• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strain?Modulated Photoelectric Responses fromaFlexible α?In2Se3/3R MoS2 Heterojunction

    2021-06-22 09:08:22WeifanCaiJingyuanWangYongminHeShengLiuQihuaXiongZhengLiuQingZhang
    Nano-Micro Letters 2021年7期

    Weifan Cai, Jingyuan Wang, Yongmin He, Sheng Liu, Qihua Xiong, Zheng Liu,Qing Zhang?

    ABSTRACT Semiconducting piezoelectric α?In2Se3 and 3R MoS2 have attracted tremendous attention due to their unique electronic properties. Artificial van der Waals (vdWs) hetero?structures constructed with α?In2Se3 and 3R MoS2 flakes have shown promising applications in optoelectronics and photocatal?ysis. Here, we present the first flexible α?In2Se3/3R MoS2 vdWs p?n heterojunction devices for photodetection from the visible to near infrared region. These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9 × 103 A W-1 and a substantial specific detectivity of 6.2 × 1010 Jones under a compressive strain of - 0.26%. The photocurrent can be increased by 64% under a tensile strain of + 0.35%, due to the heterojunction energy band modulation by piezoelectric polarization charges at the hetero?junction interface. This work demonstrates a feasible approach to enhancement of α?In2Se3/3R MoS2 photoelectric response through an appropriate mechanical stimulus.

    KEYWORDS α?In2Se3/3R MoS2 heterojunction; Flexible; Self?powered photodetector; Strain modulation; Piezoelectric charge

    1 Introduction

    Since discovery of graphene, various two?dimensional (2D)materials, like hexagonal boron nitride, transition?metal dichalcogenides, oxides and chalcogenides, etc. have been successfully assembled into van der Waals (vdWs) het?erostructures, uncovering their unique physical properties and developing novel electronic, optoelectronic, ferroelec?tric, thermoelectric and electrochemistry devices [1-4]. In addition, these 2D materials are of excellent mechanical properties which endow them a huge advantage in flexible electronic applications over conventional crystalline semi?conductors which are very brittle. With appropriate stack?ings of these two?dimensional vdW materials, p-n junctions can form for the sake of development of flexible electronic and optoelectronic devices. Among these 2D materials,several ultrathin layers with non?centrosymmetric structure are of piezoelectricity and they are the most promising for mechanically modulated electronic and optoelectronic appli?cations through mechanical agitations, like wurtzite structure material ZnO [5, 6]. Monolayer MoS2has been employed to develop optoelectronic devices in which strain?induced pie?zoelectric polarization charges are utilized to modulate pho?toexcited carrier transport and recombination at the Schottky barrier or p-n junction interfaces. This strain?modulated process is called the piezo?phototronic effect [7-10]. How?ever, the piezoelectricity of 2H MoS2is restricted in odd few layers and it is significantly weakened with increasing the thickness [11]. In contrast, due to broken inversion sym?metry, 3R MoS2exhibits piezoelectricity from monolayer to the bulk, having an exciting potential for nonlinear optics,valley?dependent spin polarization, and advancing flexible wearable electronics [12, 13]. In addition, indium selenide,a direct bandgap and layered structure III-V compound, has recently attracted enormous attention, due to its superior electric, piezoelectric, thermoelectric, photoelectric and electrochemical properties [14-19]. Ding et al. theoretically revealed that In2Se3and other III2?V3van der Waals mate?rials exhibit room?temperature ferroelectricity, originated from both spontaneous in?plane and out?of?plane electric polarization [20]. It is widely accepted that all ferroelectric materials are also piezoelectric [21, 22]. Indeed, the in?plane and out?plane ferroelectric and piezoelectric properties have been confirmed and characterized experimentally in α and β phase In2Se3[23-26]. Theoretically speaking, controllable energy band alignment in a 3R MoS2and In2Se3hetero?structure could be realized through an applied electric field,to achieve a broad spectrum of light absorption for novel tunable optoelectronic applications [27].

    In this paper, we report on the first self?powered n?type α?In2Se3/p?type 3R MoS2heterojunction photodetectors built on flexible substrate. These photodetectors show a good current rectification characteristic, ultrahigh photocurrent generation efficiency and highly sensitive photoresponse from the visible to near infrared region. The transport of photocarriers is strain?modulated at the heterojunction inter?face through the piezo?phototronic effect. With a + 0.35%tensile strain, the photocurrent can be enhanced by 64%,mainly promoted by piezoelectric polarization from In2Se3,and type?II band alignment between α?In2Se3and 3R MoS2,which enhances the built?in electric field in the p?n hetero?junction, in favor of photocarriers separation. To achieve high mechanical durability [28] and light absorption, the heterojunctions to be presented here were constructed with multilayer α?In2Se3and 3R MoS2flakes.

