• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MoS2?Decorated/Integrated Carbon Fiber: Phase Engineering Well?Regulated Microwave Absorber

    2021-06-22 09:07:48JingYanYingHuangXiangyongZhangXinGongChenChenGuangdiNieXudongLiuPanboLiu
    Nano-Micro Letters 2021年7期

    Jing Yan, Ying Huang?, Xiangyong Zhang, Xin Gong, Chen Chen, Guangdi Nie,Xudong Liu, Panbo Liu

    ABSTRACT Phase engineering is an important strategy to modulate the electronic structure of molybdenum disulfide (MoS2). MoS2?based composites are usually used for the electromagnetic wave (EMW)absorber, but the effect of different phases on the EMW absorbing performance, such as 1T and 2H phase, is still not studied. In this work, micro?1T/2H MoS2 is achieved via a facile one?step hydrother?mal route, in which the 1T phase is induced by the intercalation of guest molecules and ions. The EMW absorption mechanism of single MoS2 is revealed by presenting a comparative study between 1T/2H MoS2 and 2H MoS2. As a result, 1T/2H MoS2 with the matrix loading of 15% exhibits excellent microwave absorption property than 2H MoS2.Furthermore, taking the advantage of 1T/2H MoS2, a flexible EMW absorbers that ultrathin 1T/2H MoS2 grown on the carbon fiber also performs outstanding performance only with the matrix loading of 5%. This work offers necessary reference to improve microwave absorption performance by phase engineering and design a new type of flexible electromagnetic wave absorption material to apply for the portable microwave absorption electronic devices.

    KEYWORDS Phase engineering; Electromagnetic wave absorber; 1T/2H MoS2; 2H MoS2; Flexible film

    1 Introduction

    With the rapid development of electronic information technol?ogy, electromagnetic wave exists everywhere in our environ?ment that not only interferes with the electromagnetic control system and negates the effects of equipment, but also harms the physical and mental health of human beings. Therefore,it is of great significance to develop absorbing materials with electromagnetic wave absorbing ability that can both mind the requirements of “wide, thin, light and strong” [1-4]. Moreo?ver, the miniaturization and integration of electronic circuits and components put forward the request of flexible portable microwave absorption electronic devices [5, 6].

    Two?dimension (2D) materials, such as reduced graphene oxide (RGO) [7-10], MoS2[11-15], and new member Mxene[16-19], are usually applied as microwave absorber owing to their high specific surface area and abundant functional groups as well as defects, which will enhance the propagation paths of incident electromagnetic wave (EMW) inside absorbers by scattering effect and increase the loss through polarization relaxation loss. As one of the 2D material, MoS2has adjust?able electrical property and can change between insulators and semiconductor metals. It has important applications in many fields such as optoelectronics [20, 21], secondary batteries [22,23], and catalysis [24, 25]. In addition, MoS2also has been proved to be an effective dielectric?type EMW absorbing mate?rial. As we know, MoS2exists in various phase forms, such as 2H, 1T, and 3R. The natural MoS2usually exists in the form of 2H (hexagonal) phase that the stacking sequence is AbA,BaB (the capital and lower case letters denote chalcogen and metal atoms, respectively), showing an adjustable band gap of 1.3-1.9 eV and presenting semiconductor properties. How?ever, the inherent low conductivity loss would limit its further practical application in microwave absorption to some extent.The octahedral coordination of 1T (triangle)?MoS2struc?ture has metallic property that the stacking sequence is AbC,AbC, and belongs to metastable structure, but it shows a high electrical conductivity [26]. Therefore, combined with above advantages, the mixed phase MoS2(1T@2H?MoS2) would have the great application potential in the field of microwave absorption [27].

    Up to now, many researches about 2H?MoS2applied for EMW absorbing field have been reported [28]. Cao et al. [29]investigated the EMW absorption properties of few?layered pure MoS2nanosheets that prepared by a top?down exfoliation method. The optimum electromagnetic absorbing performance parameters of MoS2?NS/wax with 60% loading are -38.42 dB,2.4 mm. Though the single 2H MoS2exhibited good EMW absorption performance, the sample in sample?paraffin needs to fill in a high proportion, this will undoubtedly limit their practical application. There already have a few advances about 1T@2H?MoS2as one of the components to EMW absorbing.Liu et al. [30] designed a 3D carbon foam/1T@2H?MoS2com?posites, which had the maximum reflection loss of -45.88 dB.Moreover, Che et al. [31] planted the 1T@2H?MoS2into RGO via ammonia insert and high?temperature annealing of 2H?MoS2/RGO, and this composite exhibited the excel?lent EMW absorption ability with the sample mass ratio of 30% in sample?paraffin. These researches mainly focus on the 1T@2H?MoS2?based composites, not involve pure 1T@2H?MoS2, let alone profound explore the influence of different MoS2phase for electromagnetic absorbing properties.

    In this work, we try to prepare two type phases of MoS2via a simple synthesis method and compare the electromagnetic parameters corresponding to different phases of MoS2, thus obtain the excellent EMW absorber by analyzing the EMW absorbing mechanism. Normally, the transformation of MoS2from 2H to 1T can be achieved by chemical exfoliation or substitutional doping [32, 33], which are complex and low yield. Herein, we developed a facile one?step hydrothermal method for producing gram?scale 1T@2H?MoS2by imbed?ding the guest molecules and ions. The 2H?MoS2is obtained by annealing treatment of 1T@2H?MoS2. The results show that 2H MoS2and 1T@2H?MoS2both can effectively EMW absorbing. The synergistic effect between 1T phase and 2H phase of 1T@2H?MoS2in EMW absorbing can further improve the dielectric loss, which makes single 1T@2H?MoS2has a great application prospect in the field of EMW absorbing. In addition, a flexible EMW absorbers that ultrathin 1T/2H MoS2grown on the carbon fiber (CF) by using the same method except the adding of CF, which performs outstanding performance only with the matrix loading of 5%, again prove the significance of this work.

