospinS=1/2 can be used to describe its low-energy behaviors.[3–5]The interests in graphene are largely due to its unique band structures and massless lowenergy excitation.[6–8]

    For researchers, it is interesting to find new twodimensional materials similar to graphene. The honeycomb lattice structure of graphene provides a favorable reference for the study of other new models. Adding an atom to the center of nonequivalent “rim” sites on the hexagon gives a dice lattice.[9–12]The low-energy excitation of the dice lattice is also described by the Dirac equation,but its pseudospinS=1 instead of 1/2. The dice lattice can be realized with two different schemes: one is to fabricate the trilayer structure of cubic lattice(e.g.,SrTiO3/SrIrO3/SrTiO3)in the(111)direction.[13,14]Alternatively, it is convenient to use the cold atoms in optical lattice.[15–17]Theα–T3lattice is essentially a hybrid between graphene and dice lattice,[18–20]parameterαis used to represent the hopping strength between the hexagonal center and rim atoms.[21–23]Whenαis 0, the lattice becomes graphene, and ifαis 1, it means that the hopping amplitudes between the central atom and one of the hexagonal atoms are equal, then it is the dice lattice. Compared with graphene, the band structure of theα–T3lattice has a distinguishing characteristic. In addition to the conduction band and valence bandE±(k), there is a flat bandE0(k) in the middle,which is similar to that of the dice lattice. For this kind of novel material, researchers have done a lot of works on it, for example, Hofstadter butterfly effect,[27]magnetooptical conductivity,[24–26]Klein tunneling,[28–30]zitterbewegung effect,[31]magnetism,[32,33]magnetoconductivity,[34–36]etc.

    The superfluidity of dipolar excitons in double-layerα–T3lattice under strong magnetic field has been studied.[37]Inspired by the superfluid phases for bosons in dice lattice,[38]the superfluidity for fermions inα–T3is studied in this paper. As far as we know, the literature on the superfluid states of fermions in theα–T3lattice is comparatively sparse. It is expected that the dispersionless flat band would play an important role in the formations of superfluid states.In this work,we study the Fermi Hubbard model with attractive interactions inα–T3lattice. In specific, with the mean-field method, we obtain the superfluid order parameters(pairing gaps in superconductor)through solving the self-consistent equations. And then we carefully analyze the evolutions of the superfluid order parameters under the variations of the model parameters. It is found that the Hamiltonian has particle–hole symmetry under certain conditions. Near half-filling, in comparison with the usual two-band system,e.g.,Haldane model,the large density of states of the flat band in theα–T3lattice is in favor of the superfluid states. The superfluid order parameters also show non-monotonic behaviors as the filling factor increases. In addition, there exist some interesting edge states on the boundaries of a lattice ribbon.

    The paper is organized as following.In Section 2,we give theα–T3Hubbard model Hamiltonian. The mean-field theory is reviewed briefly in Section 3.In Section 4,we firstly discuss the particle–hole symmetry of the system,and then analyze the superfluid order parameters of theα–T3lattice. In Section 5,we turn to the discussions on the edge states. Finally,we give the summary in Section 6.

    2. The α–T3 Hubbard model Hamiltonian

    Hubbard model is an important model in condensed matter physics, which can be used to describe metal–insulator transition,[39–41]magnetic phase transition,[42]and superfluid–insulator transition.[43–45]The spatial structure ofα–T3lattice is shown in Fig.1. A unit cell consists of three different lattice sites(A,B,and C),in which sites A and B are located at the vertices of a hexagon to form a honeycomb lattice,and site C is located at the center of the hexagon. The hopping amplitudetAB=t1=tbetween A and B sites. In particular, C sites are only linked to B sites with hopping strengthtBC=t2=αt1withα ≥0. In this paper,we consider two-component Fermi gases with spinσ=↑,↓, which interact through attractive interaction?U(U >0). In cold atom experiments,the interactions strengthUcan be tuned by a magnetic field. Theα–T3Hubbard model Hamiltonian reads

    withh12(k)=t1∑δcos(k·aδ)+it1∑δsin(k·aδ),h21(k)=h?12(k),h23(k) =t2∑δcos(k · bδ) + it2∑δsin(k · bδ),h32(k) =h?23(k), andk= (kx,ky). Specifically, the twodimensional vectorsaδandbδare shown in Fig. 1. In the following, we taket1= 1 as the energy unit. The singleparticle HamiltonianH0has three energy bands, and there exists a flat band in the middle(see Fig.2).