    2 Experimental Section

    2.1 Synthesis ofα?In2Se3/3R MoS2 Heterojunction andtheDevice Fabrication

    The device substrate was fabricated by spinning coating pol?yimide on a flexible polished stainless steel at 3000 rpm for 45 s, and then, annealed in argon gas at 250 °C for 2 h. The 3R MoS2flakes were mechanically exfoliated from a chemi?cal vapor deposition (CVD) synthesized bulk 3R MoS2crystal onto the polyimide thin film. The surfaces of the MoS2flakes were then treated with CHF3plasma doping in a PlasmaThermo 790 MF Reactive ion etch (RIE) system. For the plasma doping, the RF power, gas pressure, precursor gas flow and process time were 100 W, 10 mTorr, 10 sccm,and 45 s, respectively. The bulk α?In2Se3was bought on market and mechanically exfoliated onto the plasma treated 3R MoS2flakes/polyimide. The overlapped α?In2Se3/3R MoS2flakes were identified using optical microscopy. Cr/Au (10/150 nm) was deposited on the α?In2Se3flakes and Pd/Au (10/150 nm) was coated on the 3R MoS2flakes, using an e?beam evaporator and then patterned through a lift?offprocess.

    Fig. 1 Atomic structures of 3R phase MoS2 and Hexagonal α?In2Se3, and optical, Raman spectra, electrical measurement setup of an α?In2Se3/3R MoS2 heterojunction. a Side and top view of 3R MoS2 atomic structure. The purple and yellow spheres correspond to molybdenum and sulfur atoms, respectively. b Side and top view of hexagonal α?In2Se3 atomic structure. The pink and green spheres correspond to indium and selenide atoms, respectively. c Optical image of the heterojunction on a flexible substrate. d Raman spectrum of the 3R MoS2 flake. e Raman spectrum of the α?In2Se3 flake under the excitation of 532 nm wavelength laser. f Schematic diagram of the heterojunction on a flexible substrate

    2.2 Materials Characterization

    The atomic force microscopy (AFM) characterization(Cypher S Asylum Research Oxford Instruments) was car?ried out using non?contact mode. XPS measurements were conducted on a Kratos AXIS Supra X?ray photoelectron spectrometer.

    The SHG measurement utilized a mode?locked Ti:sapphire laser (output wavelength: 800 nm and repetition rate: 76 MHz)to generate tunable wavelength light ranging from 500 to 1600 nm filtered through OPO, then circularly polarized by the quarter?wave plate, attenuated and focused on a sample by microscope objective lens (100 × , NA = 0.95). The SHG sig?nal was collected by the same lens using a dichroic mirror and filtered by a short pass filter before entering a spectrometer.

    The Raman scattering measurements (WITec alpha 300 confocal Raman microscopy) were carried out under a laser light of 532 nm, laser power of 0.1 mW and beam diameter of 400 nm with a 100 × objective lens.

    2.3 Electrical, Optoelectronic, andMechanical Characterizations

    The electrical characteristic measurements were performed using a Keysight B1500A Semiconductor Device Parameter Analyzer. 532 and 800 nm wavelength light with tunable intensity were obtained from a Quartz Halogen light system and a monochromator for the photovoltaic and photo?sensing measurement. The strains were applied through a home?made two?point bending apparatus. The strains applied were calculated through the bending angles (referring to the sup?porting document). For the spatial photocurrent mapping,the sample was fixed on the motorized stage in WITec alpha 300 confocal Raman microscopy with a continuous 532 nm laser with a beam diameter of 400 nm. The photocurrent was measured using Keithley 2450 sourcemeter, and a Femto DLPCA?200 universal low noise current amplifier.

    3 Results andDiscussion

    3R MoS2is of a broken symmetry, regardless of the layer number, by repeating ABC?ABC stacking order, where A,B, C are three same monolayer MoS2in the same direc?tion with a shift, as shown in Fig. 1a for the side and top views. Therefore, 3R MoS2is piezoelectric and its piezoe?lectric coefficiente11is theoretically calculated to be around 0.40 C m-2for 1-6 layers and 0.30 C m-2for the bulk [13].Our recent piezoelectric force microscopy (PFM) meas?urements suggest an out?of?plane piezoelectric coefficientd33of 1.2 pm V-1for a 28 nm thick 3R MoS2flake [29].α?In2Se3typically has hexagonal or rhombohedral atomic structures. Both structures have primary quintuple layers in different stacking orders. A single quintuple layer consists of five alternately arranged Se-In-Se-In-Se atomic layers,as illustrated in Fig. 1b. Hexagonal α?In2Se3at any thickness possesses non?centrosymmetric property along the vertical direction, leading to the out?of?plane piezoelectricity (d33).In a single quintuple layer, one In atom and two Se atoms are located at nonequivalent sites of the hexagonal structure,generating the in?plane (d11) piezoelectricity under a pla?nar strain. Recent theoretical calculation suggests a higher magnitude d13than that of d33, implying that a significant vertical piezoelectric polarization could be induced under an in?plane strain. Bilayer hexagonal α?In2Se3constructed by two dislocated quintuple layers results in the reserva?tion of non?centrosymmetry, so does a multilayer hexagonal α?In2Se3flake. Thus, hexagonal α?In2Se3is of in?plane and out?of?plane piezoelectricity at any thickness [20, 23, 24,30].