    2 Experimental Section

    2.1 Synthesis of1T/2H MoS2

    The (NH4)6Mo7O24·H2O (0.88 g) and CH3CSNH2(0.9 g)were ultrasonic dissolved in 50 mL water, and then 1.98 g NH4HCO3was added and stirred for 30 min to form a uni?form liquid. The above solution was transferred into the 100?mL hydrothermal synthesis reactor and heated to 200 °C for 13 h. After cooling to room temperature, the black sediments were collected and washed with deionized water and ethanol for further use. The final product was obtained by drying in the vacuum oven for 12 h.

    2.2 Synthesis of2H MoS2

    The above 1T/2H MoS2was placed in an argon tube furnace and heated to 400 °C with a heating rate of 10 °C min-1for 2 h to obtain 2H MoS2.

    2.3 Synthesis ofCF@1T/2H MoS2 andCF@2H MoS2

    The CF is obtained via a simple electrospinning method, and the detailed process is in the supporting information [34].The synthesis process of CF@1T/2H MoS2and CF@2H MoS2is the same as 1T/2H MoS2and 2H MoS2except add?ing the 0.5 g CF after the solution is transferred to hydro?thermal synthesis reactor.

    3 Results andDiscussion

    3.1 Composition andStructure

    The schematic diagram of single MoS2is shown in Scheme 1a. The 1T/2H MoS2is successfully fabricated by hydrothermal method. As a guest, the ammonium bicar?bonate decomposes into small molecules and ions such as NH4+, H2O, and CO2, which are inserted into the layered structure of MoS2to form 1T/2H phase polyphase MoS2,consisting of 1T phase and 2H phase. The electrical con?ductivity of 1T/2H phase is greatly improved owning to the existence of the 1T phase. Furthermore, the combination with 2H phase helps to stabilize the metastable 1T phase and avoids the re?accumulation and transition to 2H phase.The transition from 1T/2H MoS2to 2H MoS2is by anneal?ing treatment. The synthesis principle of CF@1T/2H MoS2is similar to that of 1T/2H MoS2, as shown in Scheme 1b.Considering the advantages of 1T/2H MoS2, the carbon fiber is chosen as a flexible substrate to obtain high?performance flexible EMW absorbing film.

    Scheme1 Schematic drawings illustrating the fabrication process of single MoS2 (1T/2H MoS2 and 2H MoS2) and flexible CF/MoS2 film(CF@1T/2H MoS2 and CF@2H MoS2)

    The X?ray diffraction (XRD) patterns of MoS2samples with different phases are shown in Fig. 1a. Obviously, the 1T/2H MoS2and 2H MoS2have different XRD patterns.The (002) crystal?peaks value of 2H MoS2located at 14.4°,corresponds to the standard 2H phase bulk MoS2(PDF card#75?1539) [35, 36]. As for 1T/2H MoS2, the corresponding(002) crystal peaks are situated at 2theta = 9.5° and 15.9°,and thedspacing difference between two (002) peaks proves the interlayer expansion. To further analyze the sample structure, Raman spectroscopy is introduced between 100 and 600 cm-1, as shown in Fig. 1b. The intensity ratio of peakE1g,E2g1, andA1gis situated at 284.7, 381.7, and 403.3,respectively. However, the intensity ofE2g1andA1gpeaks over 1T/2H MoS2is greatly decreased because of less 2H phase and worse crystallinity. As for 1T/2H MoS2, the addi?tional strong peaks at 150.3 (J1), 215.6 (J2), and 336.8 (J3)cm-1are observed, suggesting the formation of 1T phase MoS2. After annealing, the J1, J2, and J3 peaks of the 1T phase become very weak, andE1g,E2g1, andA1gpeaks of the 2H phase become more significant, indicating that the 1T phase is successfully converted to the stable 2H phase.X?ray photoelectron spectrometer (XPS) displays the ele?ment content on the material surface. In Fig. 1c, the two peaks located at around 229 and 232 eV correspond to the spectra of Mo 3d5/2and Mo 3d3/2, clarifying the existence of 2H phase [37]. The peak at 226 eV corresponds to the spec?tra of S 2 s. Moreover, as for 1T/2H MoS2, two other peaks around 228 and 231 eV are observed, which have the 1 eV shift compared to that of 2H MoS2, proving the presence of the metallic 1T phase [38, 39]. Similarly, the two peaks can be observed at around 162.7 and 161.6 eV corresponding to the spectra of S 2p1/2and S 2p3/2(Fig. 1d). However, two additional peaks are found to shift to lower binding ener?gies at around 161 and 160.5 eV, which once again suggests the presence of metallic 1T phase [39]. The content of 1T phase is estimated to be 61% by calculating the peak area. In Fig. 1e, the N 1 s in the Mo 3p spectra of 1T/2H MoS2dem?onstrates the presence of the N element in 1T/2H MoS2. But no N element can be detected after annealing in 2H MoS2.The peak at around 402 eV corresponding to the spectra of the N 1 s in Fig. 1f should be attributed to the intercalation of NH4+.

    Fig. 1 a XRD patterns, b XPS spectra, c Mo 3d spectra, d S 2p spectra, e Mo 3p spectra of 1T/2H MoS2 and 2H MoS2. f N 1s spectra of 1T/2H MoS2

    Figure 2 shows the SEM and TEM images of synthesized 1T/2H MoS2. The SEM image (Fig. 2a) demonstrates that the 1T/2H MoS2is made up of an infinite number of tiny nanosheets, which is more clearly revealed by the TEM image in Fig. 2b, c. The crosswise dimension of each lamel?lar is approximately 80 nm. The high?resolution TEM image(Fig. 2d) confirms the co?existence of the trigonal prismatic 2H phase and the octahedral 1T phase in 1T/2H MoS2. Fur?thermore, the lateral heterostructures of 1T (Fig. 2e) and 2H(Fig. 2f) phases could also be clearly visualized by zooming in the selected area of Fig. 2d. The element mapping images and EDX (Fig. S1) of 1T/2H MoS2demonstrate the uniform distribution of Mo and S elements. The N in the mapping of 1T/2H MoS2also demonstrates the presence of the N element in 1T/2H MoS2, which is consistent with the XPS results. After annealing, the absence of N of the annealed 2H MoS2as revealed by Fig. S2, the morphology and micro?structure of 2H MoS2are observed as shown in Fig. S3. On macroscopic view, the 2H MoS2remains the same morphol?ogy of 1T/2H MoS2, but only the 2H phase can be find in the zoom HRTEM Fig. S3d, which demonstrates 1T phase is transformed into 2H phase under annealing condition completely.

