• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics

    2021-06-22 08:27:54JunweiGuKunpengRuan
    Nano-Micro Letters 2021年7期

    Junwei Gu, Kunpeng Ruan

    ABSTRACT Rapid development of energy, elec?trical and electronic technologies has put forward higher requirements for the thermal conductivi?ties of polymers and their composites. However,the thermal conductivity coefficient (λ) values of prepared thermally conductive polymer com?posites are still difficult to achieve expectations,which has become the bottleneck in the fields of thermally conductive polymer composites. Aimed at that, based on the accumulation of the previ?ous research works by related researchers and our research group, this paper proposes three possible directions for breaking through the bottlenecks: (1)preparing and synthesizing intrinsically thermally conductive polymers, (2) reducing the interfacial thermal resistance in thermally conductive polymer composites, and (3) establishing suitable thermal conduction models and studying inner thermal conduction mechanism to guide experimental optimization. Also, the future development trends of the three above?mentioned directions are foreseen, hoping to provide certain basis and guidance for the preparation,researches and development of thermally conductive polymers and their composites.

    KEYWORDS Thermally conductive polymer composites; Intrinsic thermal conductivity; Interfacial thermal resistance; Thermal

    1 Introduction

    With the rapid development of energy, electrical and elec?tronic technologies, the rapid accumulation of heat in related equipment and components will inevitably result in the seri?ous threat to their stabilities and reliabilities [1]. Polymers are frequently used in energy, electrical and electronic fields due to their light weight, high specific strength/modulus,easy processing, excellent chemical stability and low cost[2]. However, the thermal conductivity coefficient (λ,0.18 ~ 0.44 W m-1K-1) values of polymers are often low,which cannot meet the requirements of highly efficient and fast thermal conduction/dissipation for organic solar cells,energy storage materials, UHV power transmission equip?ment and high?power LEDs [3]. Therefore, the researches and development of polymers and their composites with high thermal conduction/dissipation capabilities and excellent mechanical properties have urgent theoretical significance and practical application values for the design and expansion of materials in the fields of energy, electrical and electronic technologies.

    Thermally conductive polymers can be divided into two types according to the preparation process: intrinsic type and filled type [4]. Intrinsically thermally conductive poly?mers are obtained via special physical structures (such as orientation, liquid crystalline and crystalline structure) by changing the structures of polymer chain units in the process of polymer synthesis and processing, in order to improve the intrinsic thermal conductivities of the polymers. Filled?type thermally conductive polymer composites are fabricated by adding highly thermally conductive fillers into the polymer matrix, and thereafter giving excellent thermal conductivi?ties to the polymers by directly physical blending.

    Till present, many researchers have prepared a variety of thermally conductive polymers and their composites through the two above?mentioned methods, but in the end, most ofλvalues are still difficult to meet expectation, which has become the major bottleneck in this field [5]. Our research group has long focused on the controllable fabrication and inner mechanisms of thermally conductive polymers and their composites. Based on the intrinsic high thermal conductivities, blending, and compounding and external field?induced processing, the thermal conduction proper?ties of “polymers?interfaces?fillers” and constitutive rela?tionships between “molecular chains?thermal conduction pathways?thermal conductivities” have been investigated,a series of thermally conductive polymer composites and products have been prepared, and the thermal conduction mechanisms have also been improved. Based on the previous research experiences, this paper proposes the research ideas and directions that can be taken in the future for breaking through the bottlenecks in the field of thermally conductive polymer composites, so as to provide a certain basis and guidance for the preparation, research, and development of thermally conductive polymers and their composites.

    2 Possible Directions for Breaking through Bottlenecks for Thermally Conductive Polymer Composites

    2.1 Intrinsically Thermally Conductive Polymers

    One of the most important reasons why theλvalues of ther?mally conductive polymer composites are difficult to achieve the expectation is that the intrinsicλvalues of polymers are low. Therefore, even if polymers are filled with thermally conductive fillers with very highλ, the improvements ofλare still limited. Studies have shown that when the ratio of theλvalues of the polymer matrix to the thermally con?ductive fillers is less than 1:100, it is difficult to efficiently improve the thermal conductivities of polymer composites by only filling thermally conductive fillers with highλ[6].As a consequence, it is very critical to improve the intrinsic thermal conductivity of the polymer matrix, and the prepara?tion of synthetic intrinsically thermally conductive polymers through molecular design is a novel idea and direction to improve the thermal conductivities of polymers and their composites.