    To prepare a heterojunction of 3R MoS2& α?In2Se3flakes, the flakes were mechanically exfoliated from 3R MoS2and α?In2Se3crystals and then deposited on a clean flexible polyimide thin film in sequence. As shown in Fig. 1c, a location with a 3R MoS2flake overlapped with an α?In2Se3flake was selected through an optical microscope.Two characteristic Raman peaks shown in Fig. 1d, in?plane mode () and out?of?plane mode (A1g), were observed from the bottom 3R MoS2flake and the polarization?resolved second?harmonic generation (SHG) measurement evidenced a non?centrosymmetric structure from sixfold pat?tern (see Fig. S1), confirming that the bottom flake was indeed a 3R MoS2flake. Four characteristic Raman peaks at 90, 104, 180, and 195 cm-1from the top flake (shown in Fig. 1e) indicate a hexagonal structure of an α?In2Se3flake.Furthermore, the bottom 3R MoS2flake was p?type semi?conducting after CHF3plasma treatment and the top α?In2Se3was n?type, as characterized by the x?ray photoelec?tron spectroscopy (XPS) measurement described in Fig. S1[31-34]. A Cr/Au (10/150 nm) electrode and a Pd/Au(10/150 nm) electrode were deposited on the α?In2Se and 3R MoS2flakes, respectively, to achieve ohmic contacts as explained in Fig. S2. The device and the circuit connection are illustrated in Fig. 1f. To study the strain modulation on the p-n heterojunction, the uniaxial compressive and tensile strains were applied through bending the flexible device downward and upward, see the insets in Fig. 1f. The strains applied were calculated with the bending angles as discussed in Fig. S3. The flexible heterojunction was characterized by a semiconductor parameter analyzer (Agilent B1500A)under different wavelength illumination and intensities from a Quartz Halogen light system through a monochromator.The morphology and height profiles of the heterojunction showed that the thickness of the 3R MoS2and α?In2Se3flakes was 30 and 206 nm, respectively (Fig. S4).

    Fig. 2 Electrical characterization and photoresponse from the α?In2Se3/3R MoS2 heterojunction under zero strain. a I-V characteristic in the dark with the logarithmic and linear scale. b, c I-V characteristics in the dark and under illumination of 532 nm wavelength under different light intensities from - 0.5 to 0.5 and - 0.1 to 0.1 V, respectively. d Responsivity and detectivity at a bias voltage of 0.5 V as a function of illumina?tion intensities. e Current vs time under 532 nm illumination with several intensities and zero bias voltage. f Current vs time extracted from e under the illumination intensity of 0.27 mW cm-2

    Table 1 Comparison of the characteristic parameters of our present heterojunction devices with other 2D materials?based photo devices

    To tell that the photoresponse was dominated by the heterojunction, rather than from the α?In2Se3or 3R MoS2flake, a scanning photocurrent microscopic image (SPCM)was performed on the entire area between the two elec?trodes using a WITec Raman system with laser light of 532 nm at a power of 0.1 mW (See Experimental section for experimental setup). The SPCM images shown in Fig. 3 clearly displayed that it was only in the heterojunction area where the photocurrent was apparently generated when the α?In2Se3/3R MoS2heterojunction was applied with a reverse bias of - 0.25 V, zero bias and a forward bias of 0.25 V.