    Fig. 2 a SEM image, b, c TEM image, d HRTEM images of 1T/2H MoS2. e, f Enlarged images of the selected yellow area

    To meet the demand of portable microwave absorption electronic devices, high?performance flexible film absorbers are urgently needed to be developed. Inspired by the syn?thetic methods of single 1T/2H MoS2and 2H MoS2, the CF is added to the experiment as a substrate to obtain the flexible CF@1T/2H MoS2and CF@2H MoS2films. The XRD pattern and Raman spectrum of sample are shown in Fig. 3. In Fig. 3a, the CF@1T/2H MoS2and CF@2H MoS2have the same peaks as previous 1T/2H MoS2and CF@2H MoS2except the peak of carbon. As for Fig. 3b, the inten?sity ratio of peak D and G, situated at 1350 and 1580 cm-1,respectively, the characteristic peak of carbon material, can reflect the presence of carbon fiber. In this figure, the peaks of MoS2are not obvious because the intensity of D peak and G peak is too high. After zooming the area of 150-600 cm-1,theE1g,E2g1,A1gin both CF@1T/2H MoS2and CF@2H MoS2, the J1, J2, J3 peaks in CF@1T/2H MoS2are the same as those in Fig. 1b.

    To prove the microstructure and morphology of the obtained materials even further, SEM and TEM are also used to study the specific information of pure CF, CF@1T/2H MoS2, and CF@2H MoS2. The bare carbon fibers are made up of count?less 400?nm?thin fibers, as shown in Fig. S4. The CF cloth has good flexibility and can be easily bent. After in situ growth of the CF@1T/2H MoS2and CF@2H MoS2, it is easily seen that many sheets are coated on the surface of carbon fibers from Figs. 4 and S5, which turns out the same way that we did before to synthesize 1T/2H MoS2and CF@2H MoS2can also be used to synthesize flexible CF?based material. The pres?ence of oxygen element in Fig. 4c comes from CF. Moreover,a large interlayer spacing of 9.3 ? is also observed in Fig. 4f,which should be attributed to the insertion of guest ions or molecules [24].

    Fig. 3 a XRD patterns, b Raman spectroscopy of CF@1T/2H MoS2 and CF@2H MoS2

    3.2 Electromagnetic Performance andParameter

    The coaxial transmission line method is adopted with aid of a vector network analyzer to obtain the EM parameters.First, the samples are mixed with paraffin with different mass ratio under 70 °C and then compressed into rings with natural cooling (diameter of the rings:φext= 7.00 mm,φint= 3.0 mm.)Normally, as for a absorber, the absorption strength mainly depends on the magnetic loss and dielectric loss, which are defined by the complex permeability (μr) and permittivity (εr)[40-42]:

    Generally speaking, the real and imaginary part indicate energy storage and energy loss, tanδεrepresents the ratio of energy loss capability to storage capability [43, 44]. In order to effectively explore the influence of different phase on the electromagnetic properties of MoS2, we measured the elec?tromagnetic parameters of the 1T/2H MoS2and 2H MoS2with six kinds of proportion; the sample filling mass ratios in sample?paraffin mixture are 50%, 40%, 30%, 20%, 15%,and 10%. As shown in Fig. 5a, as for 1T/2H MoS2, theε′ of six ratio 50%, 40%, 30%, 20%, 15%, and 10% are 12, 10.17,9.16, 5.86, 4.31, and 3.59, respectively. As for 2H MoS2, theε′ of six ratios 50%, 40%, 30%, 20%, 15%, and 10% are 4.2,3.67, 3.13, 2.8, 2.7, and 2.6, respectively. More broadly, all the initial values of two samples both display the downward trend because MoS2is a single dielectric loss type material.Thus,ε′ values naturally decrease as the sample proportion decreases. Moreover, the matrix loading percentage-initialε″ curve of 1T/2H MoS2and 2H MoS2, is shown in Fig. S6a.As matrix loading percentage goes down, so does initialε″values. The initialε″ curve of 1T/2H MoS2is still higher than 2H MoS2at the same sample proportion. The all sixε′,ε″ and tanδεcurves of 1T/2H MoS2and 2H MoS2are shown in Fig. S7. Overall, allε′,ε″ and tanδεvalues of 1T/2H MoS2are higher than the 2H MoS2under the same sample ratio owing to the high electrical conductivity of 1T/2H MoS2.The conductivity of 1T/2H MoS2and 2H MoS2measured by four?point probe is 9 × 10-2and 1.515 × 10-2, respectively,as shown in Fig. S9. The high conductivity of 1T/2H MoS2not only can produce the more conduction loss, but also can improve the dielectric property compared with 2H MoS2.To be sure, theμ′ andμ″ values of single dielectric loss type material are the constant value 1 and 0, respectively.

    Fig. 4 a, b SEM image, c element mapping of C, O, S, Mo, d, e TEM image, f HRTEM images of CF@1T/2H MoS2

    Fig. 5 a, b Matrix loading percentage-initial ε′ of 1T/2H MoS2 and 2H MoS2, CF@1T/2H MoS2 and CF@2H MoS2. c, d Calculated reflection loss of 1T/2H MoS2 and 2H MoS2 with the matrix loading of 15wt%. e, f CF@1T/2H MoS2 and CF@2H MoS2 with the matrix loading of 5wt%

    After adding CF, the study sample filling ratio is decreased because CF is also a high?dielectric loss type material. The final study ratios of CF@1T/2H MoS2and CF@2H MoS2are 10%, 7%, 5%. In Fig. 5b, the initialε′ of 10%, 7%, 5%CF@1T/2H MoS2are 12.2, 9.26, 6.1, respectively. Compar?atively, the initialε′ of 10%, 7%, 5% CF@2H MoS2are 5.78,4.97, 4.42, respectively. From Fig. S5b, we can also draw the same conclusion of the initialε″ of CF@1T/2H MoS2with 10%, 7%, and 5% ratios higher than the CF@2H MoS2with 10%, 7%, and 5% ratios. The all threeε′,ε″, and tanδεcurves of CF@1T/2H MoS2and CF@2H MoS2are shown in Fig. S8a?f. From the result, we can find even the initialε′ value of 10% ratio CF@1T/2H MoS2higher than 50%ratio single 1T/2H MoS2, which highlights the role of flex?ible CF. Furthermore, the conductivity of pure CF, CF@2H MoS2, and CF@1T/2H MoS2measured by four?point probe are 1.5 × 10-1, 2.257 × 10-1, and 5.298 × 10-1, respectively,as shown in Fig. S9, consistent with the result of high initialε′ value of 10 wt% CF@1T/2H MoS2.