    Researches on intrinsically thermally conductive poly?mers firstly began in Takezawa’s research group in Japan.Based on the orderly structure of the molecules, the liq?uid crystalline epoxy monomers with biphenyl groups were synthesized, and theλof the cured epoxy exceeded 0.90 W m-1K-1, 5 times that of conventional epoxy resin(0.18 W m-1K-1) [7]. However, it should be noted that theλvalue was measured and calculated by the AC calorimetry method, not comparable with the existingλtest equipment,such as the Linseis THB (Germany), AB Hot Disk (Swe?den) and Netzsch LFA467 (Germany) by heat flow method,plane transient method and laser flash method. Jeong et al.[8] prepared a kind of side?chain epoxy resin containing cyanobiphenyl mesogenic end groups. After curing and crosslinking by diamine, the liquid crystalline epoxy resin still retained the oriented liquid crystalline region, whoseλcould reach 0.46 W m-1K-1, because the microstructure contained anisotropic molecular orientation. In the previous work of our research group [9], we designed and synthe?sized side?chain liquid crystalline epoxy (S?LCE), which was prepared by thiol?epoxide nucleophilic ring?opening reaction and coating method. Intrinsically highly thermally conductive and self?healing liquid crystalline epoxy films(LCEF) exhibited excellent intrinsic thermal conductivi?ties and self?healing capabilities, whose through?planeλ(λ⊥) and in?planeλ(λ‖) were 0.33 and 1.25 W m-1K-1,respectively, much higher thanλ⊥(0.19 W m-1K-1) andλ‖(0.65 W m-1K-1) of general bisphenol A epoxy resin(E?51). Furthermore, Gu et al.[10] designed and synthe?sized a kind of liquid crystalline epoxy based on biphenyl mesogens, using 4, 4′?diaminodiphenylmethane (DDM) as curing agent, to fabricate cured epoxy resin (LCER) withλof 0.51 W m-1K-1, about 2.7 times that of conventional E?51 epoxy resin (0.19 W m-1K-1). When the amount of BN was 30 wt%, the correspondingλof thermally conduc?tive BN/LCER composites was 1.02 W m-1K-1, which was much higher than that of thermally conductive BN/E?51 composites (0.52 W m-1K-1) with the same fillers amount,proving that preparing intrinsically thermally conductive polymers is a practical and feasible strategy to effectively improve theλof thermally conductive polymer composites.

    Fig. 1 Schematic diagram of perspective intrinsically thermally conductive polymers with ordered structures at both microscopic and macro?scopic levels

    Fig. 2 Schematic diagram of ITRF?F (a) and ITRF?M (b)

    However, the intrinsically thermally conductive polymers prepared at present are mainly concentrated in epoxy resins,which are relatively single in types. There are few reports on intrinsically thermally conductive polyimide (PI), polyoxy?methylene (POM), polycarbonate (PC) or other high?per?formance engineering polymers. In addition, the chains of liquid crystalline polymers are usually only partially ordered at the microscopic level, and still present the isotropically disordered state at the macroscopic level, which affects the efficient improvement of intrinsic thermal conductivities. In the future research works on intrinsically thermally conduc?tive polymers, researchers can prepare and synthesize intrin?sically thermally conductive high?performance engineering polymers to broaden the application ranges of intrinsically thermally conductive polymers. It is also an excellent direc?tion to improve the macroscopy order of the polymer chains by reasonable molecular structure design and optimized processing technique (Fig. 1), in order to further greatly enhance the intrinsic thermal conductivities of polymers.

    2.2 Interfacial Thermal Resistance in Thermally Conductive Polymer Composites

    Interfaces play an important role and have great influences onλin thermally conductive polymer composites [11]. Dur?ing the thermal conduction process, vibration harmonic,acoustic & modulus mismatch occur for phonon at the interfaces, thus resulting in severe scattering and causing the mean free path of phonon to drop dramatically [12]. Cor?responding macroscopic evidence is that when the heat flow passes through the interface, it is often obstructed to a cer?tain extent, causing serious heat loss, and then reducing theλof polymer composites [13]. Therefore, it will be the key idea to improve the interfaces in thermally conductive poly?mer composites and to reduce interfacial thermal resistance(ITR), so as to further improve theλof polymer composites.The interfaces include those between thermally conductive fillers and polymer matrix and those between different types of thermally conductive fillers. The corresponding ITR are denoted as ITRF?Mand ITRF?Fin this paper.