    To study the influence of strains on photoresponse, the photocurrent was measured under different strains and light intensities. TheI-Vcurves under various strains in dark are displayed in Fig. 4a. Apparent strain?modulatedI-Vcharacteristics can be seen with enhancing (weaken?ing) rectification characteristics under compressive (tensile)strains. With a bias voltage of + 0.5 V, the currentIdswas increased from 136 to 200 pA under a compressive strain of - 0.26% and decreased to 65 pA under a tensile strain of + 0.35%. Upon a compressive strain of - 0.26%, the responsivity increased from 1.5 × 103to 2.9 × 103A W-1,by 88%, while the detectivity rose from 4.3 × 1010Jones to 6.2 × 1010Jones, by 46% (Fig. S6e, f). Under a bias volt?age of - 0.1 V, the strain modulations of the responsivity and detectivity occurred at a low illumination intensity of 0.07 mW cm-2were much more significant than at a high intensity of 0.41 mW cm-2, as shown in Fig. 4b, c. The responsivity and detectivity decreased by 80% (from 5.9 to 1.2 A W-1) and 80% (3.4 × 109to 6.9 × 108Jones), under a compressive strain of - 0.26%. The open circuit voltageVocand short circuit currentIscwere increased with increasing the tensile strain but decreased with increasing the com?pressive strain as shown in Fig. 4d, e. In Fig. 4f, under a low light intensity of 0.27 mW cm-2, the photocurrent was increased from 220 to 360 pA (by 64%) up on a tensile strain of + 0.35%, but decreased from 220 to 130 pA (by 41%)with a compressive strain of - 0.26%. In contrast, under a high illumination intensity of 1.08 mW cm-2, it was only increased from 710 to 750 pA (by 5.6%) under the tensile strain and decreased from 710 to 650 pA (by 8.5%) under the compressive strain. The photocurrents as a function of time under 0.27 mW/cm2and 1.08 mW cm-2were also shown in Fig. S8. Illumination intensity dependent strain modulation of the photocurrent may not be accounted for by the strain?induced optical light absorption coefficient change in the 2D vdWs flakes, as the theoretical calculation has indicated that only a small change in light absorption coefficient in a 2% strained In2Se3/MoS2heterojunction from ultraviolet to near?infrared light range [41]. As the strains applied in this study were much smaller than 2%, the strain?induced optical light absorption coefficient change in the 2D flakes can be ignored. In Fig. S2, the In2Se3and MoS2devices with good ohmic contacts did not show detectable electrical transport modulation under mechanical strains. These phenomena rule out the contribution from piezoresistive effect. Instead,the findings could be well interpreted using a piezoelectric potential originated from the piezoelectric charges at the heterojunction interface.

    Fig. 3 Optical scanning photocurrent images of the α?In2Se3/3R MoS2 heterojunction. a The optical image. b-d Photocurrent mapping of the heterojunction under zero bias, reverse bias of - 0.25 V and forward bias of 0.25 V at 532 nm with a laser power of 0.1 mW and a spot waist radius of 400 nm

    To interpret the strain?modulated photoresponse, the energy band diagrams of the heterojunction are plotted in Fig. 5.When a 3R MoS2flake (with an indirect band gap of 1.29 eV and a higher electron affinity of 4.0 eV) is in contact with an α?In2Se3flake (having a direct band gap of 1.55 eV and a lower electron affinity of 3.6 eV) [31, 41-45], a negative (positive)space charge region in the 3R MoS2(α?In2Se3) flake is estab?lished, forming a p?n heterojunction in the thermal equilibrium under zero strain. The widths of the depletion region located in 3R MoS2and α?In2Se3sides can be estimated using the depletion model for a conventional p-n heterostructure, i.e.

    Fig. 4 The strain?modulated photoresponse to 523 nm illumination from the α?In2Se3/3R MoS2 heterojunction. a I-V characteristic of the device under several strains in dark. b, c Responsivity and detectivity under - 0.1 V bias voltage. d, e Open circuit voltage Voc and short circuit current Isc under various light intensities and strains (The data were extracted from Fig. S7). f Average photocurrent as a function of strains under zero bias at the illumination intensities of 0.27 and 1.08 mW cm-2 (The data were extracted from Fig. S8)

    Fig. 5 The energy band diagrams for the α?In2Se3/3R MoS2 heterojunction withwithout the strains and light illumination. The energy band diagram a in thermal equilibrium with zero light illumination and no external strain b under zero light illumination, a tensile strain c under zero light illumination, a compressive strain d under light illumination, no strain applied e under light illumination, a tensile strain f under light illu?mination and a compressive strain

    4 Conclusion

    High performance flexible heterojunction photodetectors have been successfully developed by stacking an α?In2Se3flake with a 3R MoS2flake. The devices showed clear pho?tocurrent response to visible and near infrared light. The photocurrent response was found to be enhanced (reduced)with a tensile (compressive) strain and the strain modulation of the photocurrent response was much more significantly under weak illumination than under strong illumination.The strain modulation can be interpreted from the strain?induced piezoelectric polarization charges, which alter the total internal electric field in the heterojunction, promoting(weakening) collection of the photocarriers.

    AcknowledgementsThis project is financially supported by MOE AcRF Tier2 (2018?T2?2?005), MOE AcRF Tier1 (2018?T1?005?001) and A*STAR AME IRG Grant SERC A1983c0027,Singapore.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Com?mons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Com?mons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

    Supplementary materialThe online version contains supplementary material available at (https:// doi. org/ 10. 1007/s40820? 020? 00584?1) contains supplementary material, which is available to authorized users.