    The calculation of reflection loss can be based on the theory of electromagnetic wave transmission line, as shown in the following formula [45-47]:

    Among them,Zinrefers to the normalized input imped?ance of electromagnetic wave absorbing materials;Z0refers to the impedance matching value in free space;frefers to the frequency of incident electromagnetic wave;drefers to the thickness of absorbing material;crefers to the propaga?tion speed of electromagnetic wave. From Fig. 5c, d, as for the 15% filler loading of single MoS2, the more intuitive information can be obtained. As for 1T/2H MoS2, when the thickness is 2.6 mm, the minimum reflection loss (RLmin)value of 1T/2H MoS2can reach -52.7 dB at 17.7 GHz. The EMW absorption performance of the sample 2H MoS2is shown in Fig. 5d. The 2H MoS2with 15% filler loading is almost impossible to achieve electromagnetic absorption because the lowε′ value. Herein, ifRL= -10 dB at a certain frequency, the material can absorb 90% wave, which can be considered effective absorption. The regionRLbelow-10 dB is called effective absorption bandwidth (EAB)[48, 49]. By contrast, the 2H MoS2with high filler loading(50%) can exhibit a good EMW absorbing performance, as shown in Fig. S10. TheRLminis -60 dB when the thick?ness is 2.8 mm. Though 2H MoS2also can behave effective EMW absorption, it is limited by big filler loading. In gen?eral, the 1T/2H MoS2has a better electromagnetic absorp?tion performance.

    Figure 5e, f reflects the reflection loss of CF@1T/2H MoS2and CF@2H MoS2with the 5% filler loading. When the thickness is 2.7 mm, theRLminvalue of CF@1T/2H MoS2can reach -43 dB at 13.4 GHz only with 5% filler loading.Comparatively, the CF@2H MoS2with 5% filler loading is almost impossible to achieve electromagnetic absorption.This result reasserts the superiority of 1T/2H MoS2.

    In order to better reveal the EMW absorbing abilities of different phase, the 3D classicalRL?fdiagram (Fig. 6) can make a more intuitive comparison between the two kinds of materials. As shown in Fig. 6b, the corresponding EAB of 1T/2H MoS2(15%) can reach 10.52 GHz when the thickness is from 1.5 to 4 mm, which is equivalent to a potential to absorb all waves in the X (8-12 GHz) and Ku (12-18 GHz)bands. As Fig. 6d shows, with the addition of CF, the EAB ranges from 9.25 to 18 GHz.

    3.3 EMW Absorption Mechanism

    The next step is to explore the electromagnetic absorption mechanism of 1T/2H phase MoS2. As we know, good elec?tromagnetic absorbing performance is closely related to the electromagnetic attenuation, more loss (here is dielectric loss) and good impedance matching. Firstly, the propaga?tion paths of incident EMW inside MoS2?based absorbers can be enhanced by scattering effect because of the extreme thinness and high specific surface area of MoS2. Attenuation matching means the ability and speed to convert the energy of EM waves to other forms of energy. The higher the attenu?ation constant α is, the closer the material is to attenuation matching [50-52], and the specific formula is as follows:

    In Fig. 7a, four curves rise by frequency, and with the addition of CF, all the curves are in order of height:CF@1T/2H MoS2(5%) ≥ 1T/2H MoS2(15%) ≥ CF@2H MoS2(5%) ≥ 2H MoS2(15%). The maximum α value rises from 50 to 350. At theirRLminpoint, α of CF@1T/2H MoS2(5%) is 236, larger than that of the CF@2H MoS2(5%). The α of 1T/2H MoS2(15%) is 73, still larger than that of the 2H MoS2(15%). This proves that the 1T/2H MoS2based material has good attenuation loss capacity.

    The dielectric loss in 2-18 GHz is chiefly dominated by polarization relaxation. Figure 7b shows the Cole-Cole semicircle analyzing how many relaxation processes each material own. According to the Debye theory,

    Whenε″ varies withε′, every semicircle represents a relaxation process [53-55]. The arc could be regarded as a similar process. For the 1T/2H MoS2, four processes are distinguished, while the CF@1T/2H MoS2has five. More processes supply more dielectric loss; thus, the CF@1T/2H MoS2has better dissipation ability.

    Fig. 6 a, c 3D reflection loss, b, d corresponding contour maps of 1T/2H MoS2 (15%) and CF@1T/2H MoS2 (5%)

    Fig. 7 a Attenuation constant of 1T/2H MoS2 and 2H MoS2 (15%), CF@1T/2H MoS2 and CF@2H MoS2 (5%). b Cole-Cole semicircle of 1T/2H MoS2 (15%) and CF@1T/2H MoS2 (5%)

    To achieve an excellent absorption performance, the prerequisite is the less reflection, and zero reflection of the incident microwave is the best. Based on the transmis?sion line theory, if the minimumRLcould correspond to impedance matching ratio value (Z=|Zin/Z0|) equal 1 at the same frequency, the impedance of this material matches well. The calculation formula is as follows [56-59]:

    The image in Fig. 8 displays the normalized input imped?ance of as?prepared samples. As we can see, the CF@1T/2H MoS2(2.7 mm) and 1T/2H MoS2(2.6 mm) meet this requirement, demonstrating the good impedance matching of 1T/2H MoS2?based absorber.