    Fig. 1. Schematic diagram of α–T3 lattice. Sublattices A, B, and C are shown in blue,green,and red,respectively. The vectors b1=a1=?1/2], b2 =a2 =/2,?1/2], and b3 =a3 =[0,1] with lattice spacing a=1.

    Fig.2. Three single-particle energy bands in α–T3 lattice with t2=t1=1, μ =0, and M =0. The flat band is in middle of upper and lower bands.

    3. Mean-field theory

    In the presence of the interaction between the opposite spins,we use the mean field decoupling to solve the Hamiltonian and select?i=?U〈ci↓ci↑〉as the superfluid order parameter (pairing gap). WhenM/=0, the Bogoliubov–de Gennes Hamiltonian in momentum space is

    By using the Bogoliubov transformation, the eigenenergiesEp(h)1,2,3(k)can be easily obtained. It is important to emphasize that the BdG Hamiltonian obeys the particle–hole symmetry,p(h)corresponds to the particle(hole)and 1,2,3 represent three branches of excitation due to the sublattices A,B, and C.With the particle–hole symmetry ofHBdG, one can show thatEh1,2,3(k)=?Ep1,2,3(?k),[47]and in the ground state,the thermodynamic potential per unit cell is given by

    The pairing gaps can be solved by??/??A,B,C=0, and the chemical potential can be obtained fromn=???/?μ. The resultant four equations for?A,B,Candμare solved by numerical methods.

    4. Particle–hole symmetry and numerical results

    First of all, we carefully analyze the particle–hole symmetry (note here that the particle–hole symmetry is different from the one of the BdG Hamiltonian discussed in Section 3)in the case oft2=t1. Applying the particle–hole transformation to the system,[43,48]

    in the case ofM=0 and the chemical potentialμ=0, the Hamiltonian remains invariant at half-filling (3 particles per unit cell).Nevertheless,forM/=0,in order to keep the Hamiltonian unaltered,the inversion transformationr →?rand the exchange of A and C sublattices are needed. In this sense,the Hamiltonian has particle–hole symmetry. In the following,we only consider the case of the number of particlesn >3 per unit cell (n=3 is half-filling, i.e., there are three particles in a unit cell). Further more, similar to the Haldane–Hubbard model,[43]one can show that,for the cases of ?n ≡n?3>0 and??n <0,the chemical potential and superfluid order parameters satisfy the relationship

    The above equations show that, when it is at the half-filling(?n=0),the chemical potential is exactly zero and?A=?C.

    WhenM,t1,andt2take some specific values,it is found that?A(B,C)are always real. The evolutions of the mean-field superfluid order parameters and chemical potential with attractive interactionUare depicted in Figs.3 and 4.It is shown that,on the whole,?A(B,C)andμincrease when the interactionUbecomes strong. In contrast with the usual two-band system,for example,Haldane model,the presence of flat band plays an important role in superfluid pairing,especially for half filling.In the Haldane model and at the half filling, when the attractive interaction is weak,the system also remains in an insulator phase. Only when the interaction is large enough,the system develops some non-vanishing superfluid order parameters.[43]While for theα–T3lattice, because of the presence of flat band, when it is half filling, the system is in a metal state.Once the attractive interaction is turned on, the system gets some nonzero superfluid order parameters.

    Fig. 3. The superfluid order parameters as functions of interaction U(M=0)(a)at half-filling withμ =0,t1=t2=1;(b)the average number of particles n=3.5,μ /=0 with t2=t1=1;(c)n=3.5,μ /=0 and the hopping amplitude t1=1,t2=1.2.

    ForM= 0, the Hamiltonian is subject to the inverse symmetry, there are two different situations: (1) Dice lattice(t2=t1),due to the equivalence between sublattices A and C,whether it is at half-filling or not,?Ais the same as?Cbut differs from?B[Figs. 3(a) and 3(b)], and?Bis smaller than?A(C);(2)α–T3lattice(t2/=t1),?differs for three sublattices A,B,and C[Fig.3(c)]. The?Clies in between?Aand?B.