    一区二区三区激情视频| 国产免费av片在线观看野外av| 久久精品人人爽人人爽视色| 精品熟女少妇八av免费久了| 我的亚洲天堂| 999久久久精品免费观看国产| 欧美黑人精品巨大| 国产av精品麻豆| 69精品国产乱码久久久| 精品第一国产精品| 亚洲欧美日韩另类电影网站| 国产在线观看jvid| 亚洲人成77777在线视频| 久9热在线精品视频| 制服人妻中文乱码| 在线观看www视频免费| 黄色女人牲交| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 国产熟女xx| 大型黄色视频在线免费观看| 亚洲av电影在线进入| 男人操女人黄网站| 黄色毛片三级朝国网站| 欧美+亚洲+日韩+国产| 日本黄色日本黄色录像| 操出白浆在线播放| 一级毛片精品| 波多野结衣高清无吗| 久热这里只有精品99| 亚洲av熟女| 欧美中文日本在线观看视频| 老司机亚洲免费影院| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久 | 亚洲成人免费电影在线观看| 亚洲精品国产精品久久久不卡| 99国产精品一区二区蜜桃av| 国产精品 欧美亚洲| 又黄又爽又免费观看的视频| 日韩 欧美 亚洲 中文字幕| 黄频高清免费视频| 色综合欧美亚洲国产小说| 久久国产亚洲av麻豆专区| 国产亚洲精品综合一区在线观看 | 1024视频免费在线观看| 久久九九热精品免费| 亚洲人成电影免费在线| 欧美黄色淫秽网站| 国内久久婷婷六月综合欲色啪| 可以在线观看毛片的网站| 精品卡一卡二卡四卡免费| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一出视频| 亚洲专区国产一区二区| 老熟妇仑乱视频hdxx| 精品一区二区三卡| 精品国产美女av久久久久小说| 亚洲av日韩精品久久久久久密| 中国美女看黄片| 多毛熟女@视频| 老熟妇乱子伦视频在线观看| 午夜福利,免费看| 午夜免费激情av| 久久午夜综合久久蜜桃| 亚洲精品国产区一区二| 视频区欧美日本亚洲| 国产国语露脸激情在线看| 可以在线观看毛片的网站| 精品电影一区二区在线| 欧美日韩亚洲综合一区二区三区_| 97超级碰碰碰精品色视频在线观看| 午夜日韩欧美国产| 在线视频色国产色| a级毛片在线看网站| 国产精品永久免费网站| 老司机靠b影院| www.999成人在线观看| 欧美乱妇无乱码| 国产成人av激情在线播放| 悠悠久久av| 国产黄a三级三级三级人| 日本一区二区免费在线视频| 中文字幕精品免费在线观看视频| 国产又色又爽无遮挡免费看| 大香蕉久久成人网| 精品国内亚洲2022精品成人| 久久人人精品亚洲av| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜 | 久久久国产一区二区| 9热在线视频观看99| 久久精品aⅴ一区二区三区四区| 免费看十八禁软件| 亚洲精品av麻豆狂野| 91字幕亚洲| 99精国产麻豆久久婷婷| svipshipincom国产片| 777久久人妻少妇嫩草av网站| 亚洲精品一区av在线观看| 在线免费观看的www视频| 日韩三级视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 大码成人一级视频| 午夜福利影视在线免费观看| 国产男靠女视频免费网站| 婷婷六月久久综合丁香| 成在线人永久免费视频| 午夜老司机福利片| 最新在线观看一区二区三区| 久久这里只有精品19| 国产在线精品亚洲第一网站| 国产免费男女视频| 精品久久久久久,| 午夜福利免费观看在线| 精品熟女少妇八av免费久了| 脱女人内裤的视频| 亚洲国产欧美日韩在线播放| 亚洲av成人av| 成年人黄色毛片网站| 久久草成人影院| 午夜日韩欧美国产| 999久久久精品免费观看国产| 久久精品aⅴ一区二区三区四区| 露出奶头的视频| 日本wwww免费看| 在线观看舔阴道视频| 老熟妇仑乱视频hdxx| 两个人免费观看高清视频| 国产av精品麻豆| 国产亚洲欧美98| 好看av亚洲va欧美ⅴa在| 91成人精品电影| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 高清欧美精品videossex| 男人舔女人的私密视频| 欧美黑人欧美精品刺激| av超薄肉色丝袜交足视频| 男人操女人黄网站| 成人国语在线视频| 十分钟在线观看高清视频www| 精品午夜福利视频在线观看一区| 国产精品电影一区二区三区| 亚洲专区国产一区二区| 在线视频色国产色| 国产精品一区二区三区四区久久 | 亚洲色图综合在线观看| 日韩国内少妇激情av| 悠悠久久av| 日韩欧美三级三区| 大型av网站在线播放| 两人在一起打扑克的视频| 亚洲色图综合在线观看| 热re99久久精品国产66热6| 午夜福利欧美成人| 