    Researchers reported that the fabrication of thermally conductive fillers with hetero?structures can effectively decrease the ITRF?F(Fig. 2a). Zou et al.[14] coated the surface of alumina (Al2O3) with boron nitride nanosheets(BNNS) to fabricate hetero?structured Al2O3@BNNS ther?mally conductive fillers, and then prepared thermally con?ductive Al2O3@BNNS/epoxy composites. When the volume ratio of BNNS to Al2O3was 1:7 and the amount of Al2O3@BNNS was 65 vol%, theλof thermally conductive Al2O3@BNNS/epoxy composites reached 2.43 W m-1K-1, higher than pure epoxy resin (0.21 W m-1K-1), single Al2O3/epoxy(1.39 W m-1K-1) and simply blended (Al2O3/BNNS)/epoxy(1.94 W m-1K-1) composites under the same fillers amount.In the previous work of our research group, Gu et al.[15]fabricated hetero?structured silicon carbide?BNNS (SiC?BNNS) thermally conductive fillers by sol-gel &in-situgrowth method. When the mass ratio of SiC to BNNS was 1:1 and the total amount was 20 wt%, the correspondingλof thermally conductive SiC?BNNS/epoxy composites was as high as 0.89 W m-1K-1, higher than single SiC/epoxy(0.43 W m-1K-1), single BNNS/epoxy (0.61 W m-1K-1)and simply blended (SiC/BNNS)/epoxy (0.52 W m-1K-1)composites, which proved that fabrication of thermally con?ductive fillers with hetero?structures can improve the inter?faces between different types of fillers, reduce the phonon scattering at the interfaces and decrease ITRF?F.

    In order to reduce the ITRF?M, researchers usually functionalize the surfaces of thermally conductive fillers(Fig. 2b). Guo et al.[16] functionalized the surfaces of multi?wall carbon nanotubes by triethoxyvinylsilane (s?MWC?NTs). When the amount of s?MWCNTs was 10 wt%, theλof thermally conductive s?MWCNTs/poly(vinylidene fluo?ride) (PVDF) composites was 1.55 W m-1K-1, which was about 9 times that of pure PVDF, and also higher than that of thermally conductive pristine MWCNTs/PVDF compos?ites (0.48 W m-1K-1). In the previous work of our research group, Gu et al.[17] used polydopamine (PDA) to function?alize the surfaces of BNNS to prepare BNNS@PDA ther?mally conductive fillers. When the amount of BNNS@PDA was 50 wt%, the correspondingλ⊥andλ‖of thermally con?ductive BNNS@PDA/aramid nanofiber (ANF) composite papers reached 0.62 and 3.94 W m-1K-1, respectively, which were higher than pure ANF paper (λ⊥= 0.22 W m-1K-1,λ‖= 1.33 W m-1K-1) and thermally conductive pristine BNNS/ANF composite papers (λ⊥= 0.52 W m-1K-1,λ‖= 3.33 W m-1K-1). Calculation based on the improved Hashin-Shtrikman model [18] showed that the surface functionalization of BNNS could effectively reduce the in?plane and through?plane ITRF?Mvalues from 0.1644 and 0.1696 to 0.1590 and 0.1587, respectively. In addition, Gu et al.[19] prepared thermally conductive aminated reduced graphene oxide (NH2?rGO)/PI composite films. When the amount of NH2?rGO was 15 wt%, theλ⊥andλ‖of ther?mally conductive NH2?rGO/PI composite films reached 0.74 and 7.13 W m-1K-1, respectively, higher than pure PI film (λ⊥= 0.21 W m-1K-1,λ‖= 0.87 W m-1K-1) and thermally conductive pristine rGO/PI composite films(λ⊥= 0.62 W m-1K-1,λ‖= 5.50 W m-1K-1). Using Raman spectroscopy, the internal ITRF?Mand phonon scattering at the interfaces were successfully characterized, revealing the interfacial thermal conduction mechanism, showing the inner reason for effectively reducing the ITRF?Mand improv?ing theλof thermally conductive polymer composites from the microscopic perspective.

    However, most of the domestic and foreign researches on ITR are not in?depth enough. The decreases in ITR are indirectly reflected by the increases inλ, and there is a lack of universal mathematical models, test methods and related measurement equipment for ITR. In the future research works on ITR, researchers would try to establish more uni?versal mathematical models on ITR for the new forms and characteristics of thermally conductive polymer compos?ites, and speed up the in?depth cooperation with thermal properties measurement companies, quickly develop the multi?system applicable and highly universal ITR test meth?ods and measurement equipment.

