• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    過渡金屬離子摻雜Ⅱ-Ⅵ族中紅外激光陶瓷研究進(jìn)展

    2021-06-16 07:53:22羅永治余盛全
    人工晶體學(xué)報 2021年5期
    關(guān)鍵詞:熱擴(kuò)散多晶激光器

    羅永治,余盛全,陰 明,康 彬

    (1.中國工程物理研究院化工材料研究所, 綿陽 621900;2.成都理工大學(xué)信息科學(xué)與技術(shù)學(xué)院(網(wǎng)絡(luò)安全學(xué)院、牛津布魯克斯學(xué)院),成都 610059)

    0 引 言

    處于大氣傳輸窗口和“分子指紋”區(qū)的2~5 μm中紅外激光在光通信、氣體探測、環(huán)境監(jiān)測、生物醫(yī)療、目標(biāo)檢測和紅外對抗等諸多領(lǐng)域具有重要的應(yīng)用價值[1-5]。目前,主要有三種技術(shù)可實現(xiàn)全固態(tài)激光器中紅外激光輸出,即量子級聯(lián)、非線性頻率變換和直接泵浦過渡金屬離子(TM2+)摻雜的Ⅱ-Ⅵ族增益介質(zhì) (TM2+∶Ⅱ-Ⅵ)[6]。量子級聯(lián)激光器(quantum cascade laser, QCL)是一類新型半導(dǎo)體激光器,它利用量子阱子帶間的電子躍遷代替窄帶隙半導(dǎo)體的帶間光學(xué)躍遷,輸出激光的波長由量子阱厚度控制[7],QCL的工作波長可以覆蓋紅外到太赫茲波段,但存在散熱性差、工藝復(fù)雜和輸出功率小等缺點[6]。常見的非線性頻率變換激光器有光參量放大器(optical parametric amplifier, OPA)和光參量振蕩器(optical parametric oscillator, OPO),它們利用頻率下轉(zhuǎn)換將其他波段的激光(可見光或近紅外光)調(diào)諧到中紅外波段[6],但通過OPA和OPO等非線性頻率變換技術(shù)實現(xiàn)中紅外激光輸出的非線性光學(xué)材料,如硒鎵銀(AgGaSe2)、磷鍺鋅(ZnGeP2)等晶體,存在制備技術(shù)路線復(fù)雜和成本高等缺陷。而作為直接泵浦固體激光增益介質(zhì)的TM2+∶Ⅱ-Ⅵ材料,其發(fā)光波段不僅覆蓋整個中紅外波段,而且還具有寬可調(diào)諧范圍、吸收和發(fā)射截面大、導(dǎo)熱性能好、室溫下量子效率高以及激發(fā)態(tài)吸收小等優(yōu)點[5,8]。

    20世紀(jì)90年代,美國勞倫斯利弗莫爾國家實驗室的DeLoach等[9]通過實驗證明了TM2+∶Ⅱ-Ⅵ族化合物可作為中紅外激光增益介質(zhì)。隨后的研究表明,TM2+∶Ⅱ-Ⅵ材料是非常有發(fā)展前景的直接泵浦中紅外激光增益介質(zhì)材料[10-13]。TM2+主要包括Cr2+、Co2+、Fe2+、Ni2+等金屬離子,而Ⅱ-Ⅵ族化合物是由第II副族的Zn、Cd和第Ⅵ族的S、Se、Te等元素組成的ZnSe、ZnS、ZnTe、CdS、CdMnTe等二元或三元等化合物。當(dāng)這些TM2+被摻雜到Ⅱ-Ⅵ族材料時,晶格場將導(dǎo)致離子能級劈裂以及強(qiáng)電子-聲子耦合效應(yīng),從而引起它們在中紅外波段產(chǎn)生非常寬的吸收和發(fā)射帶[14]。Cr2+、Fe2+在ZnS、ZnSe材料中的吸收和發(fā)射光譜如圖1所示,其中Cr2+和Fe2+發(fā)光波長分別為2~3 μm和3~5.5 μm。因此,Cr2+和Fe2+成為最適合摻雜2~5 μm中紅外直接泵浦激光增益介質(zhì)的激活離子,Cr2+/Fe2+∶ZnSe/ZnS材料因而受到了國內(nèi)外研究學(xué)者的廣泛關(guān)注。表1歸納了Cr2+/Fe2+∶ZnSe/ZnS的光譜特性[14]。

    圖1 (a)ZnS和ZnSe中Cr2+吸收(Cr2+∶ZnS-Ⅰ、Cr2+∶ZnSe-Ⅱ)與發(fā)射(Cr2+∶ZnS-Ⅲ、Cr2+∶ZnSe-Ⅳ)截面;(b)ZnS和ZnSe中Fe2+吸收(Fe2+∶ZnS-Ⅴ、Fe2+∶ZnSe-Ⅵ)與發(fā)射(Fe2+∶ZnS-Ⅶ、Fe2+∶ZnSe-Ⅷ)截面[14]Fig.1 (a) Absorption (Cr2+∶ZnS-curve Ⅰ, Cr2+∶ZnSe-curve Ⅱ) and emission (Cr2+∶ZnS-curve Ⅲ, Cr2+∶ZnSe-curve Ⅳ) cross-sections of Cr2+ in ZnS and ZnSe; (b) absorption (Fe2+∶ZnS-curve Ⅴ, Fe2+∶ZnSe-curve Ⅵ) and emission (Fe2+∶ZnS-curve Ⅶ, Fe2+∶ZnSe-curve Ⅷ) cross-sections of Fe2+ in ZnS and ZnSe[14]

    表1 Cr2+/Fe2+∶ZnS/ZnSe材料的光譜特性比較[14]Table 1 Spectroscopic characteristics of Cr2+/Fe2+∶ZnS/ZnSe materials[14]

    作為直接泵浦固體激光器的核心器件,增益介質(zhì)的性能直接決定著激光器的性能,材料的制備技術(shù)又對激光增益介質(zhì)的性能有著重要影響。TM2+∶Ⅱ-Ⅵ增益介質(zhì)的性能是影響其激光器性能的主要因素之一。當(dāng)前,獲得高光學(xué)質(zhì)量的TM2+∶Ⅱ-Ⅵ材料還比較困難,影響了TM2+∶Ⅱ-Ⅵ中紅外激光器的發(fā)展。本文從材料研究的角度出發(fā),總結(jié)了TM2+∶Ⅱ-Ⅵ材料中Cr2+/Fe2+∶ZnSe/ZnS材料的主要制備技術(shù)路線及其特點,然后重點介紹了采用激光陶瓷技術(shù)研制Cr2+/Fe2+∶ZnSe/ZnS陶瓷材料的研究進(jìn)展,希望以此促進(jìn)TM2+∶Ⅱ-Ⅵ激光陶瓷發(fā)展。

    1 TM2+∶Ⅱ-Ⅵ材料制備方法

    TM2+∶Ⅱ-Ⅵ材料的制備方法主要有三種。第一種是晶體生長法,它主要包括熔融生長法[15-16]、物理氣相傳輸法(physical vapor transport, PVT)[17]、化學(xué)氣相傳輸法(chemical vapor transport, CVT)[18]和化學(xué)氣相沉積法(chemical vapor deposition, CVD)[19],其中熔融生長法和CVD法是最常用的方法。以ZnSe為例,在大氣壓下ZnSe升華溫度在約400 ℃,遠(yuǎn)低于熔點。所以在使用熔融生長法時,在1 515 ℃高溫下必須同時施加0.75 MPa高壓[20]。由于這種方法對材料的生長設(shè)備要求比較高,沒有被廣泛應(yīng)用,而且此方法生長TM2+∶Ⅱ-Ⅵ材料時容易使晶體受到雜質(zhì)污染。對于有氣相的生長方法,TM2+的飽和蒸氣壓遠(yuǎn)低于Ⅱ-Ⅵ族化合物的飽和蒸氣壓,TM2+很難形成氣相擴(kuò)散,所以在氣相中難以獲得摻雜離子均勻分布的TM2+∶Ⅱ-Ⅵ晶體材料[17]。晶體生長法制備TM2+∶Ⅱ-Ⅵ激光材料缺點明顯,因而沒有被廣泛采用。