俄罗斯特黄特色一大片| 国产精品偷伦视频观看了| 亚洲欧美精品综合久久99| 精品国产国语对白av| 99国产极品粉嫩在线观看| 国产精品九九99| 性少妇av在线| 9191精品国产免费久久| 一级a爱视频在线免费观看| 涩涩av久久男人的天堂| 天堂√8在线中文| 51午夜福利影视在线观看| 亚洲人成电影观看| 欧美一级毛片孕妇| 国产成人精品久久二区二区免费| 一区二区三区激情视频| 精品国产美女av久久久久小说| 欧美成人性av电影在线观看| 99香蕉大伊视频| 两个人看的免费小视频| 在线观看66精品国产| 亚洲美女黄片视频| 国产精品av久久久久免费| 国产麻豆69| 高清欧美精品videossex| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 国产精品永久免费网站| 午夜影院日韩av| 日韩人妻精品一区2区三区| 午夜成年电影在线免费观看| 午夜91福利影院| 欧美性长视频在线观看| 韩国av一区二区三区四区| 亚洲国产欧美日韩在线播放| 在线永久观看黄色视频| 99国产精品一区二区蜜桃av| 亚洲人成伊人成综合网2020| av国产精品久久久久影院| 亚洲午夜理论影院| 每晚都被弄得嗷嗷叫到高潮| 美女高潮喷水抽搐中文字幕| 亚洲国产欧美一区二区综合| 波多野结衣一区麻豆| 欧美久久黑人一区二区| 久热爱精品视频在线9| 在线观看一区二区三区激情| videosex国产| 麻豆国产av国片精品| 我的亚洲天堂| 国产无遮挡羞羞视频在线观看| 国产成人系列免费观看| 午夜福利在线免费观看网站| 69精品国产乱码久久久| 国产激情欧美一区二区| 国产成人欧美| 在线天堂中文资源库| 99在线视频只有这里精品首页| 99久久综合精品五月天人人| 精品一区二区三区av网在线观看| 99久久99久久久精品蜜桃| 丝袜在线中文字幕| 91成人精品电影| 一个人免费在线观看的高清视频| 一区在线观看完整版| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| 啦啦啦免费观看视频1| 日韩欧美免费精品| 久久久久久亚洲精品国产蜜桃av| 日日摸夜夜添夜夜添小说| 色哟哟哟哟哟哟| a级片在线免费高清观看视频| 亚洲av第一区精品v没综合| 精品日产1卡2卡| 欧美日韩瑟瑟在线播放| 日本 av在线| 国产精品久久视频播放| xxx96com| 精品人妻1区二区| 亚洲五月婷婷丁香| 一二三四在线观看免费中文在| 大陆偷拍与自拍| av天堂久久9| 亚洲成人精品中文字幕电影 | 亚洲自偷自拍图片 自拍| 男女床上黄色一级片免费看| 夫妻午夜视频| 亚洲国产精品sss在线观看 | 亚洲精品在线美女| 国产黄色免费在线视频| 又黄又爽又免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 在线国产一区二区在线| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 亚洲欧美日韩无卡精品| aaaaa片日本免费| 黄网站色视频无遮挡免费观看| 欧美日韩乱码在线| 看片在线看免费视频| 一进一出好大好爽视频| 国产精品久久电影中文字幕| av中文乱码字幕在线| 国产精品成人在线| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 日日摸夜夜添夜夜添小说| 91麻豆精品激情在线观看国产 | 在线免费观看的www视频| 91麻豆av在线| 精品久久久久久,| 99热国产这里只有精品6| 变态另类成人亚洲欧美熟女 | 欧美一级毛片孕妇| 国产男靠女视频免费网站| 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 日本 av在线| 三级毛片av免费| 热re99久久精品国产66热6| 啪啪无遮挡十八禁网站| 国产熟女xx| 国产一区二区在线av高清观看| 国产高清国产精品国产三级| 国产免费av片在线观看野外av| 国产区一区二久久| 亚洲精品一区av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久| 日韩av在线大香蕉| 女人爽到高潮嗷嗷叫在线视频| 天堂√8在线中文| 正在播放国产对白刺激| 丰满的人妻完整版| 高清在线国产一区| 国产精品久久久人人做人人爽| 国产成人欧美在线观看| 涩涩av久久男人的天堂| 亚洲成a人片在线一区二区| 少妇粗大呻吟视频| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 国产精品 国内视频| 国产伦一二天堂av在线观看| 亚洲狠狠婷婷综合久久图片| 色播在线永久视频| 欧美激情 高清一区二区三区| 久9热在线精品视频| 国产1区2区3区精品| 成人国产一区最新在线观看| 