    When the thickness of the material is increasing, the fre?quency corresponding to minimumRLbecomes smaller.This regularity is in line with the ? wave length model as follows [60-62]:

    When the value oftmexpjust falls on the curvetmfit, the electromagnetic wave is canceled because the two reflected waves formed by air?absorber and the metal?absorption inter?face form 180° out of phase. In the middle image of Fig. 8,all two curves of fit thickness decline with the increase in frequency. The circle marks correspond to the frequency thatRLis reaching the minimum. The 1T/2H MoS2(15%)and CF@1T/2H MoS2(5%) perfectly fit the model by real?izing the equality of two thicknesses of 2.6 and 2.7 mm,respectively. In total, considering the high dielectric loss result from better conductivity, big attenuation, good imped?ance matching and low filler loading, the as?prepared 1T/2H MoS2is expected to exhibit excellent EMW absorbing abili?ties. Compared with the previous MoS2?based EMW absorb?ers, as shown in Table 1, the 1T/2H MoS2and CF@1T/2H MoS2can achieve the effective electromagnetic absorption only with low filler loading (15%) and (5%), respectively.

    3.4 Radar Cross Section

    Fig. 8 Dependence of the matching thickness (tm) on frequency (fm) under λ/4 and normalized input impedance of 1T/2H MoS2 (15%) and CF@1T/2H MoS2 (5%)

    Table 1 Summary of MoS2?based EMW absorbers

    Fig. 9 a, b, d, e Three?dimensional spherical coordinate diagrams. c, f Polar coordinate diagram. g Schematic diagram of HFSS simulation analysis

    When the geometrical shape of the absorbing material is stable, the radar cross section (RCS) is an important index to judge the absorbing ability of the absorbing material[63, 64]. The HFSS simulation is used to explore the RCS performance of CF@1T/2H MoS2and 1T/2H MoS2. The aluminum (Al) plate is used as the substrate and set to a thin tube with 180 mm long and 5 mm thick [65]. The prepared samples are mixed with paraffin as the absorber coating;it has the same length as the Al plate but the thickness is chosen the above calculated thickness value corresponding to the optimum EMW absorbing performance. In this work,the thickness of 1T/2H MoS2is 2.6 mm, the thickness of CF@1T/2H MoS2is 2.7 mm, and the schematic diagram is shown in Fig. 9g. The incident direction of EM wave is oblique at 45°, the calculation can begin when the material is given an appropriate excitation boundary. After simulation calculations, the RCS values of Al plate and different absorb?ers are obtained. The 3D spherical coordinate diagrams in different directions and polar plots between -60°-60° are shown in Fig. 9a-f. It can be seen that when the EMW is incident on the Al plate coated with MoS2absorber/paraf?fin mixture, the RCS values are smaller than that of single Al plate. In particular, the RCS values of 1T/2H MoS2are smaller than 2H MoS2, which further proves the superiority of 1T/2H MoS2as electromagnetic wave absorber. As for CF@1T/2H MoS2and CF@2H MoS2, we can also draw a conclusion that the RCS values of CF@1T/2H MoS2are smaller than CF@2H MoS2. In summary, the absorbers of 1T/2H MoS2based material exhibit excellent EMW absorp?tion performance.

    4 Conclusion

    In this work, we successfully synthesize the 1T/2H MoS2and 2H MoS2through a facile hydrothermal route and pro?foundly explore the influence of different MoS2phase for electromagnetic absorbing properties by analyzing electro?magnetic parameters of 1T/2H MoS2and 2H MoS2with 50%, 40%, 30%, 20%, 15%, and 10% filler loading. As a result, theRLminof 1T/2H MoS2only with 15% filler load?ing can reach -52.7 dB at 17.7 GHz when the thickness is 2.6 mm. The excellent EMW absorption performance of 1T/2H MoS2than 2H MoS2is due to the high dielectric loss result from better conductivity, big attenuation and good impedance matching. In addition, taking the advan?tage of 1T/2H MoS2, the flexible CF@1T/2H MoS2is also synthesized to mind the request of flexible portable micro?wave absorption electronic devices. When the thickness is 2.7 mm, theRLminvalue of CF@1T/2H MoS2can reach-43 dB at 13.4 GHz only with 5% filler loading.

    Acknowledgments The work was supported by the National Natural Science Foundation of China (No. 51672222), Joint Fund Project?Enterprise?Shaanxi Coal Joint Fund Project (2019JLM?32),Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX202054) and the Graduate innovation team of Northwestern Polytechnical University. The authors thank the Analysis and Testing Center of Northwestern Polytechnical University for their technical assistance in SEM (Verios G4).

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Com?mons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Com?mons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi. org/ 10. 1007/s40820? 021? 00646?y.