    TM2+∶Ⅱ-Ⅵ多晶陶瓷材料的制備方法主要包括熱擴(kuò)散法和熱壓法(hot pressing, HP)[1],其中熱擴(kuò)散法是利用熱激活的TM2+擴(kuò)散到Ⅱ-Ⅵ材料中[21-22]。首先利用脈沖激光沉積、氣相沉積或磁控濺射系統(tǒng),將TM薄膜沉積在單晶或CVD法生長的ZnSe、ZnS多晶表面,隨后將其密封在真空石英管中并置于900~1 100 ℃高溫下擴(kuò)散7~20 d[23]。相比晶體生長法,熱擴(kuò)散法對工藝流程控制和設(shè)備的要求不高,已得到相當(dāng)廣泛的應(yīng)用[24-26]。最近,研究人員提出了熱等靜壓(hot isostatic pressing, HIP)和熱擴(kuò)散相結(jié)合的方法[27-29],在高壓作用下可以提高擴(kuò)散溫度100~200 ℃,增加擴(kuò)散速度和深度。俄羅斯的Balabanov等[30]將固態(tài)擴(kuò)散的Fe2+∶ZnSe經(jīng)過HIP制備了具有兩個Fe2+摻雜內(nèi)層的Fe2+∶ZnSe。因此,熱擴(kuò)散法是當(dāng)前制備TM2+∶Ⅱ-Ⅵ激光材料最成功也是應(yīng)用最廣的方法,但是熱擴(kuò)散法制備的TM2+∶Ⅱ-Ⅵ激光材料也存在明顯的缺陷:TM2+摻雜濃度不可控、TM2+分布不均勻(TM2+富集在材料表面)、擴(kuò)散時間較長。由于ZnSe的升華,導(dǎo)致材料的光學(xué)性能下降,而且若ZnSe基體是多晶,存在晶粒異常生長,將導(dǎo)致力學(xué)性能變差。

    制備具有均勻TM2+分布的大尺寸TM2+∶Ⅱ-Ⅵ材料需要更加先進(jìn)的技術(shù)。20世紀(jì)60年代,研究人員研制了光學(xué)性能與單晶相似的透明陶瓷材料。1966年,Dy2+∶CaF2成為第一個用作激光增益介質(zhì)的陶瓷材料[31]。日本神島化學(xué)公司在Nd∶YAG激光陶瓷取得的研究成果,激發(fā)了科研人員對激光陶瓷材料的研究興趣[32]。然而,對TM2+∶Ⅱ-Ⅵ激光陶瓷的研究還處于起步階段,對應(yīng)的制備技術(shù)還需要不斷地改進(jìn)創(chuàng)新。

    2 Cr2+/Fe2+∶ZnSe激光陶瓷的制備及光學(xué)性能

    2.1 ZnSe透明陶瓷

    ZnSe是Ⅱ-Ⅵ族直接寬帶隙半導(dǎo)體發(fā)光材料(2.7 eV),常溫下ZnSe為閃鋅礦結(jié)構(gòu),屬于立方晶系空間群。由于獨特的空間構(gòu)型,ZnSe在中、長波紅外區(qū)域具有高的透過率,因此常被用于傳感器、LED以及其他光電設(shè)備[33-36]。美國Eastman Kodak Hawk-Eye公司的William Parsons團(tuán)隊在20世紀(jì)60年代首先開始運用HP技術(shù)制備ZnSe陶瓷材料用于紅外窗口[37]。但粉體制備是陶瓷制備過程中關(guān)鍵的一步,粉體的質(zhì)量對透明陶瓷的性能有著極大的影響。目前,制備ZnSe粉體的方法主要有水熱法[38-40]、溶劑熱法[41]、聲化學(xué)法[42]、機(jī)械化學(xué)法[43-44]和球磨法[45-46]等。法國研究人員Zhou等[47]利用水熱法合成的ZnSe粉體再經(jīng)高能球磨,獲得顆粒尺寸均勻的粉體,但在燒結(jié)過程中,ZnSe陶瓷燒結(jié)溫度過高易導(dǎo)致陶瓷晶粒內(nèi)部出現(xiàn)微氣孔。隨著燒結(jié)溫度的升高,晶粒生長越快,晶粒之間的氣孔會向晶界移動,進(jìn)而逐漸排出樣品;但是當(dāng)燒結(jié)溫度過高時,由于晶粒會異常長大以及樣品升華嚴(yán)重,導(dǎo)致形成很多微氣孔,因此陶瓷的相對密度隨著溫度升高先增大后減小。氣孔是影響透明陶瓷透過率極其重要的因素,它會對光產(chǎn)生反射、折射或散射從而使樣品表現(xiàn)為不透明狀態(tài)。放電等離子體燒結(jié)(spark plasma sintering, SPS)的特點是加熱速度快、燒結(jié)時間短,相比于HP燒結(jié)能夠在更短時間內(nèi)獲得完全致密的陶瓷,現(xiàn)已成為制備TM2+∶Ⅱ-Ⅵ激光陶瓷的重要燒結(jié)方式。ZnSe粉體在1 100 ℃/70 MPa的條件下,通過SPS燒結(jié)5 min,獲得的ZnSe陶瓷表現(xiàn)出較高的密度(99.3%)和硬度(163 kg·mm-2)[48]。但是,樣品中存在的雜質(zhì)、殘留空隙和非均勻的微觀結(jié)構(gòu)導(dǎo)致無法獲得更高的透過率[49]。國內(nèi)的江蘇師范大學(xué)在ZnSe透明陶瓷領(lǐng)域也開展了大量研究工作。2017年,江蘇師范大學(xué)科研人員將在無水乙醇中球磨后的ZnSe粉體,通過SPS燒結(jié)5 min(900 ℃/80 MPa)實現(xiàn)了陶瓷的致密化,但由于燒結(jié)過程中出現(xiàn)嚴(yán)重的滲碳污染導(dǎo)致ZnSe陶瓷的光學(xué)性能較差[45],采用石墨模具或石墨燒結(jié)爐,材料被滲碳污染是導(dǎo)致陶瓷光學(xué)質(zhì)量變差的一個重要原因。2018年,Gao等[46]將商業(yè)ZnSe粉體在干燥的環(huán)境中球磨4 h后通過SPS燒結(jié)(950 ℃/100 MPa/30 min),制備的ZnSe陶瓷相對密度達(dá)99.8%并在2~20 μm波段內(nèi)的最大透過率約為63%。ZnSexS1-x多晶陶瓷具有ZnS較高的機(jī)械強(qiáng)度和ZnSe良好的光學(xué)性能,因此ZnSexS1-x常被用于制作紅外防護(hù)窗。近來,江蘇師范大學(xué)的相關(guān)科研人員將90%的ZnSe和10%(摩爾分?jǐn)?shù))的ZnS商業(yè)粉體混合球磨后首先經(jīng)過HP預(yù)處理,然后在氬氣氛圍中HIP燒結(jié)6 h。如圖2所示,ZnSe0.9S0.1多晶陶瓷在14 μm的透過率達(dá)62.3%[50]。