    WhenM/=0, the Hamiltonian does not obey the inversion symmetry and the roles of sublattices A and C are not equivalent. Nevertheless, the Hamiltonian has particle–hole symmetry when it is half-filling andt2=t1. (3) Dice lattice(t1=t2) and at half-filling, the situation of?A(B,C)is similar as the case (1) discussed above, but?Bis larger than?A(C)[Fig. 4(a)]. Here?A=?Cis a consequence of the particle–hole symmetry as discussed above. When it is at half-filling,after exchanging sublattices A and C, the Hamiltonian is not changed. Consequently the superfluid order parameters are equal,i.e.,?A=?C. (4)Above the half-filling,both dice lattice andα–T3lattice yield three different superfluid order parameters which are similar to case(2). However, for the dice lattice,?Bis greater than?Aand?C[Fig.4(b)]. For theα–T3lattice,?Cis always the smallest one. When the value ofUis small, there is a little difference between?Aand?B. When 3.190>U >0.616,?Bis greater than?A, but the situation is reversed atU ≈3.190, and?Bbecomes smaller than?A[Fig.4(c)].

    In Figs. 5 and 6, we report the evolutions of superfluid order parameter?and chemical potentialμas the filling factor increases for different interaction strengthU. It is found that, for the whole range of filling 3≤n ≤6, the order parameters increase with the interaction strength. When the filling factor falls into the flat band, i.e., 3<n <4, andM=0,the superfluid order parameters take relatively larger values for a fixed interaction strength (see Fig. 5). This is because the large density of states of the flat band favors the superfluid pairing. When the filling factorncrosses the flat band(n ≥4),the chemical potential displays a jump due to discontinuous of density of states(especially when the interaction is weak) (see Figs. 5(a) and 5(b)). Similarly, the small density of states between the flat band and upper band also causes a dip in the order parameters(see Fig.6). WhenM=0,on the whole,the superfluid order parameters become smaller as the filling factor increases. However,whenM/=0,the superfluid order parameters can reach relatively large values, especially for strong interaction and large filling factor(see Figs.6(c)and 6(d)). When the filling factor approaches its maximum possible value (n=6), the system becomes a band insulator and the superfluid order parameters are vanishing. Figures 5 and 6 also show that the superfluid order parameter for sublattice A is always larger than that of sublattice C,i.e.,?A>?C. In addition,when the inversion symmetry is broken(M/=0),the superfluid order parameters show some nonmonotonic behaviors as the filling factor increases(see Fig.6).

    Fig. 4. The evolutions of superfluid order parameters with interaction U (M =2) (a) at half-filling with μ =0, t1 =t2 =1; (b) the average number of particles n=3.5, μ /=0 but t2 =t1 =1; (c)n=3.5, μ /=0 and the hopping amplitude t1=1,t2=1.2.

    Fig.5. The evolutions of the superfluid order parameters and chemical potential with filling factor(M=0,t2 =1.2t1 =1.2). (a)Interaction U =1,(b)U =2,(c)U =3,and(d)U =4.

    Fig.6. The evolutions of the superfluid order parameters and chemical potential(M=2,t2=1.2t1=1.2. (a)Interaction U =1,(b)U =2,(c)U =3,and(d)U =4.

    5. Edge states

    In this section, we analyze the edge states of the system under periodic boundary conditions iny-direction and open boundary conditions inx-direction with B–B edges.[26]From left-hand to right-hand side, the lattice sites are arranged like BACBAC···BACB with 20 complete spatial periods.

    In the absence of interaction andM=0, there exist two degenerate edge states,[26]and one locates at the left-hand edge, while the other one is on the right-hand edge. WhenM/=0, similarly as gapped graphene case, the existence of edge states can be understood as midgap states near a domain wall.[46,49]Similar as the gapped graphene, the Dirac Hamiltonian(for one of two Dirac cones)of the edge state is

    where limx→∞m(x)→M >0 and limx→?∞m(x)→?M <0.Here Fermi velocityv=3ta/2, momentumkis a real number fory-direction, the momentum operator forx-directionq=?i?x. The wave function (non-normalized) of the edge state near the left-hand boundary is

    When superfluid order parameters?/=0, one needs to introduce freedoms for hole’s part to describe the edge states.In such a situation,the wave functions for particle’s and hole’s parts would couple. The edge states are reported in Figs. 7–9. When the Hamiltonian has particle–hole symmetry(n=3,μ=0, andt2=t1), for every lattice momentumk, there also exist two degenerate edge states(not shown in Fig.7),which locate respectively at the left-hand and right-hand boundaries.In such a case, the two edge states are related to each other through a particle–hole symmetry, which includes inversion transformationr →?rand the exchange of A and C sublattices as discussed in Section 4.