    日韩一卡2卡3卡4卡2021年| 国产精品久久久人人做人人爽| 这个男人来自地球电影免费观看| 女性被躁到高潮视频| 大香蕉久久成人网| 激情在线观看视频在线高清| 欧美日本中文国产一区发布| 色婷婷久久久亚洲欧美| 成人三级黄色视频| 欧美日韩一级在线毛片| 国产成人免费无遮挡视频| 大陆偷拍与自拍| 国产成人av激情在线播放| 国产精品av久久久久免费| 亚洲精品国产区一区二| 亚洲男人的天堂狠狠| 亚洲,欧美精品.| 一二三四在线观看免费中文在| 久久精品国产99精品国产亚洲性色 | 久久伊人香网站| 人人妻人人澡人人看| 在线观看一区二区三区| 一区二区三区国产精品乱码| 亚洲国产欧美一区二区综合| 午夜精品国产一区二区电影| 久久久久久免费高清国产稀缺| 国产成+人综合+亚洲专区| 亚洲精品av麻豆狂野| 99精品在免费线老司机午夜| 黄片播放在线免费| 一卡2卡三卡四卡精品乱码亚洲| 两个人看的免费小视频| 久久人妻av系列| 99精品欧美一区二区三区四区| 精品一区二区三区四区五区乱码| 天堂动漫精品| 久久人人97超碰香蕉20202| 丝袜美足系列| 夜夜躁狠狠躁天天躁| 色av中文字幕| av超薄肉色丝袜交足视频| 免费高清在线观看日韩| 日本 av在线| 国产精品亚洲一级av第二区| 免费在线观看日本一区| 婷婷丁香在线五月| 女人精品久久久久毛片| 午夜福利在线观看吧| 午夜福利一区二区在线看| 老司机在亚洲福利影院| 欧美乱码精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| av网站免费在线观看视频| avwww免费| 久久精品亚洲熟妇少妇任你| 欧美中文日本在线观看视频| 90打野战视频偷拍视频| 99久久久亚洲精品蜜臀av| 在线观看午夜福利视频| 亚洲精品国产区一区二| 亚洲男人的天堂狠狠| 88av欧美| 欧美激情久久久久久爽电影 | 国产精品九九99| 亚洲午夜精品一区,二区,三区| 女警被强在线播放| 国产成人精品在线电影| 黄色成人免费大全| 久久天躁狠狠躁夜夜2o2o| 国产一区在线观看成人免费| 欧美精品亚洲一区二区| 亚洲五月天丁香| 午夜福利欧美成人| 又黄又爽又免费观看的视频| 在线av久久热| 视频区欧美日本亚洲| 一区二区三区国产精品乱码| 一级作爱视频免费观看| 久久久水蜜桃国产精品网| 女人被躁到高潮嗷嗷叫费观| 欧美精品亚洲一区二区| 人妻久久中文字幕网| 91成人精品电影| 夜夜夜夜夜久久久久| av有码第一页| 此物有八面人人有两片| 国产1区2区3区精品| 热99re8久久精品国产| 国产精品一区二区三区四区久久 | 91在线观看av| 一区二区三区精品91| 亚洲,欧美精品.| 亚洲熟女毛片儿| 久久影院123| 香蕉国产在线看| 国产午夜精品久久久久久| 一二三四在线观看免费中文在| 久久精品国产综合久久久| 一区二区三区精品91| 国产主播在线观看一区二区| 午夜两性在线视频| 欧美大码av| tocl精华| 国产黄a三级三级三级人| 欧美+亚洲+日韩+国产| 熟妇人妻久久中文字幕3abv| 欧美一级毛片孕妇| 99国产精品一区二区蜜桃av| 亚洲精品久久成人aⅴ小说| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 亚洲免费av在线视频| 国产精品久久久久久人妻精品电影| 久久国产精品男人的天堂亚洲| 丁香六月欧美| 97超级碰碰碰精品色视频在线观看| 亚洲av电影在线进入| 亚洲美女黄片视频| 777久久人妻少妇嫩草av网站| 国产成人一区二区三区免费视频网站| 国产精品av久久久久免费| 日韩成人在线观看一区二区三区| 欧美国产精品va在线观看不卡| 大香蕉久久成人网| 在线免费观看的www视频| 午夜福利高清视频| 欧美日本视频| 女人精品久久久久毛片| cao死你这个sao货| 亚洲av成人av| 久久国产乱子伦精品免费另类| 窝窝影院91人妻| 美女 人体艺术 gogo| 久久精品人人爽人人爽视色| 国产三级在线视频| 在线十欧美十亚洲十日本专区| 亚洲人成伊人成综合网2020| 少妇裸体淫交视频免费看高清 | 欧美大码av| 69精品国产乱码久久久| 免费在线观看完整版高清| 9色porny在线观看| 久久久久国内视频| 午夜久久久久精精品| 欧美成狂野欧美在线观看| 啦啦啦 在线观看视频| 天天躁夜夜躁狠狠躁躁| 757午夜福利合集在线观看| 欧美中文综合在线视频| 啪啪无遮挡十八禁网站| 精品国产美女av久久久久小说| 成人av一区二区三区在线看| 中文字幕高清在线视频| 校园春色视频在线观看| 色综合站精品国产| 婷婷六月久久综合丁香| 婷婷六月久久综合丁香| 久久精品亚洲熟妇少妇任你| 99久久国产精品久久久| 两个人视频免费观看高清| 88av欧美| 无遮挡黄片免费观看| 精品福利观看| 一级毛片精品| 精品日产1卡2卡| 久久久国产成人免费| 日韩欧美免费精品| 亚洲美女黄片视频| 国产午夜福利久久久久久| 精品国产国语对白av| 成人亚洲精品av一区二区| 一边摸一边抽搐一进一小说| 一二三四社区在线视频社区8| 国产亚洲精品第一综合不卡| 又紧又爽又黄一区二区| 天堂影院成人在线观看| 69精品国产乱码久久久| 51午夜福利影视在线观看| 日韩欧美三级三区| 国产男靠女视频免费网站| 色播在线永久视频| 99久久综合精品五月天人人| 给我免费播放毛片高清在线观看| 天天添夜夜摸| 中文字幕人妻丝袜一区二区| 国产精品香港三级国产av潘金莲| 亚洲最大成人中文| 国产麻豆成人av免费视频| 亚洲av熟女| 黄色视频不卡| 亚洲国产看品久久| 精品国产超薄肉色丝袜足j| 日本在线视频免费播放| 真人一进一出gif抽搐免费| 欧美激情高清一区二区三区| avwww免费| 日本免费一区二区三区高清不卡 | 成人三级做爰电影| 亚洲一卡2卡3卡4卡5卡精品中文| 久久中文字幕一级| 国产99白浆流出| 国产熟女xx| 国产日韩一区二区三区精品不卡| 亚洲精品国产色婷婷电影| 婷婷丁香在线五月| 18禁美女被吸乳视频| 亚洲欧美日韩无卡精品| 黄色 视频免费看| av免费在线观看网站| 看片在线看免费视频| 91老司机精品| 