    2.3 Thermal Conduction Models and Inner Mechanisms of Thermally Conductive Polymer Composites

    Theλvalues of the thermally conductive polymer compos?ites are closely related to the intrinsicλof polymers, the type and amount of thermally conductive fillers, as well as ITR. Studying the thermal conduction models will help to clarify the influencing factors theoretically, and calculate and predict theλof composites in specific system. Research?ers have proposed a variety of thermal conduction models,among which Y. Agari’s [20], Maxwell?Eucken’s [21] andNielsen?Lewis’ models [22] are more successful. However,the existing thermal conduction models have narrow appli?cation range, not taking into account the shape, amount and surface properties of thermally conductive fillers, as well as ITR, etc., so that there are always certain errors between the predictedλvalues by models and the experimental values. In our previous works, we optimized the classic series & paral?lel thermal conduction models for thermally conductive BN/cyanate ester composites, which had betterλfitting degree than other classic thermal conduction models [23]. Also,for thermally conductive carbon?based fillers/PI compos?ites, based on the modified effective medium theory and the principle of heat energy conservation, thermal conduction models suitable for anisotropic composites were proposed,showing betterλfitting degree than other classical thermal conduction models (Fig. 3) [24-26]. Moreover, COMSOL Multiphysics software was used to establish models to simu?late the thermal conduction process of thermally conduc?tive epoxy laminated composites, and the simulation results had a high degree of matching with the experimental results[27]. In the future research works on the thermal conduction models, researchers need to fully consider more practical influencing factors, quantify and introduce these factors into the thermal conduction models, and improve the degree of matching between the thermal conduction models and the experimental results.

    Fig. 3 Schematic diagrams of proposed thermal conduction models and comparison with traditional models for thermally conductive CMG/PI(a-a′′) [24], Ag/rGO/PI (b-b′′) [25] and f?MWCNTg?rGO/PI (c-c′′) [26] composites

    Regarding the inner thermal conduction mechanisms of thermally conductive polymer composites, it is generally recognized internationally that it is based on the thermal conduction pathways formed by thermally conductive fillers[28]. However, whether the finalλvalues of the thermally conductive polymer composites are proportional to the num?ber of thermal conduction pathways in the composites needs to be further verified (Fig. 4a-a′), and what form and length of thermal conduction pathways (continuous or discontinu?ous pathways, long or short pathways, straight or curved pathways, etc.) will determineλvalues also needs further consideration (Fig. 4b-c′). Also, the percolation behaviour of thermal conduction has an extremely important impact on the rapidλimprovement of polymer composites. Based on the researches on the constitutive relationship of “thermal conduction pathways?thermal conductivities” for thermally conductive graphite nanoplatelets/polyphenylene sulphide(GNPs/PPS) composites, our research group proposed that the GNPs/PPS composites system showed thermal conduc?tion percolation behaviour, but the behaviour mostly existed in high?λcarbon?based fillers (such as GNPs, carbon nano?tubes (CNT) and graphene) [29]. However, the physical properties of the thermal conduction percolation behaviour are still the question worth discussing, due to that, with the same fillers, the increase in thermal conductivity is much lower than that in electrical conductivity. Therefore, in the future research works on the thermal conduction mecha?nisms of thermally conductive polymer composites, it is necessary to conduct in?depth analysis and exploration on the formation approaches, methods and degrees of thermal conduction pathways in the thermally conductive polymer composites, as well as the thermal conduction percola?tion behaviour, in order to develop the thermal conduction mechanisms of thermally conductive polymer composites,and ultimately guide the optimization of experiments and production.

    3 Summary and Perspectives

    In summary, although progresses have been made in ther?mally conductive polymer composites, theirλvalues are mostly still lower than expected. Aimed at that, based on the accumulation of the previous research works by related researchers and our research group, this paper proposes three possible directions to break through the bottlenecks:(1) preparing and synthesizing intrinsically thermally con?ductive polymers, (2) reducing the ITR in the thermally conductive polymer composites and (3) establishing suit?able thermal conduction models and studying inner ther?mal conduction mechanisms to guide experimental opti?mization. Also, the future development trends of the three above?mentioned directions are foreseen, hoping to provide certain basis and guidance for the preparation, researches and development of thermally conductive polymers and their composites. It is believed that after breaking through the cur?rent bottlenecks, thermally conductive polymer composites,as the basic support for the development of human society,with further assistance by intellectualization of the materi?als through active heat dissipation, will show irreplaceable roles in various aspects such as aerospace, energy manage?ment, artificial intelligence, new energy, high?end equipment manufacturing and energy?efficient electronic devices.