    圖2 HIP ZnSe0.9S0.1陶瓷的室溫紅外透射譜(插圖為經(jīng)1 000 ℃預(yù)燒結(jié),再經(jīng)過HIP的樣品(厚度1 mm)[50]Fig.2 Room-temperature infrared transmittance spectra of ZnSe0.9S0.1 mixed ceramics after HIP (photograph of the HIP-treated sample (thickness 1 mm) pre-sintered at 1 000 ℃ is presented in the inset)[50]

    2.2 Cr2+∶ZnSe激光陶瓷

    20世紀(jì)90年代,美國研究人員Page等[51]成功研制出在脈沖模式下工作的Cr2+∶ZnSe激光器。目前國內(nèi)外對Cr2+∶ZnSe激光器的研究也取得了一定的成果[8,14,52-53]。但由于受晶體生長法和熱擴(kuò)散法的限制,激光增益介質(zhì)的摻雜離子分布不均勻、濃度猝滅以及摻雜濃度不可控等問題沒有得到有效解決。因此,雖然Cr2+∶ZnSe中紅外固體激光器的功率水平在不斷提升,但是在出光效率和光束質(zhì)量等關(guān)鍵指標(biāo)上沒有新的突破進(jìn)展。而HP法用于制備TM2+∶Ⅱ-Ⅵ陶瓷材料可以彌補(bǔ)熱擴(kuò)散法存在的TM2+分布不均勻、摻雜濃度不可控等缺陷,且所制備的陶瓷具有良好的光學(xué)質(zhì)量和更優(yōu)的力學(xué)性能。2006年,美國阿拉巴馬大學(xué)伯明翰分校的Gallian等[54]使用瑪瑙研缽把高純度的ZnSe和ZnSe-CrSe混合粉體研磨成小于10 μm的細(xì)顆粒,然后在1 126~1 226 ℃和30~35 MPa條件下進(jìn)行HP燒結(jié),制備出不同摻雜量的Cr2+∶ZnSe激光陶瓷。如圖3(a)所示,熱擴(kuò)散和HP制備的Cr2+∶ZnSe多晶陶瓷都具有以1.78 μm為中心的寬吸收帶;圖3(b)是采用了一個Nd∶YAG Q開關(guān)激光器作為泵浦源(1.91 μm)測量它們的熒光發(fā)射壽命,證實了熱擴(kuò)散法和HP法制備的Cr2+∶ZnSe多晶陶瓷具有相同的光學(xué)性質(zhì)。所制備的Cr2+∶ZnSe陶瓷實現(xiàn)了2 mJ的激光輸出(見圖3(c)),光-光轉(zhuǎn)換效率為5%;展示了有史以來第一個在中紅外波段工作的熱壓Cr2+∶ZnSe陶瓷激光器,同時也證明了TM2+∶Ⅱ-Ⅵ激光陶瓷具有發(fā)展前景。中國科學(xué)院上海硅酸鹽研究所也對Cr2+∶ZnSe激光陶瓷開展了相關(guān)研究工作,Chen等[55]將商業(yè)CrSe和ZnSe粉體密封在10-2Pa的石英管中,隨后在950 ℃的溫度中煅燒150 h以得到摻雜均勻的粉體,然后通過HP燒結(jié)(1 050 ℃/150 MPa/2 h)制備得到Cr2+∶ZnSe激光陶瓷樣品如圖4所示,但是沒有詳細(xì)的光學(xué)性能表征結(jié)果。近年來,西北工業(yè)大學(xué)的研究人員采用了固相反應(yīng)方法成功合成Cr2+∶ZnSe多晶材料[56],這為TM2+∶Ⅱ-Ⅵ多晶材料的制備提供了新技術(shù)。

    圖3 Cr2+∶ZnSe多晶材料的(a)吸收光譜;(b)熒光壽命;(c)激光性能曲線(A-多晶材料,B、C-熱壓陶瓷)[54]Fig.3 (a) Absorption spectra and (b) luminescence lifetime measurements of Cr2+∶ZnSe sample; (c) output characteristics of the gain-switched Cr2+∶ZnSe based on polycrystalline sample (A) and hot-pressed ceramics (B and C)[54]

    圖4 在1 050 ℃/150 MPa/2 h條件下熱壓燒結(jié)的Cr2+∶ZnSe陶瓷[55]Fig.4 Hot-pressed sintered Cr2+∶ZnSe ceramics prepared under condition of 1 050 ℃/150 MPa/2 h[55]

    2.3 Fe2+∶ZnSe激光陶瓷

    與Cr2+∶ZnSe相比,F(xiàn)e2+∶ZnSe的帶隙比較小,容易產(chǎn)生溫度過高導(dǎo)致的多聲子猝滅,因而Fe2+∶ZnSe激光器通常需要低溫冷卻。Fe2+離子的熒光壽命也是影響其激光器性能的一個重要因素,由于存在溫度猝滅效應(yīng),F(xiàn)e2+的熒光壽命隨溫度升高而急劇下降,在室溫下只有脈沖激光輸出,低溫下可以產(chǎn)生連續(xù)的激光輸出。盡管目前Fe2+∶ZnSe激光器存在較多問題,但可用于2.6~3.1 μm波段的泵浦激光源種類少,它仍舊是中紅外3~5 μm激光的一個重要發(fā)展方向。最近,美國阿拉巴馬大學(xué)伯明翰分校Fedorov等[57]報道了在室溫下利用2.94 μm的Er∶YAG激光器泵浦Fe2+∶ZnSe多晶材料,實現(xiàn)了3.60~5.15 μm的調(diào)諧寬度,并產(chǎn)生最大5 mJ的輸出能量。并證明調(diào)Q開關(guān)模式可以有效用于Fe2+∶ZnSe激光器,但需要制備大尺寸的Fe2+∶ZnSe多晶陶瓷材料。

    2019年,阿爾弗雷德大學(xué)紐約州立陶瓷學(xué)院的科研人員[58]首次通過液相共沉淀法合成FexZn1-xSe(0.00≤x≤0.06)粉體。其中合成Fe2+∶ZnSe粉體的主要困難在于共沉淀過程中的Se2-前驅(qū)體在市場上難以獲得,且Se2-、Fe2+溶液在空氣中極易氧化。因此,他們先將NaH4B溶于去離子水中,然后將該溶液加入到Ar-沖洗瓶中與Se單質(zhì)產(chǎn)生氧化還原反應(yīng),產(chǎn)生的NaH4Se溶液作為Se2-源。合成的Fe2+∶ZnSe粉體粒徑為納米級,且分布均勻。當(dāng)Fe2+的摻雜量為最高(6%原子數(shù)分?jǐn)?shù))時,也沒有出現(xiàn)Fe2+的富集,說明所引入的Fe2+替代了Zn2+而完全摻入到材料的晶格中,但在煅燒溫度過高時有ZnO雜質(zhì)相產(chǎn)生。將Fe0.01Zn0.99Se粉體通過SPS燒結(jié)(950 ℃/60 MPa/30 min),制得1 mm厚的Fe2+∶ZnSe陶瓷在12 μm處有57%的峰值透過率。2020年,該課題組進(jìn)一步探索SPS燒結(jié)參數(shù)對陶瓷微結(jié)構(gòu)的影響,獲得了光學(xué)性能更優(yōu)的Fe2+∶ZnSe陶瓷[59]。在900 ℃/90 MPa/120 min條件下制備的Fe2+∶ZnSe陶瓷在1.4 μm處呈現(xiàn)出約60%的透過率,7.5 μm處的透過率約為68%。Fe2+從5E→5T2躍遷產(chǎn)生3 μm附近的強(qiáng)吸收帶(見圖5(a)),如圖5(b)所示,適當(dāng)延長燒結(jié)時間可以有效提升Fe2+∶ZnSe激光陶瓷的光學(xué)質(zhì)量。隨后,Karki等[60]采用了一個泵浦光源為2.94 μm的Q開關(guān)Er∶YAG激光器測量了Fe2+∶ZnSe陶瓷的熒光發(fā)射壽命和發(fā)射光譜。如圖6(a)所示,透明陶瓷和熱擴(kuò)散樣品均呈現(xiàn)220 ns時間常數(shù)的單指數(shù)衰減,且Fe2+∶ZnSe激光陶瓷的發(fā)光譜覆蓋了3 500~5 500 nm的光譜范圍(見圖6(b))。在圖7(a)所示的激光實驗中,實現(xiàn)最大輸出能量41 mJ,脈沖持續(xù)時間120 ns(見圖7(b)),光-光轉(zhuǎn)換效率達(dá)25%,表明Fe2+∶ZnSe激光陶瓷的制備技術(shù)有了顯著提升。