    When the particle–hole symmetry is broken,for example,the filling is away from half filling(chemical potentialμ/=0)ort2/=t1, the degeneracy of two edge states (energyEi >0)is removed(see Figs.7(a)and 7(b)). As the interaction grows(U=0→4),the edge states near the right-hand boundary are pushed into continuous spectra as shown in Figs. 7(b)–7(d).The wave functions of the two edge states Fig.7(a)are shown in Fig. 9 withU=1,M=2,n=3.5,t2=1.2t1=1.2, and lattice momentumk=0.

    It is found that the edge states are localized near the boundaries.Figure 8 shows the evolutions of energy bands and edge states ast2increases. It is found that,whent2increases,the lowest particle band is getting flat. At the same time,the region of existence of edge states also becomes broader.We note that the energies of the edge states do not cross the zero energy,which is very different from the case of Haldane model.[43]This is because,in theα–T3model,the total Chern number of the lower three hole bands is zero. Therefore, the edge states of zero energy could not be guaranteed to exist in thisα–T3system. While the Chern number is not vanishing in Haldane model for the topological superfluid phase,which supports two edge states of zero energy.

    Fig.7. Energy spectrum and edge states for M=2,t2=1.2t1=1.2,n=3.5. (a)U =1,(b)U =2,(c)U =3,(d)U =4. The edge modes in(a)–(d)are plotted in red.

    Fig.8. Energy spectrum and edge states for M=2,t1=1,n=3.5,U =1. (a)t2=0,(b)t2=0.4,(c)t2=0.8,(d)t2=1.2. The edge modes in(a)–(d)are plotted in red.

    Fig.9. Wave functions of two edge states(energy Ei >0)in Fig.7(a)with U=1,M=2,t2=1.2t1=1.2,n=3.5,and momentum k=0(see the red lines in Fig. 7). ui (vi) is wave function for the particle (hole)part of the i-th edge state.

    6. Summary

    In conclusion, we investigate the superfluid states in attractive Hubbard model ofα–T3lattice. Because there exist three bands, one needs three superfluid order parameters to describe the superfluid states, which is very different from the usual two-band system, e.g., Haldane model or graphene.However,similarly as the Haldane model,theα–T3model also has particle–hole symmetry when two hopping amplitudes are equal. It is found that the flat band plays an important role in pairing, especially for the half-filling. We carefully analyze the the evolutions of the superfluid order parameters with the increase of interaction strength and filling factor. In the absence of inversion symmetry, the superfluid order parameters show nonmonotonic behaviors with the increase of filling factor. Finally,it is found that there exist some edge states localized at boundaries of a ribbon with open boundary conditions.

    There are some other interesting questions which are worthwhile to further investigations. For example, what are the collective modes in such a multi-band system,[50–52]how is the superfluid density affected by the flat band,[53–55]and how does magnetic field affect the superfluid states.

    Acknowledgement

    We would like to thank Jun-Feng Liu and Wen-Yu Shan for useful discussions.

