• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fluorescent Sensor for Fluoride Ions Based on Perylene Diimide Tethered with Siloxane Moieties

    2021-06-16 13:39:48ZHANGDanLIUJieSHIDongZHANGXinyiGAOBaoxiangFENGYakaiRENXiangkui
    發(fā)光學(xué)報(bào) 2021年6期

    ZHANG Dan, LIU Jie, SHI Dong, ZHANG Xin-yi, GAO Bao-xiang, FENG Ya-kai, REN Xiang-kui*

    (1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;2. Global Station for Soft Matter GI-CoRE, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan;3. College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China)

    Abstract: A novel perylene diimide(PDI) derivative bearing siloxane moieties(PDI-TES) was synthesized as fluorescent sensor by simple one-step reaction with high yield. The crystal structure, self-assembly behavior and detection property of the compound were then elucidated via a combination of different experimental techniques such as small-angle X-Ray scattering, UV-Vis absorption spectra, photoluminescence spectra and dynamic light scattering experiments. The experimental results reveal that PDI-TES has good thermal stability and ordered crystal structure. Moreover, due to the cleavage of Si—O bonds, PDI-TES exhibits high selectivity and sensitivity to F-, with a detection limit as low as 1.58×10-6 mol/L. These excellent detection performances, in combination with the simple and low-cost synthesis method, make PDI-TES a practical fluorescent sensor for detection of F-.

    Key words: perylene diimide; fluorescent sensor; siloxane; fluoride ions

    1 Introduction

    Perylene diimide derivatives(PDIs) are a kind of polycyclic aromatic hydrocarbon derivatives with strong π-π conjugated interaction. Due to the excellent thermal stability, optical and electronic properties, these n-type materials get more attention in a lot of fields during several decades, such as electron transport materials(ETMs)[1-2], singlet fission-based light harvesting applications[3], organic electron-transport materials[4-5]or fluorescent chemosensors[6]and imaging[7-8]. Meanwhile, the rigid planar geometry of molecules makes the self-assemble of liquid crystal[9-10]or crystal[11]structure possible. However, many of them show poor solubility, which restrict their further applications. The universal methods are to modify the imide position or the bay position. The incoming groups not only improve the solubility, but also modify the optical properties and self-assemble behaviors. Meanwhile, the specific modified groups can make a response to some molecules or ions according to different mechanisms, such as the detection of Fe3+or H+based on fluorescence resonance energy transfer[12], Hg2+based on the selective binding with thymine[13], CN-or F-based on the anion-π interactions[14].

    Many works have been reported about the PDIs based on the cleavage of Si—O bond. For example, Baietal. fabricated a fluorescent sensor for F-by incorporating polyhedral oligosilsesquioxane(POSS) nanocage and PEO chain at amide positions of PDI[20]. Our group also synthesized a kind of S-heterocyclic annulated PDI with POSS groups attaching at the imide positions. In THF solution, the POSS units can suppress the aggregation of molecules[9]. Once adding TBAF, the F-can trigger the POSS groups cleavage, which causes the π-π stacking of PDI cores and the fluorescence quenched. Further, we synthesized a PDI derivative with special acetamide group at the bay position, which can response to the F-by dual mechanisms of POSS collapse and intermolecular proton[21]. Another work[25]about the detection of F-is to design an “off-on” luminescent polymer containing POSS and PDI. The degradation of POSS can block the process of photoinduced electron transfer, causing the fluorescent emission.

    Although many F-sensor molecules have been reported, their synthesis methods require complex and harsh conditions, and often the yield is relatively low. Moreover, using POSS nanocage as triggering group may lead to a problem. The cleavage of Si—O bond is due to the nucleophilic attacking and coordination of F-with Si, and there are numerous Si—O bonds within a POSS nanocage. As a result, many F-are needed to trigger the POSS collapse, leading to higher detection limit. Therefore, it is of great interest to know whether it is possible to fabricate a PDI-based fluorescent sensor with low detection limit by simple and low-cost method.

    Herein, a new PDI derivative(PDI-TES, Scheme 1) was designed and synthesized by introducing two siloxane substituents to PDI imide positions by simple one-step reaction with high yield. The synthetic route is shown in Scheme 1, all the reagents are cheap and easily available. The cleavage of Si—O bonds triggered by F-can induce the aggregation of PDI luminescence, endowing PDI-TES with turn-off fluorescent response and high selectivity to F-, with a detection limit as low as 1.58×10-6mol/L.