    圖5 (a)900 ℃/90 MPa/120 min條件下燒結(jié)的Fe∶ZnSe陶瓷(厚度3 mm)的透射光譜;(b)900 ℃/90 MPa條件下燒結(jié)不同時間的Fe∶ZnSe陶瓷照片[59]Fig.5 (a) Transmission spectrum of Fe∶ZnSe ceramics (thickness 3 mm) sintered at 900 ℃ under 90 MPa for 120 min;(b) photograph of the samples sintered at 900 ℃ under 90 MPa for different time[59]

    圖6 (a)Fe∶ZnSe樣品的熒光壽命(曲線Ⅰ-陶瓷,曲線Ⅱ-多晶材料);(b)Fe∶ZnSe陶瓷的光致發(fā)光光譜(曲線Ⅰ)和激光振蕩譜(曲線Ⅱ)[60]Fig.6 (a) Luminescence lifetime measurement of Fe∶ZnSe ceramics (curve Ⅰ) and polycrystalline samples (curve Ⅱ); (b) photoluminescence spectrum (curve Ⅰ) and laser oscillation (curve Ⅱ) spectrum of Fe∶ZnSe ceramics[60]

    圖7 (a)基于熱壓Fe∶ZnSe陶瓷的激光裝置及其(b)輸出輸入特性曲線[60]Fig.7 (a) Schematic diagram of gain-switched hot-pressed ceramics Fe∶ZnSe laser; (b) output-input characteristics of the Fe∶ZnSe laser[60]

    3 Cr2+/Fe2+∶ZnS激光陶瓷的制備及光學(xué)性能

    3.1 ZnS透明陶瓷

    ZnS的性質(zhì)與ZnSe相似,屬Ⅱ-Ⅵ族直接寬帶隙半導(dǎo)體(3.7 eV);它具有0.4~14 μm的高透射率,較高的熱穩(wěn)定性和良好的力學(xué)性能,使其被用于紅外窗口、整流罩和紅外光學(xué)元件等[37,61-62]。ZnS有閃鋅礦和纖鋅礦兩種類型,閃鋅礦也稱作β-ZnS,晶體結(jié)構(gòu)為立方晶系;另一種結(jié)構(gòu)纖鋅礦也稱α-ZnS,屬六方晶系。ZnS陶瓷在室溫下一般以立方結(jié)構(gòu)存在,但當(dāng)燒結(jié)溫度高于1 020 ℃時會發(fā)生由立方相向六方相的轉(zhuǎn)變,而六方相的雙折射會降低陶瓷透光率[63]。因此,研究人員通過降低燒結(jié)溫度的方法來避免六方相的產(chǎn)生。燒結(jié)助劑可以降低燒結(jié)溫度和抑制晶粒異常生長。2007年,北京理工大學(xué)的科研人員在HP燒結(jié)液相合成的ZnS粉體時添加0.5%Na2S作為燒結(jié)助劑,實驗結(jié)果表明,添加適當(dāng)?shù)臒Y(jié)助劑能夠提高ZnS陶瓷的致密度并能有效抑制六方相的產(chǎn)生[64]。韓國研究人員Ahn等[65]使用機(jī)械化學(xué)法將單質(zhì)Zn和S合成ZnS粉體,隨后研究了燒結(jié)助劑CaF2和LiF對燒結(jié)體的影響。研究表明,CaF2和LiF都能增加ZnS粉體的燒結(jié)活性,但LiF的效果更佳,而CaF2能更好體現(xiàn)相變抑制劑的作用。2011年,Chlique等[66]比較研究了粉體形貌、燒結(jié)技術(shù)和燒結(jié)參數(shù)對ZnS陶瓷的致密度和光學(xué)性能的影響。2013年,該研究團(tuán)隊又利用濕化學(xué)沉淀法合成ZnS粉體,且通過HP燒結(jié)(950 ℃/50 MPa/2 h)制備的ZnS透明陶瓷在2~12 μm波段的透過率達(dá)到70%[67],如圖8所示。

    圖8 ZnS熱壓陶瓷的紅外透過率(厚度1 mm);插圖為熱壓2 h的樣品[67]Fig.8 Infrared transmission spectra of ZnS hot-pressed ceramics (thickness 1 mm) and photograph of the sample processed for 2 h[67]

    加熱速率是燒結(jié)過程中重要工藝參數(shù),適當(dāng)?shù)募訜崴俾誓芴岣咛沾傻南鄬γ芏群凸鈱W(xué)性能。2015年,江蘇師范大學(xué)的科研人員系統(tǒng)研究了加熱速率對ZnS透明陶瓷的相對密度、相轉(zhuǎn)變和光學(xué)性能的影響。實驗結(jié)果表明,對于SPS燒結(jié)技術(shù),隨著加熱速率的減小,ZnS透明陶瓷的六方相含量隨之減少,相對密度明顯增大,紅外透過率也顯著提高[68]。同年,阿爾弗雷德大學(xué)紐約州立陶瓷學(xué)院報道了采用凝膠法合成了ZnS納米粉體,通過HP燒結(jié)的ZnS陶瓷在紅外6.74 μm和9.29 μm處有77.3%的透過率(見圖9(a))。并首次發(fā)現(xiàn)由于在燒結(jié)過程中形成的鋅空位和硫缺陷,導(dǎo)致未摻雜的ZnS透明陶瓷分別在450 nm和530 nm具有發(fā)射帶[69],如圖9(b)所示。2016年,該課題組又運用凝膠注模工藝成型、冷等靜壓和無壓燒結(jié)的技術(shù)路線制備ZnS陶瓷,這為ZnS透明陶瓷的制備提供了新思路[70]。中國科學(xué)院上海硅酸鹽研究所在同一年報道了燒結(jié)溫度對ZnS陶瓷的致密度、晶粒尺寸、相變和六方相的取向性有著重要影響[71]。阿爾弗雷德大學(xué)紐約州立陶瓷學(xué)院科研人員從ZnS粉體的顆粒尺寸和燒結(jié)壓力的角度系統(tǒng)研究了ZnS透明陶瓷的相變問題。研究結(jié)果表明,由顆粒尺寸較小的ZnS粉體制備的陶瓷在較低溫度就出現(xiàn)由立方相向六方相轉(zhuǎn)變的現(xiàn)象,而在HP過程中施加的壓力促進(jìn)了六方相向立方相的轉(zhuǎn)變,有助于提高ZnS陶瓷的透光率和機(jī)械硬度[72]。2018年,為避免ZnS粉體太細(xì)而導(dǎo)致在煅燒和燒結(jié)過程中低溫時產(chǎn)生六方相,Li等采用溶劑熱法合成ZnS納米粉體,從而制備了高光學(xué)質(zhì)量的ZnS透明陶瓷[73]。