    xxx大片免费视频| 大香蕉久久网| 免费看光身美女| 久久鲁丝午夜福利片| 最近中文字幕2019免费版| 免费观看a级毛片全部| 我要看日韩黄色一级片| 亚洲国产精品成人综合色| 性色av一级| 中文字幕亚洲精品专区| h日本视频在线播放| 人体艺术视频欧美日本| 亚洲精品色激情综合| 18禁裸乳无遮挡动漫免费视频 | 老师上课跳d突然被开到最大视频| 精品亚洲乱码少妇综合久久| 极品少妇高潮喷水抽搐| 国产片特级美女逼逼视频| 韩国av在线不卡| 国产成人精品一,二区| 国产精品一区二区三区四区免费观看| 国产 一区精品| 亚洲av电影在线观看一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| 国产成人精品福利久久| 日韩伦理黄色片| 超碰av人人做人人爽久久| 一区二区三区免费毛片| 一级爰片在线观看| 精品国产露脸久久av麻豆| 少妇人妻 视频| 亚洲aⅴ乱码一区二区在线播放| 国产一级毛片在线| 成人亚洲精品一区在线观看 | 亚洲精品色激情综合| 久久久久九九精品影院| 成人综合一区亚洲| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 亚洲最大成人av| 最近2019中文字幕mv第一页| 尾随美女入室| 黄片wwwwww| 91在线精品国自产拍蜜月| 欧美3d第一页| 看十八女毛片水多多多| av免费在线看不卡| 大香蕉97超碰在线| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 精品午夜福利在线看| 大香蕉97超碰在线| 少妇的逼水好多| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 热re99久久精品国产66热6| 色5月婷婷丁香| 免费高清在线观看视频在线观看| 日韩成人av中文字幕在线观看| 国产亚洲一区二区精品| 亚洲国产日韩一区二区| 亚洲综合色惰| 下体分泌物呈黄色| 久久久欧美国产精品| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 国产成人一区二区在线| 一区二区av电影网| 久久国内精品自在自线图片| 精品久久久久久久人妻蜜臀av| 男女边摸边吃奶| 精品一区在线观看国产| 女的被弄到高潮叫床怎么办| 亚洲成人av在线免费| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全电影3| 天堂中文最新版在线下载 | 蜜桃久久精品国产亚洲av| 国产在线男女| 国产白丝娇喘喷水9色精品| 国产精品久久久久久久电影| 在线看a的网站| av在线观看视频网站免费| 成人国产麻豆网| 毛片一级片免费看久久久久| 亚洲av在线观看美女高潮| 波野结衣二区三区在线| 搡女人真爽免费视频火全软件| 性插视频无遮挡在线免费观看| 欧美成人午夜免费资源| 国产免费福利视频在线观看| 国产亚洲最大av| 青春草国产在线视频| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 在现免费观看毛片| 免费人成在线观看视频色| 久久久亚洲精品成人影院| 国产高清国产精品国产三级 | 麻豆成人av视频| 日本午夜av视频| 毛片一级片免费看久久久久| 成人一区二区视频在线观看| 深夜a级毛片| 卡戴珊不雅视频在线播放| 中文字幕免费在线视频6| 亚洲av二区三区四区| 日韩大片免费观看网站| 麻豆精品久久久久久蜜桃| 内射极品少妇av片p| 久久精品国产自在天天线| 天天躁日日操中文字幕| 高清在线视频一区二区三区| 大话2 男鬼变身卡| 欧美日韩视频高清一区二区三区二| 国产v大片淫在线免费观看| 看十八女毛片水多多多| 精品久久国产蜜桃| 热re99久久精品国产66热6| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩另类电影网站 | 午夜福利在线观看免费完整高清在| 一级片'在线观看视频| 午夜激情福利司机影院| 特级一级黄色大片| 国产一区亚洲一区在线观看| 一级黄片播放器| 十八禁网站网址无遮挡 | 亚洲成人精品中文字幕电影| 亚洲综合精品二区| 国产伦理片在线播放av一区| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 国产探花在线观看一区二区| 精品人妻视频免费看| 一个人观看的视频www高清免费观看| 国产日韩欧美亚洲二区| 国产乱人视频| 久久99热这里只频精品6学生| 久久精品国产亚洲av天美| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 一个人看的www免费观看视频| 国产成年人精品一区二区| 51国产日韩欧美| 