久久人妻福利社区极品人妻图片| 精品久久蜜臀av无| 男男h啪啪无遮挡| 国产野战对白在线观看| 国产成人精品久久二区二区91| 正在播放国产对白刺激| 亚洲精品中文字幕在线视频| 国产黄a三级三级三级人| 久久久国产成人精品二区 | 亚洲欧美一区二区三区黑人| 9色porny在线观看| 久久人人精品亚洲av| 欧美日韩视频精品一区| 欧美不卡视频在线免费观看 | 在线av久久热| 国产三级在线视频| 性欧美人与动物交配| av中文乱码字幕在线| 视频区图区小说| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站 | 香蕉丝袜av| 色播在线永久视频| av在线天堂中文字幕 | 黄片小视频在线播放| 国内久久婷婷六月综合欲色啪| av在线播放免费不卡| 狂野欧美激情性xxxx| 村上凉子中文字幕在线| 成年女人毛片免费观看观看9| av天堂在线播放| 操出白浆在线播放| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 午夜精品国产一区二区电影| 日韩有码中文字幕| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 午夜精品国产一区二区电影| 久久久精品国产亚洲av高清涩受| 黑人巨大精品欧美一区二区蜜桃| 桃色一区二区三区在线观看| 亚洲国产精品999在线| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 无人区码免费观看不卡| 亚洲少妇的诱惑av| 久久久久久亚洲精品国产蜜桃av| 国产在线观看jvid| 国产激情久久老熟女| avwww免费| 亚洲男人的天堂狠狠| 精品一区二区三卡| 国内久久婷婷六月综合欲色啪| 日韩欧美一区视频在线观看| 久久午夜综合久久蜜桃| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频| 长腿黑丝高跟| 精品高清国产在线一区| 香蕉丝袜av| 高清欧美精品videossex| 免费女性裸体啪啪无遮挡网站| 中文字幕精品免费在线观看视频| 69av精品久久久久久| 亚洲av五月六月丁香网| 一边摸一边抽搐一进一小说| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 9热在线视频观看99| 日韩视频一区二区在线观看| 最近最新中文字幕大全电影3 | 久久久久九九精品影院| 黑人操中国人逼视频| 亚洲成av片中文字幕在线观看| 精品日产1卡2卡| 99国产极品粉嫩在线观看| 黄片大片在线免费观看| 精品久久久精品久久久| 男女床上黄色一级片免费看| 婷婷丁香在线五月| 伊人久久大香线蕉亚洲五| 嫁个100分男人电影在线观看| 别揉我奶头~嗯~啊~动态视频| 中文字幕精品免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999在线| 久久九九热精品免费| 日韩精品中文字幕看吧| 一个人免费在线观看的高清视频| 国产av一区在线观看免费| 日韩欧美国产一区二区入口| 久久精品亚洲av国产电影网| 欧美激情久久久久久爽电影 | 欧美在线一区亚洲| 99久久99久久久精品蜜桃| 亚洲久久久国产精品| 夫妻午夜视频| 亚洲自拍偷在线| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 国产亚洲精品一区二区www| 99国产精品免费福利视频| www.精华液| 亚洲国产毛片av蜜桃av| 欧美日韩福利视频一区二区| 丰满饥渴人妻一区二区三| 久久亚洲真实| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 精品一区二区三区av网在线观看| 视频区欧美日本亚洲| 午夜福利影视在线免费观看| 电影成人av| 美女国产高潮福利片在线看| 这个男人来自地球电影免费观看| 成人av一区二区三区在线看| 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 黄色a级毛片大全视频| 成人免费观看视频高清| 国产精品久久久久成人av| 夜夜爽天天搞| 精品国产亚洲在线| 精品无人区乱码1区二区| 国产成人系列免费观看| 搡老乐熟女国产| 啦啦啦 在线观看视频| 咕卡用的链子| 日韩人妻精品一区2区三区| 精品国产亚洲在线| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 日韩大码丰满熟妇| 91字幕亚洲| 少妇的丰满在线观看| 80岁老熟妇乱子伦牲交| 亚洲色图综合在线观看| 国产亚洲精品久久久久5区| 午夜激情av网站| 国产精品成人在线| 精品人妻1区二区| 校园春色视频在线观看| 精品乱码久久久久久99久播| 在线国产一区二区在线| 