    圖9 (a) ZnS陶瓷的紅外透射光譜(插圖為厚度0.6 mm的樣品);(b)在365 nm激發(fā)波長輻射下ZnS陶瓷的發(fā)射光譜[69]Fig.9 (a) Infrared transmittance spectrum of the sintered ZnS ceramics (thickness 0.6 mm); (b) photoluminescence emission spectrum of ZnS ceramics with an excitation wavelength of 365 nm[69]

    水熱合成法可以控制粉體的顆粒尺寸、相均勻性和形貌,并且反應(yīng)速度快。2018年,韓國陶瓷工程與技術(shù)研究所的科研人員探索了通過水熱法合成ZnS粉體的煅燒溫度,經(jīng)550 ℃煅燒2 h的粉體制備的陶瓷在3~8 μm波段具有最高的透光率(71.6%)以及最高的密度(99.9%)[74]。同年,韓國高麗大學(xué)的科研人員也采用水熱法在220 ℃下合成ZnS納米粉體,并研究了粉體煅燒最優(yōu)溫度和陶瓷燒結(jié)溫度,通過750 ℃煅燒的ZnS粉體在1 020 ℃/20 MPa條件下HP燒結(jié),ZnS陶瓷具有致密的微觀結(jié)構(gòu),并且在7.0~12.0 μm波段內(nèi)透過率高于68%[75],如圖10所示。2019年,高麗大學(xué)的科研人員先通過水熱法合成S/Zn比不同的ZnS粉體,然后探究了燒結(jié)溫度和時間對ZnS陶瓷微觀結(jié)構(gòu)和光學(xué)性能的影響。其中S/Zn比為1.5的ZnS粉體在1 000 ℃/15 MPa/16 h條件下HP燒結(jié)的陶瓷具有較好的光學(xué)質(zhì)量[76],如圖11所示。同年,法國研究人員Durand等[77]采用沉淀法制備ZnS粉體,經(jīng)過HP燒結(jié)的ZnS透明陶瓷在4~12 μm波段內(nèi),能達(dá)到理論水平的光學(xué)透過率(75%),具體參數(shù)如表2所示。

    圖10 在750 ℃煅燒的ZnS粉體經(jīng)不同溫度燒結(jié)的1.0 mm厚度陶瓷[75]Fig.10 Photographs of the 1.0 mm thick ZnS ceramics sintered at various temperatures using ZnS powders annealed at 750 ℃[75]

    圖11 在1 000 ℃下燒結(jié)不同時間的ZnS陶瓷(厚度3 mm)[76]Fig.11 Photographs of the 3.0 mm thick ZnS ceramics sintered at 1 000 ℃ for various durations[76]

    表2 ZnS熱壓陶瓷的燒結(jié)參數(shù),相對密度和外觀[77]Table 2 Sintering parameters, relative density and visual aspect of the hot-pressed ZnS ceramics[77]

    3.2 Cr2+∶ZnS激光陶瓷

    與Cr2+∶ZnSe陶瓷相比,Cr2+∶ZnS陶瓷的研究稍微滯后。Cr2+∶ZnS陶瓷具有更高的抗損傷閾值、更好的機(jī)械性能和導(dǎo)熱性能,因此,Cr2+∶ZnS陶瓷更適合用于大功率激光器的增益介質(zhì)[8]。最近,IPG公司報道了以Cr2+∶ZnS和Cr2+∶ZnSe作為增益介質(zhì)的可調(diào)諧連續(xù)激光系統(tǒng)輸出,其中心波長為2.5 μm,功率達(dá)140 W[78]。2016年,阿爾弗雷德大學(xué)紐約州立陶瓷學(xué)院的科研人員先采用濕化學(xué)法合成ZnS粉體,然后再與Cr2S3粉體混合研磨,并通過HP燒結(jié)(1 000 ℃/50 MPa/2 h)成功制備Cr2+∶ZnS透明陶瓷[79]。如圖12(a)所示,厚度為0.7 mm的樣品在11.6 μm處的最高透過率為67%,并且在近紅外1 690 nm處的寬帶是Cr2+分裂基態(tài)5D的5T2→5E吸收帶(見圖12(b)),這說明有Cr3+被還原為Cr2+且以四面體配位的方式摻入到ZnS基質(zhì)晶格中。與Cr2+∶ZnSe陶瓷相比,Cr2+∶ZnS的吸收峰出現(xiàn)一定的藍(lán)移。2018年,中國科學(xué)院上海硅酸鹽研究所的科研人員掌握了用水熱法大規(guī)模合成Cr2+∶ZnS納米粉體的技術(shù)[80]。他們采用硫代乙酰胺(TAA)作為S2-源和還原劑,避免了Cr2+的氧化,這為制備Cr2+∶ZnS透明陶瓷奠定了基礎(chǔ)。

    圖12 Cr∶ZnS陶瓷的室溫(a)紅外透射光譜(插圖為厚度0.7 mm的樣品);(b)近紅外透射光譜[79]Fig.12 Room-temperature (a) infrared transmittance spectrum and (b) near-IR transmittance spectrum of the Cr∶ZnS ceramics (thickness 0.7 mm)[79]

    3.3 Fe2+∶ZnS激光陶瓷

    20世紀(jì)末,研究人員就開始對Fe2+∶ZnS的激光性能進(jìn)行研究。在同樣溫度下,F(xiàn)e2+∶ZnS的熒光壽命明顯小于Fe2+∶ZnSe,且常溫下的光學(xué)、抗熱和力學(xué)性能較差,因此大部分Fe2+∶ZnS激光器的研究成果是在低溫下獲得的。2015年,俄羅斯學(xué)者Frolov等[12]報道了Fe2+∶ZnS激光器實現(xiàn)最大能量為3.25 J的激光輸出,光-光轉(zhuǎn)換效率達(dá)27%,并在3.44~4.19 μm波段內(nèi)寬可調(diào)諧。2017年,中國科學(xué)院上海硅酸鹽研究所的科研人員首次制備了Fe2+∶ZnS透明陶瓷,先通過濕化學(xué)共沉淀法合成Fe2+∶ZnS納米粉體(5 nm),然后經(jīng)過800 ℃煅燒3 h,50 MPa干壓成型,HP燒結(jié)(900 ℃/250 MPa/2 h)和熱等靜壓后處理(950 ℃/150 MPa/5 h)得到Fe2+∶ZnS透明陶瓷[81]。所制備的Fe2+∶ZnS透明陶瓷在2.0 μm和4.5 μm處的直線透過率分別約為45%和65%,但遺憾的是該材料還沒有激光輸出的報道。