    Scheme 1 Chemical structure of PDI-TES

    2 Experiments

    2.1 Chemicals

    3,4,9,10-perylenetetracarboxylic dianhydride(Heowns,98%),3-aminopropyltriethoxysilane (Aladdin, 98%). Toluene is dried through molecular sieves and activated alumina and distilled through a standard procedure.

    2.2 Instruments

    1H NMR and13C NMR spectra were recorded using a Bruker Avance spectrophotometer(400 MHz for1H NMR, 100 MHz for13C NMR, 25 ℃). A trace amount of tetramethylsilane(TMS) was used as the internal standard for chemical shifts(δ). High resolution mass spectra(HRMS) were determined on an IonSpec 4.7 Tesla Fourier Transform Mass Spectrometer.

    The X-ray scattering experiment was performed with a high-flux small-angle X-ray scattering instrument(SAXSess, Anton Paar) equipped with a Kratky block-collimation system. An imaging plate was used as the detector, which can measure the small-angle and wide-angle X-ray scattering of the sample simultaneously, covering theq-range from 0.06 to 29 nm-1(q=4πsinθ/λ, whereλis the wavelength of 0.154 2 nm and 2θis the scattering angle).

    UV-Vis absorption spectra were performed with an Agilent Technologies Cary 300 UV-Vis spectrophotometer. Photoluminescence spectra were obtained on a Hitachi FL-2500 Fluorescence Spectrometer. The dynamic light scattering(DLS) experiments were performed by a zetasizer using a Malvern Nano ZS instrument. The TEM images were obtained on a JEOL JEM-1400 Flash instrument.

    2.3 Synthesis of PDI-TES

    15.00 g imidazole was added in a 100 mL round bottom flask, and was heated to 120 ℃ to melt imidazole into liquid. Then 0.50 g 3,4,9,10- perylenetetracarboxylic dianhydride(1.27 mmol) and 0.71 g 3-aminopropyltriethoxysilane(3.19 mmol) were added and was heated to 130 ℃, and continue to react for 3 h with reflux. When the reaction was over, stop stirring and cool to room temperature. The reaction solution was poured into 300 mL methanol and stirred for a period of time. Then, it was placed for laying so that imidazole could be fully dissolved in methanol to remove imidazole and the product could be precipitated. The precipitate was obtained by vacuum filtration and dried in a vacuum drying oven at 40 ℃ to remove methanol. Then perform column chromatography. The polarity of the eluent is dichloromethane: ethyl acetate =3∶1(v/v), the obtained product was dried overnight in a vacuum drying oven with yield 75% and was named PDI-TES. Using CDCl3as the solvent, the obtained product PDI-TES was characterized by1H NMR,13C NMR and high resolution mass spectra(HRMS), and the results were shown in Fig.1 and Fig.S1-S2.1H NMR(400 MHz, CDCl3),δ: (TMS, 10-6):8.55(4H, Ar—H), 8.44(4H, Ar—H), 4.25(4H, N—CH2), 3.85(12H, SiO—CH2), 1.90(4H, N—CH2CH2), 1.23(18H, O—CH2CH3), 0.78(4H, Si—CH2).13C NMR(100 MHz, CDCl3),δ: (TMS, 10-6): 163.23, 134.51, 131.27, 129.26, 126.30, 123.30, 122.96, 58.44, 43.08, 21.56, 18.31, 8.08. HRMS(MALDI(N), 100%)m/zcalcd for C42H50N2O10Si2: 798.30, found 798.30.