    AcknowledgementsThe authors are grateful for the support and funding from National Natural Science Foundation of China(51773169 and 51973173); Guangdong Basic and Applied Basic Research Foundation (2019B1515120093); Technological Base Scientific Research Projects; Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province (2019JC?11). It is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Com?mons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Com?mons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

    婷婷六月久久综合丁香| 国产av麻豆久久久久久久| 老司机在亚洲福利影院| 亚洲欧美日韩无卡精品| 国产伦人伦偷精品视频| 欧美丝袜亚洲另类 | 久久精品亚洲精品国产色婷小说| 少妇粗大呻吟视频| 久久香蕉国产精品| 一级作爱视频免费观看| 夜夜躁狠狠躁天天躁| av免费在线观看网站| 村上凉子中文字幕在线| 51午夜福利影视在线观看| 亚洲人成伊人成综合网2020| 看黄色毛片网站| 国产精品综合久久久久久久免费| 久久久久久久久久黄片| 欧美色视频一区免费| 成人18禁在线播放| 国产黄片美女视频| 两个人免费观看高清视频| 岛国在线免费视频观看| 欧美另类亚洲清纯唯美| 国产精品98久久久久久宅男小说| 免费av毛片视频| 免费人成视频x8x8入口观看| 成人亚洲精品av一区二区| 一本大道久久a久久精品| 久久欧美精品欧美久久欧美| 叶爱在线成人免费视频播放| 欧美3d第一页| 又黄又爽又免费观看的视频| 国产在线观看jvid| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 三级男女做爰猛烈吃奶摸视频| 中文字幕人成人乱码亚洲影| 母亲3免费完整高清在线观看| 午夜福利成人在线免费观看| 亚洲av五月六月丁香网| 他把我摸到了高潮在线观看| 两性夫妻黄色片| 欧美久久黑人一区二区| 老汉色∧v一级毛片| 亚洲精品色激情综合| a在线观看视频网站| 国产精品98久久久久久宅男小说| 宅男免费午夜| 国产欧美日韩一区二区精品| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 亚洲av成人av| 99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 亚洲成人免费电影在线观看| 日韩三级视频一区二区三区| 99久久国产精品久久久| 亚洲专区字幕在线| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| av片东京热男人的天堂| 激情在线观看视频在线高清| 少妇被粗大的猛进出69影院| 国产亚洲av嫩草精品影院| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 免费电影在线观看免费观看| 欧美人与性动交α欧美精品济南到| 午夜精品一区二区三区免费看| 999久久久精品免费观看国产| 日韩欧美三级三区| 国产精品美女特级片免费视频播放器 | 亚洲精品国产一区二区精华液| 国产精品国产高清国产av| 国产又色又爽无遮挡免费看| 午夜免费激情av| 日本在线视频免费播放| 久久久久久人人人人人| 九九热线精品视视频播放| 黄色片一级片一级黄色片| 天堂av国产一区二区熟女人妻 | 午夜福利视频1000在线观看| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 黄片小视频在线播放| 日本一二三区视频观看| 黄色a级毛片大全视频| 国产一区二区三区视频了| 波多野结衣高清作品| 久久久国产成人免费| 麻豆一二三区av精品| 男人舔奶头视频| 黄色视频,在线免费观看| 欧美3d第一页| 国产精品国产高清国产av| 动漫黄色视频在线观看| 欧美一区二区国产精品久久精品 | 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 极品教师在线免费播放| 午夜福利成人在线免费观看| 色哟哟哟哟哟哟| 黄色视频不卡| 久久草成人影院| 欧美激情久久久久久爽电影| 99热只有精品国产| 久久久久性生活片| 国产精品98久久久久久宅男小说| 亚洲18禁久久av| 日本一区二区免费在线视频| 成人高潮视频无遮挡免费网站| 中文字幕人成人乱码亚洲影| 最近在线观看免费完整版| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 成年人黄色毛片网站| 看免费av毛片| 丁香欧美五月| tocl精华| 