    4 結(jié)語與展望

    自2006年Gallian課題組制備出Cr2+∶ZnSe透明陶瓷并成功產(chǎn)出激光以來,TM2+∶Ⅱ-Ⅵ激光陶瓷受到國內(nèi)外研究者的青睞,但是隨著后面熱擴(kuò)散法制備TM2+∶Ⅱ-Ⅵ材料的廣泛應(yīng)用,研制TM2+∶Ⅱ-Ⅵ透明陶瓷的技術(shù)路線幾乎停滯不前。近年來,采用熱擴(kuò)散法制備的TM2+∶Ⅱ-Ⅵ材料的中紅外激光器的功率水平提升緩慢,熱擴(kuò)散法制備TM2+∶Ⅱ-Ⅵ材料的瓶頸日益顯現(xiàn),TM2+∶Ⅱ-Ⅵ透明陶瓷技術(shù)路線又逐漸被予以重視。特別是隨著TM2+∶Ⅱ-Ⅵ粉體制備技術(shù)的發(fā)展,TM2+∶Ⅱ-Ⅵ激光透明陶瓷的研究取得了顯著成果。TM2+∶Ⅱ-Ⅵ陶瓷材料相比于熱擴(kuò)散法制備的樣品,最大的優(yōu)勢在于實現(xiàn)了摻雜離子在材料中的均勻分布,因為不受激活離子擴(kuò)散深度影響,可以制備出更大尺寸的樣品,但目前制備出的激光陶瓷在光學(xué)性能以及激光性能方面都還無法與熱擴(kuò)散法制備的樣品相比。

    TM2+∶Ⅱ-Ⅵ透明陶瓷技術(shù)繼續(xù)發(fā)展還需要解決粉體制備問題,其中高燒結(jié)活性的TM2+∶Ⅱ-Ⅵ粉體在制備過程中的雜質(zhì)排除和避免被氧化是難點。TM2+∶Ⅱ-Ⅵ陶瓷在加壓燒結(jié)過程中,除了需要不斷改進(jìn)燒結(jié)參數(shù)以減少殘余氣孔和避免非均勻微觀結(jié)構(gòu)外,如何抑制Ⅱ-Ⅵ材料升華和防止?jié)B碳污染(采用石墨模具或石墨加熱爐)是常見難點。通過燒結(jié)參數(shù)調(diào)控獲得小晶粒尺寸TM2+∶Ⅱ-Ⅵ陶瓷,從而提高力學(xué)性能利于高功率輸出,也是需要研究攻關(guān)的。采用透明激光陶瓷技術(shù)制備TM2+∶Ⅱ-Ⅵ材料的終極目標(biāo)是實現(xiàn)TM2+∶Ⅱ-Ⅵ材料的梯度摻雜,滿足下一代高性能中紅外激光器對直接泵浦增益介質(zhì)材料的設(shè)計要求。因此,發(fā)展TM2+∶Ⅱ-Ⅵ透明陶瓷技術(shù)對中紅外固體激光器的發(fā)展具有重要意義。