特级一级黄色大片| 国产成人精品婷婷| 麻豆乱淫一区二区| 免费观看av网站的网址| 欧美日韩视频高清一区二区三区二| 亚洲图色成人| 久久久午夜欧美精品| 亚洲aⅴ乱码一区二区在线播放| 免费黄频网站在线观看国产| 久久精品人妻少妇| 女人十人毛片免费观看3o分钟| 老师上课跳d突然被开到最大视频| 国产永久视频网站| 毛片一级片免费看久久久久| 免费av观看视频| 久久精品久久久久久噜噜老黄| 2021少妇久久久久久久久久久| 国产精品人妻久久久久久| 久久精品国产自在天天线| 亚洲av免费高清在线观看| 97超碰精品成人国产| 又大又黄又爽视频免费| 秋霞在线观看毛片| av福利片在线观看| 一级毛片 在线播放| 日本欧美国产在线视频| 夜夜爽夜夜爽视频| 国产免费一级a男人的天堂| 久久久成人免费电影| 卡戴珊不雅视频在线播放| 91精品国产九色| 免费看不卡的av| 国产永久视频网站| 国产精品人妻久久久影院| 欧美日韩国产mv在线观看视频 | 国产综合懂色| 黄色配什么色好看| 中文欧美无线码| 亚洲最大成人av| 97精品久久久久久久久久精品| 亚洲在线观看片| 高清午夜精品一区二区三区| 99久久精品热视频| 亚洲,一卡二卡三卡| 欧美成人精品欧美一级黄| 久久久久久久久久成人| 一区二区三区精品91| 一区二区三区四区激情视频| 午夜视频国产福利| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品.久久久| 2018国产大陆天天弄谢| 日日啪夜夜爽| 97人妻精品一区二区三区麻豆| 高清欧美精品videossex| 91精品一卡2卡3卡4卡| 日韩制服骚丝袜av| 嘟嘟电影网在线观看| 国产一区二区三区综合在线观看 | 伊人久久精品亚洲午夜| 内地一区二区视频在线| 国产毛片在线视频| 婷婷色麻豆天堂久久| 欧美另类一区| 亚洲国产色片| 可以在线观看毛片的网站| 三级国产精品欧美在线观看| 97超视频在线观看视频| 最后的刺客免费高清国语| 国产高清三级在线| 国产男女超爽视频在线观看| 中文欧美无线码| 久久人人爽av亚洲精品天堂 | 内射极品少妇av片p| 亚洲自偷自拍三级| 直男gayav资源| 国产黄色免费在线视频| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 在线观看人妻少妇| 草草在线视频免费看| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 最近中文字幕高清免费大全6| 国产淫语在线视频| 亚洲精品成人久久久久久| 国产免费一区二区三区四区乱码| tube8黄色片| 黄色一级大片看看| 婷婷色综合大香蕉| 欧美日韩视频高清一区二区三区二| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品| av福利片在线观看| 少妇被粗大猛烈的视频| 国产高清有码在线观看视频| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 免费播放大片免费观看视频在线观看| 欧美激情在线99| 亚洲人成网站在线播| 成人免费观看视频高清| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 新久久久久国产一级毛片| 夜夜看夜夜爽夜夜摸| 一本色道久久久久久精品综合| 日韩欧美精品免费久久| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 一级毛片电影观看| 国产探花在线观看一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费一级a男人的天堂| 国产成人a∨麻豆精品| 在线播放无遮挡| 最近最新中文字幕免费大全7| 如何舔出高潮| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 高清午夜精品一区二区三区| 亚洲婷婷狠狠爱综合网| 黄色配什么色好看| 嫩草影院新地址| 少妇的逼水好多| 亚洲av免费在线观看| 亚洲国产成人一精品久久久| 国产 一区精品| 51国产日韩欧美| 亚洲第一区二区三区不卡| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久 | 国产亚洲最大av| 亚洲在线观看片| 九九久久精品国产亚洲av麻豆| 女人被狂操c到高潮| 国产乱人视频| 熟女人妻精品中文字幕| av在线蜜桃| 日韩欧美精品免费久久| av天堂中文字幕网| 男男h啪啪无遮挡| 日日摸夜夜添夜夜添av毛片| 激情五月婷婷亚洲| 欧美潮喷喷水| 久久久国产一区二区| videos熟女内射| 免费播放大片免费观看视频在线观看| 国产精品久久久久久久久免| 