欧美性长视频在线观看| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 一边摸一边做爽爽视频免费| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 免费无遮挡裸体视频| 午夜免费观看网址| 免费在线观看成人毛片| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 亚洲一区高清亚洲精品| 日本成人三级电影网站| 亚洲狠狠婷婷综合久久图片| 少妇的丰满在线观看| 成年版毛片免费区| 麻豆国产97在线/欧美 | 一区二区三区高清视频在线| 国产高清有码在线观看视频 | 搡老岳熟女国产| 欧美成人一区二区免费高清观看 | 每晚都被弄得嗷嗷叫到高潮| 国产黄色小视频在线观看| 精品久久久久久成人av| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av| 99热只有精品国产| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 亚洲精品美女久久久久99蜜臀| x7x7x7水蜜桃| 曰老女人黄片| 国产亚洲欧美在线一区二区| 久久精品国产99精品国产亚洲性色| 亚洲精品一卡2卡三卡4卡5卡| 99热只有精品国产| 亚洲第一欧美日韩一区二区三区| 国产亚洲av高清不卡| 哪里可以看免费的av片| 亚洲精品国产一区二区精华液| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 1024香蕉在线观看| 国产日本99.免费观看| 曰老女人黄片| 亚洲熟妇熟女久久| 午夜成年电影在线免费观看| 悠悠久久av| 丝袜美腿诱惑在线| 亚洲欧洲精品一区二区精品久久久| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 两个人免费观看高清视频| 欧美日韩一级在线毛片| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 欧美另类亚洲清纯唯美| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 国产精品野战在线观看| 久久99热这里只有精品18| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| 午夜福利高清视频| 午夜福利在线观看吧| 脱女人内裤的视频| 亚洲国产精品999在线| 桃红色精品国产亚洲av| 欧美 亚洲 国产 日韩一| 99热只有精品国产| 亚洲国产中文字幕在线视频| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 日日爽夜夜爽网站| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 亚洲欧美日韩东京热| 欧美黑人欧美精品刺激| 色av中文字幕| 国产精品综合久久久久久久免费| 嫩草影院精品99| 亚洲成人久久爱视频| 久99久视频精品免费| 香蕉国产在线看| 久久久久久久久免费视频了| 亚洲 欧美 日韩 在线 免费| 老汉色av国产亚洲站长工具| 亚洲人与动物交配视频| 在线国产一区二区在线| 婷婷精品国产亚洲av在线| 精品久久久久久久毛片微露脸| 久久香蕉激情| 成人欧美大片| 97碰自拍视频| 久久精品综合一区二区三区| 国产成人aa在线观看| 国内精品久久久久精免费| 日韩欧美国产一区二区入口| 他把我摸到了高潮在线观看| 国产精品自产拍在线观看55亚洲| 精品免费久久久久久久清纯| 黄色视频,在线免费观看| 成人av在线播放网站| 午夜成年电影在线免费观看| 国产精品亚洲美女久久久| 久久人人精品亚洲av| 叶爱在线成人免费视频播放| 久99久视频精品免费| 正在播放国产对白刺激| 成人特级黄色片久久久久久久| 淫秽高清视频在线观看| 亚洲 欧美一区二区三区| 午夜a级毛片| 一进一出抽搐动态| 三级国产精品欧美在线观看 | 最近在线观看免费完整版| 亚洲午夜理论影院| 美女午夜性视频免费| a在线观看视频网站| 看免费av毛片| 村上凉子中文字幕在线| 可以在线观看的亚洲视频| 午夜激情av网站| 淫秽高清视频在线观看| 国产激情欧美一区二区| 欧美黄色片欧美黄色片| 欧美中文日本在线观看视频| av天堂在线播放| 亚洲成av人片免费观看| av福利片在线观看| 国产高清有码在线观看视频 | 国产高清视频在线观看网站| 亚洲第一电影网av| 中文字幕人成人乱码亚洲影| 少妇的丰满在线观看| 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 欧美日本视频| 亚洲中文av在线| 色尼玛亚洲综合影院| 精品人妻1区二区| 91国产中文字幕| 天天一区二区日本电影三级| 极品教师在线免费播放| 亚洲av片天天在线观看| 国产一区二区在线av高清观看| svipshipincom国产片| 亚洲真实伦在线观看| 后天国语完整版免费观看| 精品福利观看| 岛国在线免费视频观看| 91九色精品人成在线观看| 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| www国产在线视频色| 