精品福利永久在线观看| 国产成人欧美| 性欧美人与动物交配| 午夜福利一区二区在线看| 国产在线精品亚洲第一网站| 露出奶头的视频| 在线十欧美十亚洲十日本专区| 亚洲精华国产精华精| 999精品在线视频| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| aaaaa片日本免费| 亚洲伊人色综图| 无人区码免费观看不卡| 亚洲五月色婷婷综合| 在线看a的网站| 不卡av一区二区三区| 天天添夜夜摸| 日韩av在线大香蕉| 欧美乱色亚洲激情| 叶爱在线成人免费视频播放| 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 99精品在免费线老司机午夜| 亚洲久久久国产精品| 黄片播放在线免费| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 精品国产美女av久久久久小说| 多毛熟女@视频| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 一级a爱片免费观看的视频| 成熟少妇高潮喷水视频| 黄色女人牲交| 天堂影院成人在线观看| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 国产精品av久久久久免费| 一级黄色大片毛片| 国产精品秋霞免费鲁丝片| 在线观看免费视频网站a站| 看免费av毛片| 中文字幕另类日韩欧美亚洲嫩草| 午夜两性在线视频| 亚洲成a人片在线一区二区| 在线永久观看黄色视频| 久久久久久久久中文| 免费搜索国产男女视频| 纯流量卡能插随身wifi吗| 成人三级做爰电影| www.999成人在线观看| 国产免费男女视频| 欧美乱妇无乱码| 久久国产乱子伦精品免费另类| 搡老乐熟女国产| 成在线人永久免费视频| 久久香蕉精品热| 精品国产一区二区久久| 国产精品久久久人人做人人爽| 91精品国产国语对白视频| 免费人成视频x8x8入口观看| 老熟妇仑乱视频hdxx| 一级片'在线观看视频| 日本精品一区二区三区蜜桃| 不卡av一区二区三区| 后天国语完整版免费观看| 丁香欧美五月| 精品国产乱子伦一区二区三区| 久久人妻熟女aⅴ| 国产无遮挡羞羞视频在线观看| 性欧美人与动物交配| 国产成年人精品一区二区 | 亚洲国产欧美一区二区综合| 黑人巨大精品欧美一区二区蜜桃| www.熟女人妻精品国产| 日韩视频一区二区在线观看| 一边摸一边做爽爽视频免费| 国产亚洲欧美98| 免费在线观看完整版高清| 欧美乱色亚洲激情| 亚洲色图 男人天堂 中文字幕| 国产男靠女视频免费网站| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久| 亚洲色图av天堂| 一进一出抽搐动态| 久久精品aⅴ一区二区三区四区| 男男h啪啪无遮挡| 麻豆av在线久日| 日本五十路高清| 国产日韩一区二区三区精品不卡| 少妇裸体淫交视频免费看高清 | av超薄肉色丝袜交足视频| 97碰自拍视频| 制服人妻中文乱码| 黄频高清免费视频| 午夜视频精品福利| 色尼玛亚洲综合影院| 日韩视频一区二区在线观看| 夜夜看夜夜爽夜夜摸 | 嫩草影视91久久| 级片在线观看| 日本免费a在线| 亚洲精品国产区一区二| 校园春色视频在线观看| 久久精品人人爽人人爽视色| 女同久久另类99精品国产91| 亚洲成a人片在线一区二区| 国产成年人精品一区二区 | 如日韩欧美国产精品一区二区三区| 日韩成人在线观看一区二区三区| 淫妇啪啪啪对白视频| 国产成人精品久久二区二区91| 天天躁夜夜躁狠狠躁躁| 成人影院久久| 18禁美女被吸乳视频| 欧美日韩亚洲高清精品| 国产精品永久免费网站| 香蕉丝袜av| 99久久久亚洲精品蜜臀av| 黑人猛操日本美女一级片| 极品教师在线免费播放| 老汉色∧v一级毛片| 亚洲国产中文字幕在线视频| 嫩草影院精品99| 成人特级黄色片久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 琪琪午夜伦伦电影理论片6080| 在线观看免费视频日本深夜| 久久草成人影院| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品久久久久久毛片| 亚洲第一欧美日韩一区二区三区| 国产亚洲欧美在线一区二区| 午夜两性在线视频| 人妻久久中文字幕网| 午夜福利在线免费观看网站| 超碰97精品在线观看| √禁漫天堂资源中文www| 国产精品av久久久久免费| 12—13女人毛片做爰片一| 欧洲精品卡2卡3卡4卡5卡区| 叶爱在线成人免费视频播放| 亚洲成人久久性| 级片在线观看| 最近最新中文字幕大全免费视频| 亚洲av成人不卡在线观看播放网| 久久久久久久久免费视频了| 久久亚洲真实| 波多野结衣av一区二区av| 麻豆一二三区av精品|