久久精品国产99精品国产亚洲性色 | 欧美成人一区二区免费高清观看 | 免费高清在线观看日韩| 久久中文看片网| 国产xxxxx性猛交| av天堂在线播放| 久久婷婷成人综合色麻豆| 在线国产一区二区在线| 两个人看的免费小视频| 一卡2卡三卡四卡精品乱码亚洲| 国产国语露脸激情在线看| 久久久久久久久久久久大奶| 欧美日韩乱码在线| 国产欧美日韩精品亚洲av| av在线播放免费不卡| 午夜福利高清视频| 免费在线观看影片大全网站| 亚洲三区欧美一区| 免费无遮挡裸体视频| 久久亚洲真实| 免费观看人在逋| 精品少妇一区二区三区视频日本电影| 91精品国产国语对白视频| 九色国产91popny在线| 色综合欧美亚洲国产小说| 88av欧美| 午夜a级毛片| 国产精品亚洲一级av第二区| 欧美精品亚洲一区二区| www日本在线高清视频| 国产精品亚洲美女久久久| 一区二区三区国产精品乱码| 九色国产91popny在线| www.熟女人妻精品国产| 亚洲精华国产精华精| 欧美成人性av电影在线观看| 欧美午夜高清在线| 国产熟女xx| 一个人观看的视频www高清免费观看 | 久久久久久大精品| 亚洲欧美精品综合久久99| 亚洲成国产人片在线观看| 精品无人区乱码1区二区| 成年女人毛片免费观看观看9| 日韩一卡2卡3卡4卡2021年| 亚洲色图 男人天堂 中文字幕| 国产精华一区二区三区| tocl精华| 精品国产一区二区久久| 欧美成狂野欧美在线观看| 亚洲人成电影观看| 大型av网站在线播放| 满18在线观看网站| 免费看美女性在线毛片视频| 欧美黑人欧美精品刺激| 国产91精品成人一区二区三区| 欧美激情极品国产一区二区三区| 国产精品日韩av在线免费观看 | 国产精品久久久久久亚洲av鲁大| 亚洲成人免费电影在线观看| 精品国产亚洲在线| 久久久久久免费高清国产稀缺| 国产99白浆流出| 妹子高潮喷水视频| 国产精品影院久久| 国产精品九九99| 日日干狠狠操夜夜爽| 亚洲成a人片在线一区二区| 国产亚洲精品av在线| 欧美不卡视频在线免费观看 | 午夜亚洲福利在线播放| 午夜精品久久久久久毛片777| 91麻豆av在线| 香蕉久久夜色| 亚洲av成人不卡在线观看播放网| 男女午夜视频在线观看| 国产精品99久久99久久久不卡| 激情视频va一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩成人在线观看一区二区三区| 97碰自拍视频| 婷婷六月久久综合丁香| 日韩欧美三级三区| 国产午夜精品久久久久久| 日本免费a在线| 日日干狠狠操夜夜爽| 免费女性裸体啪啪无遮挡网站| 一夜夜www| 两个人视频免费观看高清| av超薄肉色丝袜交足视频| 两个人视频免费观看高清| 色精品久久人妻99蜜桃| 国产成人精品无人区| 亚洲黑人精品在线| 日日干狠狠操夜夜爽| 久久天躁狠狠躁夜夜2o2o| 男人操女人黄网站| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲av一区麻豆| 黄色丝袜av网址大全| 99国产精品99久久久久| 亚洲午夜理论影院| www日本在线高清视频| 亚洲最大成人中文| 国产精品一区二区精品视频观看| 又紧又爽又黄一区二区| 欧美绝顶高潮抽搐喷水| av免费在线观看网站| 757午夜福利合集在线观看| 丁香六月欧美| 国产av一区在线观看免费| 国产在线精品亚洲第一网站| 精品卡一卡二卡四卡免费| 岛国在线观看网站| 欧美中文日本在线观看视频| 天堂√8在线中文| 亚洲人成77777在线视频| 国产精品久久视频播放| 欧美日韩一级在线毛片| 欧美人与性动交α欧美精品济南到| 97超级碰碰碰精品色视频在线观看| 欧美中文日本在线观看视频| 可以在线观看毛片的网站| 国产日韩一区二区三区精品不卡| 黄片播放在线免费| 热99re8久久精品国产| 97超级碰碰碰精品色视频在线观看| 久99久视频精品免费| 亚洲免费av在线视频| 中文字幕色久视频| 午夜精品久久久久久毛片777| 久久香蕉激情| 给我免费播放毛片高清在线观看| 国产欧美日韩一区二区精品| 久久精品国产99精品国产亚洲性色 | 亚洲av美国av| 淫秽高清视频在线观看| 一二三四社区在线视频社区8| 国产三级黄色录像| 叶爱在线成人免费视频播放| 国产主播在线观看一区二区| 老汉色av国产亚洲站长工具| or卡值多少钱| 亚洲无线在线观看| 这个男人来自地球电影免费观看| 日本三级黄在线观看| 欧美性长视频在线观看| 精品人妻1区二区| 亚洲第一青青草原| 视频在线观看一区二区三区| 国产熟女xx| 可以在线观看毛片的网站| 亚洲五月婷婷丁香| 国产97色在线日韩免费| 亚洲熟女毛片儿| av视频在线观看入口| 亚洲中文日韩欧美视频| 岛国视频午夜一区免费看| 亚洲免费av在线视频| 999久久久国产精品视频| 后天国语完整版免费观看| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 美女免费视频网站| 欧美丝袜亚洲另类 | 国产成人免费无遮挡视频| 十八禁网站免费在线| 最新美女视频免费是黄的| 国产精品久久久久久精品电影 | 老熟妇乱子伦视频在线观看| 大型av网站在线播放| 国产亚洲精品一区二区www| 国产一区二区三区在线臀色熟女| 99精品在免费线老司机午夜| 亚洲中文av在线| 亚洲 欧美一区二区三区| 亚洲久久久国产精品| 久久人人爽av亚洲精品天堂| 日本精品一区二区三区蜜桃| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| avwww免费| 欧美一级毛片孕妇| av在线播放免费不卡| 欧美一级毛片孕妇| 婷婷六月久久综合丁香| 在线播放国产精品三级| 国产私拍福利视频在线观看| 精品第一国产精品| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清在线视频| 黄色视频不卡| 午夜日韩欧美国产| 精品国产乱码久久久久久男人| 国产精品亚洲美女久久久| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 