亚洲 国产 在线| 亚洲五月婷婷丁香| 精品不卡国产一区二区三区| 母亲3免费完整高清在线观看| 亚洲一区二区三区不卡视频| 久久久久久大精品| 99国产精品99久久久久| 国产一区二区激情短视频| 国产高清videossex| 五月伊人婷婷丁香| 久久久久国产一级毛片高清牌| 久久欧美精品欧美久久欧美| 可以在线观看的亚洲视频| 亚洲中文字幕日韩| 又大又爽又粗| av福利片在线观看| 国产精品久久视频播放| 精品福利观看| 国产精品 国内视频| 老司机深夜福利视频在线观看| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 日韩欧美精品v在线| 亚洲成人久久爱视频| 国产99白浆流出| 在线观看午夜福利视频| 黑人巨大精品欧美一区二区mp4| 中文字幕熟女人妻在线| 人人妻人人看人人澡| 长腿黑丝高跟| 怎么达到女性高潮| 亚洲18禁久久av| 中文在线观看免费www的网站 | 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 精品日产1卡2卡| 久久人人精品亚洲av| 美女 人体艺术 gogo| 悠悠久久av| 两性夫妻黄色片| 国产精品亚洲一级av第二区| 久久精品成人免费网站| 国语自产精品视频在线第100页| а√天堂www在线а√下载| 9191精品国产免费久久| 国产精品精品国产色婷婷| 国产精品野战在线观看| videosex国产| 91在线观看av| 欧美日韩亚洲综合一区二区三区_| 色综合婷婷激情| 19禁男女啪啪无遮挡网站| 淫妇啪啪啪对白视频| 香蕉av资源在线| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 最新在线观看一区二区三区| 美女大奶头视频| 久久久久久亚洲精品国产蜜桃av| 午夜福利18| 国产视频内射| 国产精品久久久av美女十八| 精品午夜福利视频在线观看一区| av欧美777| 性欧美人与动物交配| 亚洲精品在线观看二区| 久久久精品国产亚洲av高清涩受| 久久久久亚洲av毛片大全| 亚洲人成电影免费在线| 18禁观看日本| 九九热线精品视视频播放| 啦啦啦观看免费观看视频高清| 88av欧美| 人妻丰满熟妇av一区二区三区| 丰满人妻一区二区三区视频av | 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 精品免费久久久久久久清纯| 亚洲av五月六月丁香网| 免费看十八禁软件| 亚洲成人免费电影在线观看| 精品欧美国产一区二区三| 国产一区二区三区视频了| 香蕉国产在线看| 身体一侧抽搐| 国产麻豆成人av免费视频| ponron亚洲| 免费在线观看黄色视频的| 老司机靠b影院| 青草久久国产| ponron亚洲| 两性夫妻黄色片| 欧美日韩精品网址| 搡老岳熟女国产| 97人妻精品一区二区三区麻豆| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 天堂√8在线中文| 99久久综合精品五月天人人| 此物有八面人人有两片| 日韩高清综合在线| 亚洲欧美精品综合一区二区三区| 免费看美女性在线毛片视频| 成人一区二区视频在线观看| 黄片小视频在线播放| 亚洲国产中文字幕在线视频| 成人三级黄色视频| 中文字幕精品亚洲无线码一区| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 国产一区二区在线观看日韩 | 亚洲国产日韩欧美精品在线观看 | 精品国产亚洲在线| 亚洲欧美一区二区三区黑人| 中文字幕av在线有码专区| 男女做爰动态图高潮gif福利片| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 久久久久久久精品吃奶| 天堂影院成人在线观看| 亚洲 国产 在线| 丝袜人妻中文字幕| 欧美 亚洲 国产 日韩一| 日韩三级视频一区二区三区| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 欧美乱妇无乱码| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 国产在线精品亚洲第一网站| 午夜a级毛片| 亚洲免费av在线视频| 免费在线观看影片大全网站| 精品久久久久久久末码| 欧美日韩国产亚洲二区| 国产亚洲欧美在线一区二区| 男女那种视频在线观看| av欧美777| 久久久国产成人精品二区| 国产爱豆传媒在线观看 | 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 国产精品野战在线观看| 99热只有精品国产| 欧美国产日韩亚洲一区| 亚洲美女黄片视频| 国产精华一区二区三区| 搞女人的毛片| 国产精品爽爽va在线观看网站| 人妻丰满熟妇av一区二区三区| 久久婷婷人人爽人人干人人爱| 国产成人av教育| 久热爱精品视频在线9| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| 亚洲成人中文字幕在线播放| 午夜久久久久精精品| 波多野结衣高清作品| 日韩欧美在线乱码| 亚洲黑人精品在线| 不卡一级毛片| 