    Fig.1 1H NMR of PDI-TES in CDCl3

    3 Results and Discussion

    3.1 Self-assembly and Photophysical Property

    PDI-TES showed high solubility in many common organic solvents such as tetrahydrofuran (THF), dichloromethane(DCM) and toluene, but poor solubility in water. Therefore, the photophysical properties of PDI-TES in H2O/THF mixtures with different water fractions were performed to study its self-assembly behavior. As shown in Fig.2(a), the UV-Vis absorption spectra of PDI-TES exhibited a well-resolved vibration absorption band of 400-600 nm in THF solution. The maximum absorption occurred at about 515, 484, 426 nm, corresponding to S0-0, S0-1, and S0-2double electron transitions respectively, which was the characteristic of monomeric PDI chromophore. With addition of water, the absorption intensity decreased gradually, and a new peak appeared at 550 nm. These results indicated that PDI-TES began to aggregate with the increase of poor solvent content. The effect of poor solvent on molecular self-assembly can also be seen from the photoluminescence spectra. As shown in Fig.2(b), PDI-TES presented monomolecular luminescence in THF solution. When the water content increased, the fluorescence intensity decreased significantly as well as the slight red-shift which was attributed to the aggregation of PDI-TES.

    Fig.2 Solvent-dependent UV-Vis spectra(a) and Fluorescence spectra(b) of PDI-TES in H2O/THF mixed solvent systems at a concentration of 1×10-5 mol/L

    3.2 Thermal Property and Crystal Structure

    The PDI-TES sample was subjected to thermal analysis to check its stability. As shown in Fig.S3, the initial decomposition temperature (5% decomposition temperature) was as high as 412 ℃, indicating that PDI-TES had good thermal stability.

    To obtain the aggregation behavior of PDI-TES in the bulk state, small-angle X-ray scattering(SAXS) experiment of PDI-TES crystals was performed. As shown in Fig.3, the two low-angle diffractions possessqratio of 1∶2 with correspondingd-spacings of 2.24 nm and 1.12 nm, respectively. This indicated the presence of a long-range ordered lamellar structure along the molecule’s long axes. Thed-spacing of the third peak can be attributed to the lateral spacing between two neighboring PDI units. In addition, there is a high-angle diffraction withd-spacing of 0.35 nm, which corresponds to the π-π stacking between adjacent PDI cores. Thus, PDI-TES possesses an ordered crystal structure, as shown the inset schematic diagram in Fig.3.

    Fig.3 Small-angle X-ray scattering(SAXS) pattern of PDI-TES

    3.3 Fluoride Ions Sensing Property

    It has been reported that F-have a strong affinity for silicon, and F-can promote the cleavage reaction of Si—O and Si—C bonds to form the Si—F bond. Moreover, the PDI derivatives are a kind of strongly electron deficient system[26-27], while F-are very electronegative, so the electron transfer between them can also be used to detect F-. Many works have studied the combination of two or three F-detective mechanisms to optimize the detection limit. Different with them, PDI-TES has a simpler structure and less Si—O bond. Simple structure means more easily application, and less Si—O bond means more serious destroy to PDI-TES by less F-.

    Electron transfer effect between OH-and PDI molecules can cause the fluorescence intensity to decrease. In order to avoid the influence of pH on the detection system, the pH value of the detection system is 7. To study the optical response of PDI-TES to F-, tetra-n-butylammonium fluoride(TBAF) as the F-source was gradually added to a THF solution of the compounds from 0 to 3 equiv., then both the UV-Vis absorption spectra and fluorescence spectra were investigated. As shown in Fig.4(a), with the addition of F-, the absorption intensity decreased gradually, while two new peaks appeared at 672 nm and 752 nm. It can be considered that electron transfer occurs between PDI-TES and F-[28]. Furthermore, the ratio of peaks at 515 nm and 484 nm (A515/A484) decreased, indicating the formation of the new complex, it may be due to the aggregation of PDI cores once losing the bilateral TES units.

    Fig.4 UV-Vis spectra(a) and Fluorescence spectra(b) of PDI-TES(1×10-5 mol/L in THF with different concentrations of fluoride ions). Inset: 0 equiv. and 3 equiv. in sunlight and under UV irradiation at 365 nm.

    In agreement to UV-Vis results, as shown in Fig.4(b), the fluorescence intensity was gradually quenched after F-being added. The electron transfer should be in between of PDI core and anions since after adding F-, PDI-TES may transfer to other compounds. More interestingly, as shown the insets of Fig.4(a) and Fig.4(b), with the addition of F-, the color of the solution also changed significantly. The change from yellow to colorless can be observed by naked-eye before and after the addition of F-. When observed under UV irradiation at 365 nm, it can be found that the solution without F-is bright yellow, while the solution with F-is almost colorless. As reported[20], the detection limit is the fluoride ion concentration corresponds to the fluorescence intensity that fluoride ion is not added decreases by 10%. According to Fig.S4, we can calculate the detection limit is 1.58 μmol/L, which is better than that of PDI derivative with POSS substituent(10 μmol/L)[20].