91aial.com中文字幕在线观看| 下体分泌物呈黄色| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 日本黄大片高清| 大片免费播放器 马上看| 搞女人的毛片| 观看美女的网站| 人人妻人人看人人澡| 国产成人精品婷婷| 中文字幕久久专区| 一边亲一边摸免费视频| 久久久久久久亚洲中文字幕| 国产精品国产三级国产av玫瑰| 内地一区二区视频在线| 少妇人妻 视频| 香蕉精品网在线| 免费高清在线观看视频在线观看| 少妇人妻精品综合一区二区| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 1000部很黄的大片| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 日本欧美国产在线视频| 国产熟女欧美一区二区| 性色avwww在线观看| 三级经典国产精品| 少妇猛男粗大的猛烈进出视频 | 免费观看的影片在线观看| 亚洲经典国产精华液单| 王馨瑶露胸无遮挡在线观看| 波野结衣二区三区在线| 亚洲国产最新在线播放| 国产精品久久久久久久电影| 国产亚洲av嫩草精品影院| 国产一区二区三区综合在线观看 | 欧美激情国产日韩精品一区| 久久精品人妻少妇| 国产黄片视频在线免费观看| videos熟女内射| 蜜臀久久99精品久久宅男| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 自拍偷自拍亚洲精品老妇| 午夜福利视频精品| 欧美变态另类bdsm刘玥| 草草在线视频免费看| 99热6这里只有精品| 国产成人午夜福利电影在线观看| 别揉我奶头 嗯啊视频| 三级经典国产精品| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说 | 各种免费的搞黄视频| 日本欧美国产在线视频| 欧美+日韩+精品| 国产精品人妻久久久影院| 免费看av在线观看网站| 亚洲第一区二区三区不卡| 国产精品爽爽va在线观看网站| 成人黄色视频免费在线看| 最近手机中文字幕大全| 午夜视频国产福利| 日本wwww免费看| 99热全是精品| 亚洲第一区二区三区不卡| 18禁在线播放成人免费| 免费看不卡的av| 综合色av麻豆| 男女那种视频在线观看| 日韩三级伦理在线观看| av专区在线播放| 久久精品综合一区二区三区| 80岁老熟妇乱子伦牲交| 国产精品精品国产色婷婷| 熟女av电影| 超碰av人人做人人爽久久| 99re6热这里在线精品视频| 日本av手机在线免费观看| 内射极品少妇av片p| 久久综合国产亚洲精品| 国产成人精品福利久久| av国产久精品久网站免费入址| 99精国产麻豆久久婷婷| 好男人在线观看高清免费视频| 两个人的视频大全免费| 97精品久久久久久久久久精品| 亚洲av中文av极速乱| 麻豆精品久久久久久蜜桃| 国产黄频视频在线观看| 午夜精品国产一区二区电影 | 国产精品一二三区在线看| 久久99蜜桃精品久久| 亚洲成人一二三区av| 亚洲精品成人久久久久久| 麻豆精品久久久久久蜜桃| 日本黄大片高清| 91久久精品国产一区二区成人| 国产成人午夜福利电影在线观看| 国产精品人妻久久久影院| 欧美97在线视频| 亚洲内射少妇av| 少妇的逼水好多| 中国国产av一级| 特级一级黄色大片| 大片免费播放器 马上看| 欧美区成人在线视频| 免费观看的影片在线观看| 麻豆久久精品国产亚洲av| 熟女人妻精品中文字幕| 国产精品成人在线| 欧美高清性xxxxhd video| 亚洲av男天堂| 一级毛片aaaaaa免费看小| 亚洲精品国产成人久久av| 国产毛片在线视频| 午夜福利视频精品| 天堂中文最新版在线下载 | 99视频精品全部免费 在线| 国内精品宾馆在线| 亚洲av中文av极速乱| 女人被狂操c到高潮| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 性色av一级| 在线观看一区二区三区| 亚洲人成网站高清观看| 精品一区在线观看国产| 看免费成人av毛片| 亚洲精品国产av成人精品| 欧美精品一区二区大全| 亚洲成人一二三区av| 国内揄拍国产精品人妻在线| 成人美女网站在线观看视频| 男女国产视频网站| 亚洲最大成人中文| 日韩欧美精品免费久久| 22中文网久久字幕| 国产精品久久久久久久久免| 最近最新中文字幕免费大全7| 夜夜爽夜夜爽视频| 美女xxoo啪啪120秒动态图| 免费大片黄手机在线观看| 国语对白做爰xxxⅹ性视频网站| 久久人人爽人人爽人人片va| 男女无遮挡免费网站观看| 精品一区在线观看国产| 黄色一级大片看看| 日本欧美国产在线视频| 只有这里有精品99| 亚洲av在线观看美女高潮| 97超视频在线观看视频| 欧美高清成人免费视频www| 午夜免费鲁丝| 