    猜你喜歡
    熱擴(kuò)散多晶激光器
    車載動力電池系統(tǒng)熱失控分析與研究
    肥皂泡制成微小激光器?
    軍事文摘(2024年4期)2024-03-19 09:40:02
    離散波導(dǎo)熱擴(kuò)散耦合機(jī)理及其應(yīng)用*
    激光器發(fā)明60周年
    科學(xué)(2020年6期)2020-02-06 09:00:06
    基于熱擴(kuò)散原理的壓力容器水位測量系統(tǒng)設(shè)計
    科技視界(2018年27期)2018-01-16 11:27:18
    一體化半導(dǎo)體激光器的ANSYS熱仿真及結(jié)構(gòu)設(shè)計
    基于注入鎖定法激光器的研究
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    多晶沸石膜的研究進(jìn)展
    大香蕉久久网| 91大片在线观看| 亚洲一区高清亚洲精品| 精品免费久久久久久久清纯 | 精品人妻熟女毛片av久久网站| 天堂动漫精品| 十八禁网站免费在线| 天堂中文最新版在线下载| 男女下面插进去视频免费观看| 国产精品久久久久久人妻精品电影| 母亲3免费完整高清在线观看| 91av网站免费观看| 99国产精品一区二区蜜桃av | 一本综合久久免费| 欧美人与性动交α欧美软件| 曰老女人黄片| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 国产精品久久久av美女十八| 人妻 亚洲 视频| 91字幕亚洲| 亚洲国产精品sss在线观看 | av免费在线观看网站| 久久婷婷成人综合色麻豆| 国产成人欧美| 丁香欧美五月| 久久天堂一区二区三区四区| 90打野战视频偷拍视频| 夜夜爽天天搞| 在线观看日韩欧美| 91麻豆av在线| 国产片内射在线| 亚洲成人手机| 不卡av一区二区三区| 国产亚洲av高清不卡| 亚洲精品国产区一区二| 国产成人系列免费观看| 美女高潮喷水抽搐中文字幕| 精品国产乱码久久久久久男人| 色精品久久人妻99蜜桃| 欧美日韩福利视频一区二区| 国产精品久久电影中文字幕 | 黄色 视频免费看| 国产一区在线观看成人免费| 日韩 欧美 亚洲 中文字幕| 黄色毛片三级朝国网站| svipshipincom国产片| 国产人伦9x9x在线观看| 久久热在线av| 真人做人爱边吃奶动态| 男男h啪啪无遮挡| av免费在线观看网站| 亚洲精品中文字幕在线视频| 好男人电影高清在线观看| 国产深夜福利视频在线观看| 老司机靠b影院| 一进一出抽搐gif免费好疼 | 久久人人97超碰香蕉20202| 12—13女人毛片做爰片一| 国产又色又爽无遮挡免费看| 少妇被粗大的猛进出69影院| 欧美老熟妇乱子伦牲交| 女人久久www免费人成看片| 午夜福利在线免费观看网站| 狠狠狠狠99中文字幕| a级毛片在线看网站| 亚洲av日韩在线播放| 国产成人精品久久二区二区91| 中亚洲国语对白在线视频| 中文字幕人妻熟女乱码| 国产成人av教育| 欧美另类亚洲清纯唯美| av一本久久久久| 人人妻人人添人人爽欧美一区卜| 黄色毛片三级朝国网站| av电影中文网址| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 国产在线观看jvid| 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| 精品人妻在线不人妻| 香蕉久久夜色| 国产精品美女特级片免费视频播放器 | 日韩有码中文字幕| 日韩欧美一区视频在线观看| 夜夜躁狠狠躁天天躁| 满18在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美激情性xxxx| 欧美激情 高清一区二区三区| 午夜日韩欧美国产| 天天操日日干夜夜撸| 亚洲七黄色美女视频| 一边摸一边抽搐一进一小说 | 国产成人影院久久av| 国产又爽黄色视频| 在线十欧美十亚洲十日本专区| 变态另类成人亚洲欧美熟女 | 国产精品 欧美亚洲| 超碰成人久久| 自线自在国产av| 老汉色av国产亚洲站长工具| 一级片免费观看大全| 免费不卡黄色视频| 最近最新中文字幕大全电影3 | 一区二区三区激情视频| 黑人巨大精品欧美一区二区蜜桃| 伊人久久大香线蕉亚洲五| 精品人妻在线不人妻| 天堂中文最新版在线下载| bbb黄色大片| 亚洲成国产人片在线观看| 日韩欧美在线二视频 | 国产一卡二卡三卡精品| 日本黄色日本黄色录像| 亚洲九九香蕉| 国产精品一区二区在线观看99| 少妇裸体淫交视频免费看高清 | av免费在线观看网站| 伊人久久大香线蕉亚洲五| 免费看a级黄色片| 亚洲精品久久成人aⅴ小说| 免费在线观看完整版高清| 免费高清在线观看日韩| 久久九九热精品免费| 久久久国产成人精品二区 | 国产人伦9x9x在线观看| 欧美不卡视频在线免费观看 | 久久久久久久国产电影| 午夜福利,免费看| 激情在线观看视频在线高清 | e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 免费久久久久久久精品成人欧美视频| 一级毛片高清免费大全| 手机成人av网站| 免费少妇av软件| 99国产精品免费福利视频| 久久久久久久午夜电影 | 69av精品久久久久久| 午夜精品在线福利| 在线播放国产精品三级| 9热在线视频观看99| 天天躁狠狠躁夜夜躁狠狠躁| 在线天堂中文资源库| 久久精品国产亚洲av高清一级| 精品无人区乱码1区二区| 成熟少妇高潮喷水视频| av国产精品久久久久影院| 亚洲精品国产区一区二| 人妻一区二区av| 久久99一区二区三区| 日本wwww免费看| www.精华液| 一级毛片女人18水好多| 天堂俺去俺来也www色官网| 热99久久久久精品小说推荐| 欧美日韩亚洲综合一区二区三区_| 最新的欧美精品一区二区| 多毛熟女@视频| 国产精品99久久99久久久不卡| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 国产精品久久久av美女十八| 久久中文字幕人妻熟女| 亚洲成国产人片在线观看| 9热在线视频观看99| 国产蜜桃级精品一区二区三区 | 90打野战视频偷拍视频| 亚洲九九香蕉| 亚洲精品中文字幕一二三四区| 青草久久国产| 99久久国产精品久久久| 久久精品国产99精品国产亚洲性色 | 美女午夜性视频免费| 国产一卡二卡三卡精品| 一个人免费在线观看的高清视频| 久久久水蜜桃国产精品网| 19禁男女啪啪无遮挡网站| 狠狠狠狠99中文字幕| 青草久久国产| 黄片播放在线免费| 欧美日韩瑟瑟在线播放| 老熟妇乱子伦视频在线观看| 久久精品国产a三级三级三级| 成年人免费黄色播放视频| 操出白浆在线播放| 淫妇啪啪啪对白视频| 激情在线观看视频在线高清 | 国产欧美日韩一区二区精品| av天堂久久9| 国精品久久久久久国模美| 最近最新免费中文字幕在线| 中亚洲国语对白在线视频| 亚洲av电影在线进入| 久久香蕉精品热| 日本vs欧美在线观看视频| 亚洲九九香蕉| cao死你这个sao货| 69av精品久久久久久| 国产成人精品在线电影| 亚洲av成人不卡在线观看播放网| 欧美精品亚洲一区二区| 亚洲av成人不卡在线观看播放网| 两性午夜刺激爽爽歪歪视频在线观看 | 一区二区三区激情视频| 黄色成人免费大全| 亚洲精品在线美女| 国产一区二区三区视频了| 亚洲欧美精品综合一区二区三区| 亚洲中文日韩欧美视频| 久久久久精品国产欧美久久久| 午夜福利一区二区在线看| 色老头精品视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品综合久久久久久久免费 | 高清毛片免费观看视频网站 | 国产一区二区三区在线臀色熟女 | 久久九九热精品免费| 欧美国产精品一级二级三级| a级毛片黄视频| av线在线观看网站| 丰满的人妻完整版| 欧美黄色片欧美黄色片| 一区在线观看完整版| 国产精品久久视频播放| 国产精品国产av在线观看| 免费观看精品视频网站| 91麻豆av在线| 国产单亲对白刺激| 少妇的丰满在线观看| 麻豆国产av国片精品| 最新的欧美精品一区二区| 99热国产这里只有精品6| 午夜福利在线观看吧| 午夜精品在线福利| e午夜精品久久久久久久| 国产精品欧美亚洲77777| 人人澡人人妻人| 搡老熟女国产l中国老女人| 好男人电影高清在线观看| 久久久久久久精品吃奶| 热re99久久国产66热| 久久精品国产亚洲av香蕉五月 | www日本在线高清视频| 高清视频免费观看一区二区| 校园春色视频在线观看| 精品久久久久久,| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲| 大香蕉久久网| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 中文字幕av电影在线播放| 国产淫语在线视频| 免费不卡黄色视频| 三上悠亚av全集在线观看| 国产精品久久久久久人妻精品电影| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 少妇的丰满在线观看| 中文字幕制服av| a级毛片在线看网站| 亚洲国产欧美网| 国产不卡av网站在线观看| 亚洲人成伊人成综合网2020| 亚洲中文字幕日韩| 天天操日日干夜夜撸| 国产成人免费无遮挡视频| 一区二区日韩欧美中文字幕| 欧美黄色淫秽网站| 国产欧美日韩一区二区三区在线| 男人的好看免费观看在线视频 | 精品人妻在线不人妻| 国产成人一区二区三区免费视频网站| 午夜视频精品福利| 成人手机av| 欧美性长视频在线观看| 俄罗斯特黄特色一大片| 男男h啪啪无遮挡| 久久久精品免费免费高清| 两人在一起打扑克的视频| 老汉色∧v一级毛片| а√天堂www在线а√下载 | 18在线观看网站| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| √禁漫天堂资源中文www| 极品少妇高潮喷水抽搐| 超色免费av| 