久久亚洲真实| 亚洲熟女毛片儿| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费 | 黄色成人免费大全| 99riav亚洲国产免费| 久久香蕉精品热| 大香蕉久久成人网| 国产99白浆流出| 91国产中文字幕| 国产99白浆流出| 好男人在线观看高清免费视频 | av有码第一页| 99久久99久久久精品蜜桃| av在线天堂中文字幕| 欧美日本视频| 少妇裸体淫交视频免费看高清 | 国产精品亚洲av一区麻豆| 精品久久久久久,| 日韩一卡2卡3卡4卡2021年| 免费看a级黄色片| 操美女的视频在线观看| 国产一级毛片七仙女欲春2 | 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 精品欧美国产一区二区三| 九色亚洲精品在线播放| 高清毛片免费观看视频网站| 午夜视频精品福利| 18禁黄网站禁片午夜丰满| 精品国产亚洲在线| 三级毛片av免费| av中文乱码字幕在线| 女人被狂操c到高潮| av欧美777| 久久影院123| 亚洲成av片中文字幕在线观看| 看免费av毛片| 琪琪午夜伦伦电影理论片6080| 欧美丝袜亚洲另类 | 亚洲性夜色夜夜综合| 久久人妻av系列| 亚洲 国产 在线| 欧美成狂野欧美在线观看| 国产伦一二天堂av在线观看| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 午夜福利欧美成人| bbb黄色大片| 国产亚洲精品久久久久久毛片| 一夜夜www| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 18禁黄网站禁片午夜丰满| 亚洲精品国产区一区二| 69av精品久久久久久| 精品久久久久久久久久免费视频| 成人av一区二区三区在线看| 黑丝袜美女国产一区| 丁香六月欧美| 国内毛片毛片毛片毛片毛片| 九色亚洲精品在线播放| 久久香蕉激情| 国产野战对白在线观看| 色尼玛亚洲综合影院| 一进一出好大好爽视频| 99国产精品99久久久久| 狠狠狠狠99中文字幕| av免费在线观看网站| 欧美成狂野欧美在线观看| 亚洲精品在线观看二区| 一卡2卡三卡四卡精品乱码亚洲| 男女做爰动态图高潮gif福利片 | 亚洲国产精品999在线| √禁漫天堂资源中文www| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 国产成年人精品一区二区| 在线国产一区二区在线| 一个人观看的视频www高清免费观看 | 国产精品乱码一区二三区的特点 | 国产精品综合久久久久久久免费 | 亚洲专区中文字幕在线| 狂野欧美激情性xxxx| 免费av毛片视频| 啦啦啦韩国在线观看视频| 国产精品av久久久久免费| 国产精品1区2区在线观看.| 成年人黄色毛片网站| 神马国产精品三级电影在线观看 | 三级毛片av免费| 99re在线观看精品视频| 国产精品一区二区免费欧美| 嫩草影院精品99| av免费在线观看网站| 99精品久久久久人妻精品| 欧美av亚洲av综合av国产av| 久久影院123| 免费高清在线观看日韩| 亚洲专区国产一区二区| 黄色片一级片一级黄色片| 97人妻精品一区二区三区麻豆 | 一级毛片精品| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 很黄的视频免费| 久久亚洲精品不卡| 久久青草综合色| 丝袜美腿诱惑在线| 黄网站色视频无遮挡免费观看| 很黄的视频免费| 久热这里只有精品99| 一级毛片精品| 亚洲黑人精品在线| 免费在线观看影片大全网站| 91麻豆av在线| 亚洲成av片中文字幕在线观看| 国产伦一二天堂av在线观看| 大香蕉久久成人网| 村上凉子中文字幕在线| 日韩欧美国产在线观看| 亚洲无线在线观看| 人人妻人人爽人人添夜夜欢视频| 91在线观看av| 中国美女看黄片| 神马国产精品三级电影在线观看 | 两人在一起打扑克的视频| 日本 av在线| 啦啦啦韩国在线观看视频| 欧美成人性av电影在线观看| 老汉色∧v一级毛片| 性欧美人与动物交配| 午夜福利一区二区在线看| 欧美最黄视频在线播放免费| 国产成人精品久久二区二区91| 精品国产超薄肉色丝袜足j| 日本撒尿小便嘘嘘汇集6| av视频免费观看在线观看| 丝袜美足系列| 免费看十八禁软件| 97碰自拍视频| 国产人伦9x9x在线观看| 成在线人永久免费视频| 成人特级黄色片久久久久久久| 国产区一区二久久| 国产91精品成人一区二区三区| 韩国av一区二区三区四区| 久久精品成人免费网站| 乱人伦中国视频| 亚洲第一电影网av| 天天添夜夜摸| 国产亚洲精品久久久久久毛片| 夜夜夜夜夜久久久久| 国产精品免费一区二区三区在线| 久久精品国产综合久久久| 麻豆av在线久日| 女人高潮潮喷娇喘18禁视频| xxx96com| 制服丝袜大香蕉在线| 妹子高潮喷水视频| 欧美中文日本在线观看视频| 欧美黑人欧美精品刺激| 女性被躁到高潮视频| 好男人在线观看高清免费视频 | 人成视频在线观看免费观看| 日本免费一区二区三区高清不卡 | 日韩三级视频一区二区三区| 色老头精品视频在线观看| 午夜精品久久久久久毛片777| 国产xxxxx性猛交| 久久青草综合色| av网站免费在线观看视频| 欧美+亚洲+日韩+国产| 亚洲天堂国产精品一区在线| 欧美日韩乱码在线| 悠悠久久av| 色av中文字幕| 久久久久久久午夜电影| 国产精品免费视频内射| 国产97色在线日韩免费| 免费高清视频大片| 美女国产高潮福利片在线看| 免费在线观看黄色视频的| 国产精品久久久人人做人人爽| 国产亚洲精品一区二区www| 好男人在线观看高清免费视频 | 一级,二级,三级黄色视频| 在线观看66精品国产| 麻豆av在线久日| 亚洲五月色婷婷综合| 黄色视频不卡| 亚洲免费av在线视频| 亚洲国产精品999在线| 国产精品永久免费网站| 人妻久久中文字幕网| 欧美+亚洲+日韩+国产| 非洲黑人性xxxx精品又粗又长| www.自偷自拍.com| 在线av久久热| 久久人人精品亚洲av| 免费不卡黄色视频| 亚洲精品久久成人aⅴ小说| 制服人妻中文乱码|