色综合色国产| 一本一本综合久久| 国产精品偷伦视频观看了| 国产精品伦人一区二区| 免费电影在线观看免费观看| 赤兔流量卡办理| 免费观看性生交大片5| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| 亚洲精品成人久久久久久| 老师上课跳d突然被开到最大视频| 亚洲av福利一区| 80岁老熟妇乱子伦牲交| 69av精品久久久久久| 国产av码专区亚洲av| 热99国产精品久久久久久7| 亚洲欧美精品自产自拍| 久久精品久久久久久久性| 国产精品av视频在线免费观看| 黄色欧美视频在线观看| 国产综合精华液| 伦理电影大哥的女人| 丰满少妇做爰视频| 中文字幕av成人在线电影| 晚上一个人看的免费电影| 成人国产av品久久久| 国产精品国产三级国产av玫瑰| 国产在线男女| 日本av手机在线免费观看| 欧美最新免费一区二区三区| 国产片特级美女逼逼视频| 国产午夜精品久久久久久一区二区三区| 成年av动漫网址| 国产国拍精品亚洲av在线观看| 欧美人与善性xxx| 国产免费视频播放在线视频| 91久久精品电影网| 国产精品久久久久久精品电影小说 | 亚洲成人中文字幕在线播放| 99热这里只有是精品50| 亚洲av一区综合| 国产老妇女一区| 在线免费观看不下载黄p国产| 男女下面进入的视频免费午夜| 成人综合一区亚洲| 69人妻影院| 寂寞人妻少妇视频99o| 青春草国产在线视频| 菩萨蛮人人尽说江南好唐韦庄| a级一级毛片免费在线观看| 欧美zozozo另类| 亚洲欧美精品自产自拍| 国产亚洲一区二区精品| 中国三级夫妇交换| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 一级毛片黄色毛片免费观看视频| 建设人人有责人人尽责人人享有的 | 天天躁夜夜躁狠狠久久av| 国产精品久久久久久精品古装| 18禁裸乳无遮挡动漫免费视频 | 一二三四中文在线观看免费高清| 人妻制服诱惑在线中文字幕| 天美传媒精品一区二区| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| 中文资源天堂在线| 亚洲精品国产成人久久av| 国产色婷婷99| 一级毛片 在线播放| 新久久久久国产一级毛片| 亚洲欧美成人综合另类久久久| 欧美高清性xxxxhd video| 国产成人精品一,二区| 一区二区av电影网| 最近最新中文字幕大全电影3| 99久久中文字幕三级久久日本| 亚洲人成网站在线播| 在线观看一区二区三区| 91精品国产九色| 只有这里有精品99| 美女视频免费永久观看网站| 亚洲精品成人久久久久久| .国产精品久久| 国产成人aa在线观看| 亚洲美女视频黄频| 人人妻人人看人人澡| 97热精品久久久久久| 亚洲真实伦在线观看| 真实男女啪啪啪动态图| 日本爱情动作片www.在线观看| 两个人的视频大全免费| 欧美高清性xxxxhd video| 91久久精品国产一区二区三区| 国产老妇女一区| 欧美丝袜亚洲另类| 亚洲一级一片aⅴ在线观看| 久久久久久久久久成人| 中文乱码字字幕精品一区二区三区| 少妇被粗大猛烈的视频| 午夜视频国产福利| 午夜老司机福利剧场| 中文欧美无线码| 黄色欧美视频在线观看| 色播亚洲综合网| 精品人妻偷拍中文字幕| 别揉我奶头 嗯啊视频| 青春草亚洲视频在线观看| 精品熟女少妇av免费看| 亚洲国产成人一精品久久久| 欧美少妇被猛烈插入视频| 精品国产一区二区三区久久久樱花 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品国产三级国产av玫瑰| 搞女人的毛片| 国产 精品1| 国产精品秋霞免费鲁丝片| 国产成人午夜福利电影在线观看| 国产在视频线精品| 亚洲精品成人久久久久久| 成人午夜精彩视频在线观看| 插阴视频在线观看视频| 亚洲熟女精品中文字幕| 久热这里只有精品99| 好男人视频免费观看在线| 国产午夜精品久久久久久一区二区三区| 日韩视频在线欧美| 欧美成人a在线观看| 午夜福利在线在线| 真实男女啪啪啪动态图| 久久97久久精品| 亚洲av国产av综合av卡| 亚洲av成人精品一区久久| 亚洲aⅴ乱码一区二区在线播放| 午夜日本视频在线| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区成人| 亚洲精品久久久久久婷婷小说| 亚洲国产精品国产精品| 天美传媒精品一区二区| 日韩人妻高清精品专区| 免费黄频网站在线观看国产| 欧美zozozo另类| 欧美亚洲 丝袜 人妻 在线| 精品一区二区三卡| 一区二区三区免费毛片| 国产精品福利在线免费观看| 欧美潮喷喷水| 一本久久精品| 在线观看一区二区三区| 亚洲无线观看免费| 黄色视频在线播放观看不卡| 成人国产av品久久久| 能在线免费看毛片的网站|