免费在线观看成人毛片| 亚洲精品久久成人aⅴ小说| 亚洲国产精品久久男人天堂| 亚洲欧美日韩无卡精品| 非洲黑人性xxxx精品又粗又长| 欧美精品亚洲一区二区| 天天躁夜夜躁狠狠躁躁| 午夜免费激情av| 999久久久精品免费观看国产| 午夜精品在线福利| 色哟哟哟哟哟哟| 在线观看日韩欧美| 精品电影一区二区在线| 日本一区二区免费在线视频| 久久久久亚洲av毛片大全| 日本撒尿小便嘘嘘汇集6| 2021天堂中文幕一二区在线观| 成人国语在线视频| 五月伊人婷婷丁香| x7x7x7水蜜桃| 男人舔奶头视频| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观| 免费在线观看亚洲国产| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器 | 怎么达到女性高潮| 国产一区二区激情短视频| 中文字幕高清在线视频| 嫩草影院精品99| 不卡av一区二区三区| 成人午夜高清在线视频| 欧美性长视频在线观看| 大型av网站在线播放| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 午夜两性在线视频| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 国产成人aa在线观看| 日本五十路高清| 国产97色在线日韩免费| 久久久国产欧美日韩av| av片东京热男人的天堂| 99re在线观看精品视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲激情在线av| 黑人欧美特级aaaaaa片| 亚洲熟妇中文字幕五十中出| 久久热在线av| 国产av不卡久久| 久久 成人 亚洲| 欧美日韩中文字幕国产精品一区二区三区| 高潮久久久久久久久久久不卡| 亚洲精品色激情综合| 99精品在免费线老司机午夜| 黄色视频不卡| 9191精品国产免费久久| 搡老妇女老女人老熟妇| 欧美日韩瑟瑟在线播放| 日本a在线网址| 亚洲av五月六月丁香网| 国产成人影院久久av| 午夜两性在线视频| 国产熟女午夜一区二区三区| 12—13女人毛片做爰片一| 国产麻豆成人av免费视频| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 婷婷六月久久综合丁香| 九色国产91popny在线| 欧美黄色片欧美黄色片| 观看免费一级毛片| 中文字幕人妻丝袜一区二区| 国产精品野战在线观看| 老司机深夜福利视频在线观看| 亚洲精品美女久久av网站| 国内精品久久久久精免费| 日韩欧美三级三区| 99热这里只有是精品50| 18禁国产床啪视频网站| 在线播放国产精品三级| 午夜免费观看网址| 成人18禁高潮啪啪吃奶动态图| 黄色女人牲交| 午夜久久久久精精品| 88av欧美| 国产av麻豆久久久久久久| 在线观看美女被高潮喷水网站 | 老熟妇乱子伦视频在线观看| 免费人成视频x8x8入口观看| 一二三四在线观看免费中文在| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 制服诱惑二区| 久久久久久九九精品二区国产 | 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品av一区二区| 99久久精品热视频| 免费在线观看日本一区| 69av精品久久久久久| 精品电影一区二区在线| 国产精品永久免费网站| 欧美性猛交╳xxx乱大交人| 小说图片视频综合网站| 夜夜夜夜夜久久久久| 亚洲精品色激情综合| 国产精品乱码一区二三区的特点| 后天国语完整版免费观看| 色噜噜av男人的天堂激情| 国产1区2区3区精品| 亚洲五月天丁香| 久久久久亚洲av毛片大全| 91大片在线观看| 欧美日韩乱码在线| 少妇粗大呻吟视频| 久久伊人香网站| 久久精品影院6| 黑人操中国人逼视频| 国产成人精品久久二区二区91| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 麻豆av在线久日| 中文亚洲av片在线观看爽| 一级作爱视频免费观看| 亚洲精品一区av在线观看| 两人在一起打扑克的视频| av国产免费在线观看| 国产人伦9x9x在线观看| 九色成人免费人妻av| 亚洲国产日韩欧美精品在线观看 | 曰老女人黄片| 精品欧美国产一区二区三| 午夜福利在线在线| 老司机午夜福利在线观看视频| 国产一区二区在线观看日韩 | 好男人电影高清在线观看| 高清毛片免费观看视频网站| 999精品在线视频| 非洲黑人性xxxx精品又粗又长| 国产在线观看jvid| 两个人看的免费小视频| 麻豆国产97在线/欧美 | 一a级毛片在线观看| 国内久久婷婷六月综合欲色啪| 久久久水蜜桃国产精品网| 50天的宝宝边吃奶边哭怎么回事| 视频区欧美日本亚洲| 欧美日韩精品网址| 香蕉国产在线看| 国产三级在线视频| 正在播放国产对白刺激| 中文字幕人妻丝袜一区二区| 国产伦在线观看视频一区| 一级片免费观看大全| 亚洲精品在线美女| 亚洲免费av在线视频| 国产av一区二区精品久久| 淫妇啪啪啪对白视频| 我要搜黄色片| 色老头精品视频在线观看| 日韩高清综合在线| 国产精品影院久久| 伦理电影免费视频|