又黄又爽又免费观看的视频| 国产av精品麻豆| 脱女人内裤的视频| 午夜福利,免费看| 99久久国产精品久久久| 亚洲熟女毛片儿| 99国产精品一区二区蜜桃av | 国产精品久久视频播放| 国产精品免费视频内射| 欧美在线一区亚洲| 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 中文字幕av电影在线播放| 欧美黑人欧美精品刺激| 国产aⅴ精品一区二区三区波| 国产主播在线观看一区二区| 大片电影免费在线观看免费| 久久精品国产a三级三级三级| 如日韩欧美国产精品一区二区三区| 下体分泌物呈黄色| 51午夜福利影视在线观看| 国产成人精品久久二区二区免费| 一本一本久久a久久精品综合妖精| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| 日韩精品免费视频一区二区三区| 高清毛片免费观看视频网站 | 丝袜美腿诱惑在线| 精品一区二区三区四区五区乱码| 成年版毛片免费区| 亚洲精品粉嫩美女一区| 亚洲五月婷婷丁香| 日本vs欧美在线观看视频| 久久精品亚洲精品国产色婷小说| 精品久久久久久,| 麻豆国产av国片精品| 欧美日韩国产mv在线观看视频| 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| 国产日韩一区二区三区精品不卡| 亚洲欧美激情在线| 亚洲成av片中文字幕在线观看| 国产欧美日韩综合在线一区二区| 高潮久久久久久久久久久不卡| 久久久久久人人人人人| 久久精品国产亚洲av高清一级| 高清av免费在线| 国产99白浆流出| 成年人免费黄色播放视频| 十分钟在线观看高清视频www| 在线观看66精品国产| 他把我摸到了高潮在线观看| 日本一区二区免费在线视频| 超碰成人久久| 99re在线观看精品视频| 午夜精品在线福利| 色婷婷久久久亚洲欧美| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 国产精品1区2区在线观看. | 国产国语露脸激情在线看| 水蜜桃什么品种好| 露出奶头的视频| 91麻豆av在线| 婷婷成人精品国产| 国产一区二区激情短视频| svipshipincom国产片| 一a级毛片在线观看| 亚洲第一欧美日韩一区二区三区| 99久久人妻综合| 18禁黄网站禁片午夜丰满| 亚洲全国av大片| 国产熟女午夜一区二区三区| 12—13女人毛片做爰片一| 亚洲色图 男人天堂 中文字幕| 国产精品国产高清国产av | 女同久久另类99精品国产91| 满18在线观看网站| 激情在线观看视频在线高清 | 国产一区二区三区视频了| tocl精华| www.自偷自拍.com| 色婷婷av一区二区三区视频| tube8黄色片| 成年女人毛片免费观看观看9 | 99精品久久久久人妻精品| 国产高清视频在线播放一区| 男人操女人黄网站| 午夜精品国产一区二区电影| 美女 人体艺术 gogo| 精品电影一区二区在线| 久久这里只有精品19| 欧美+亚洲+日韩+国产| 99久久国产精品久久久| 亚洲成人免费av在线播放| 国产区一区二久久| 村上凉子中文字幕在线| 99久久综合精品五月天人人| 亚洲片人在线观看| 亚洲精品国产色婷婷电影| 久久中文看片网| 我的亚洲天堂| av有码第一页| 国产在视频线精品| 亚洲一码二码三码区别大吗| 亚洲午夜精品一区,二区,三区| 亚洲精品中文字幕一二三四区| 热99国产精品久久久久久7| а√天堂www在线а√下载 | 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 日本撒尿小便嘘嘘汇集6| tube8黄色片| 校园春色视频在线观看| 黄片小视频在线播放| av天堂久久9| 亚洲久久久国产精品| 久久热在线av| 欧美激情极品国产一区二区三区| 欧美最黄视频在线播放免费 | 最近最新免费中文字幕在线| 国产99白浆流出| 操出白浆在线播放| 新久久久久国产一级毛片| 人人妻人人澡人人看| 日韩免费av在线播放| 国产国语露脸激情在线看| 亚洲国产欧美日韩在线播放| 高清毛片免费观看视频网站 | 亚洲第一青青草原| 国产成人一区二区三区免费视频网站| 亚洲五月色婷婷综合| 免费观看人在逋| 国产人伦9x9x在线观看| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 精品一区二区三区视频在线观看免费 | 亚洲avbb在线观看| 热re99久久精品国产66热6| 亚洲一码二码三码区别大吗| 咕卡用的链子| 亚洲精品美女久久av网站| 国产日韩一区二区三区精品不卡| 午夜福利乱码中文字幕| 国产成人av教育| 欧美亚洲日本最大视频资源| 母亲3免费完整高清在线观看| 看片在线看免费视频| 美女高潮喷水抽搐中文字幕| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 日本撒尿小便嘘嘘汇集6| av天堂在线播放| 精品国产一区二区久久| 久久婷婷成人综合色麻豆| 三级毛片av免费| 无遮挡黄片免费观看| 成人三级做爰电影| 国产欧美日韩一区二区三| 久久国产精品人妻蜜桃| 一个人免费在线观看的高清视频| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站 | 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 亚洲熟妇中文字幕五十中出 | 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 亚洲午夜理论影院| 亚洲七黄色美女视频| 在线观看66精品国产| 久久香蕉激情| 国产野战对白在线观看| 免费久久久久久久精品成人欧美视频| 日韩欧美三级三区| 在线国产一区二区在线| 在线看a的网站| 建设人人有责人人尽责人人享有的| 久久精品成人免费网站| 国产精品综合久久久久久久免费 | 交换朋友夫妻互换小说| 在线观看www视频免费| 久9热在线精品视频| 村上凉子中文字幕在线| 搡老乐熟女国产| 19禁男女啪啪无遮挡网站| 国产精品久久久久成人av| 亚洲精华国产精华精| 亚洲精品国产区一区二| 国产成人免费观看mmmm| 久久精品国产亚洲av香蕉五月 | 男女免费视频国产| 欧美日韩黄片免| 精品一区二区三区四区五区乱码| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜添小说| 中文字幕人妻丝袜制服| 一级黄色大片毛片| 国产成人一区二区三区免费视频网站| 亚洲精品久久成人aⅴ小说| 免费在线观看日本一区| 91av网站免费观看| 一级黄色大片毛片| 很黄的视频免费| 欧美精品高潮呻吟av久久| 久久久久精品国产欧美久久久| av有码第一页| 午夜激情av网站| 国产欧美日韩一区二区精品| 免费少妇av软件| 精品一区二区三区av网在线观看| 99精国产麻豆久久婷婷| 亚洲色图av天堂| 成人黄色视频免费在线看| 极品少妇高潮喷水抽搐| 91大片在线观看| 国产免费现黄频在线看| 老熟妇乱子伦视频在线观看| 免费在线观看黄色视频的| 国产精品久久久av美女十八| 人妻丰满熟妇av一区二区三区 | 一级毛片精品| 亚洲av欧美aⅴ国产| 欧美日韩亚洲高清精品| 大码成人一级视频| 国产一区二区三区综合在线观看| 超碰成人久久| 久久久国产成人免费| 国产一区在线观看成人免费| 免费在线观看日本一区| 久久精品国产亚洲av高清一级| 不卡一级毛片| 亚洲综合色网址| 亚洲久久久国产精品| 欧美性长视频在线观看| 久久香蕉激情| 亚洲精品久久成人aⅴ小说| 国产1区2区3区精品| 久久久久久久久久久久大奶| 日韩制服丝袜自拍偷拍| 欧美成人免费av一区二区三区 | 国产日韩一区二区三区精品不卡| 日韩欧美免费精品| 又紧又爽又黄一区二区| 操美女的视频在线观看| 国产精品国产av在线观看| 91在线观看av| 久久亚洲真实| 亚洲 国产 在线| 国内久久婷婷六月综合欲色啪| 19禁男女啪啪无遮挡网站| 老司机在亚洲福利影院| 国产精品美女特级片免费视频播放器 | 久久精品国产清高在天天线| 一级毛片女人18水好多| 天天操日日干夜夜撸| 男人舔女人的私密视频| 中文字幕色久视频| 日韩三级视频一区二区三区| 久久精品亚洲熟妇少妇任你| 亚洲熟女精品中文字幕| 国产不卡一卡二| 在线播放国产精品三级| 国产一区二区三区在线臀色熟女 | 亚洲精品美女久久久久99蜜臀| 无限看片的www在线观看| 欧美色视频一区免费| 久久精品熟女亚洲av麻豆精品| 国产精品久久电影中文字幕 | 国产99久久九九免费精品| 亚洲黑人精品在线| 91字幕亚洲| 中文字幕最新亚洲高清| 国产精品免费一区二区三区在线 | 十八禁高潮呻吟视频| 成年女人毛片免费观看观看9 | 国产乱人伦免费视频| 中亚洲国语对白在线视频| 老司机靠b影院| 亚洲九九香蕉| 超碰成人久久| 超色免费av| 好男人电影高清在线观看| 一级作爱视频免费观看| 伊人久久大香线蕉亚洲五| 18禁黄网站禁片午夜丰满| 精品国产一区二区三区四区第35| 欧美久久黑人一区二区| 成年人免费黄色播放视频| 香蕉久久夜色| 午夜福利在线观看吧| 飞空精品影院首页| 两人在一起打扑克的视频| 亚洲成人免费av在线播放| www.熟女人妻精品国产| 大香蕉久久网| 成年人午夜在线观看视频| 国产精品成人在线| 村上凉子中文字幕在线| 制服人妻中文乱码| 日本精品一区二区三区蜜桃| av国产精品久久久久影院| 久久精品国产亚洲av高清一级| 动漫黄色视频在线观看| 亚洲欧美激情综合另类| 国产精品久久久人人做人人爽| 精品久久久久久久久久免费视频 | 亚洲国产看品久久| 久久ye,这里只有精品| 在线天堂中文资源库| 久久精品亚洲精品国产色婷小说| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| e午夜精品久久久久久久| 久热这里只有精品99| 啦啦啦在线免费观看视频4| 久久久久精品人妻al黑| 欧美乱码精品一区二区三区| av网站免费在线观看视频| 丰满饥渴人妻一区二区三|