    Fig.5 UV-Vis spectra(a) and fluorescence spectra(b) of PDI-TES. Inset: in sunlight and under UV irradiation at 365 nm(naked-eye detection). (c)Fluorescence spectra of PDI-TES in the presence of a single anion(red bars) and in the mixture of F- and other anions(black bars). Solvent: THF, [PDI-TES]=1×10-5 mol/L, [anions]=3 equiv.

    To study the reaction mechanism between PDI-TES with F-, the1H NMR in CDCl3was acquired as Fig.S5. We can see that characteristic signals of PDI-TES at 8.55×10-6and 8.44×10-6disappear, which indicates the formation of paramagnetic PDI-TES?-radical anions. This is because PDI-TES is an electron-deficient system, F-is an electron-rich system, and F--induced electron transfer[19].

    Fluoride ions can promote the cleavage reaction of Si—O and Si—C bonds to form the Si—F bond, so PDI-TES may aggregate with the addition of F-, leading to the final fluorescence quenching. In order to verify this mechanism, the DLS experiment was employed(Fig.6(a)). Before the addition of F-, the average particle size of the sample in the THF solution was about 40 nm. After the addition of F-, the particle size increased to around 80 nm. It indicated that with the addition of F-, the PDI molecules aggregate more severely. This result can also be verified by TEM. As shown in Fig.6(b), it can be clearly seen that the particle size increased significantly after adding F-.

    Fig.6 (a)Particle size measurements of PDI-TES before and after reacting with F- in THF (1×10-5 mol/L, 3 equiv. F-). (b)TEM of PDI-TES before and after reacting with F- in THF(1×10-5 mol/L, left: Blank; right: add 3 equiv. F-).

    4 Conclusion

    In summary, we have synthesized a novel PDIderivative containing siloxane substituents(PDI-TES) as fluorescent sensor by simple one-step reaction with low cost and high yield. The TGA and SAXS results reveal that PDI-TES has good thermal stability and highly ordered crystal structure. The UV-Vis absorption spectra and photoluminescence spectra indicate that PDI-TES possesses high selectivity and sensitivity to fluoride ions due to the mechanism of Si—O bond cleavage, with a detection limit as low as 1.58×10-6mol/L.

    Supplementaryinformationis available for this paper at http://cjl.lightpublishing.cn/thesisDetails#10.37188/CJL.20210068.

    久久精品熟女亚洲av麻豆精品| 国产精品精品国产色婷婷| 成人国产av品久久久| 中文乱码字字幕精品一区二区三区| 国产亚洲av嫩草精品影院| 日韩亚洲欧美综合| 一二三四中文在线观看免费高清| 国产成人a∨麻豆精品| 日韩亚洲欧美综合| 国产淫片久久久久久久久| 91精品伊人久久大香线蕉| 日韩视频在线欧美| 麻豆成人av视频| 十八禁网站网址无遮挡 | 丝袜脚勾引网站| 在线亚洲精品国产二区图片欧美 | 国产有黄有色有爽视频| 黄片无遮挡物在线观看| 色吧在线观看| 久久影院123| 亚洲,一卡二卡三卡| 亚洲欧美清纯卡通| 99热这里只有是精品在线观看| 国产v大片淫在线免费观看| 国产成人a区在线观看| 久久女婷五月综合色啪小说 | 免费观看无遮挡的男女| 丝袜脚勾引网站| av在线app专区| 少妇的逼水好多| 国产精品一区二区在线观看99| 久久热精品热| 免费高清在线观看视频在线观看| 婷婷色麻豆天堂久久| 男女啪啪激烈高潮av片| 国产极品天堂在线| 街头女战士在线观看网站| 国产精品国产三级国产av玫瑰| 草草在线视频免费看| 免费少妇av软件| 国产成人a区在线观看| 日本熟妇午夜| 男人舔奶头视频| 亚洲av成人精品一二三区| 99久久精品热视频| 最新中文字幕久久久久| 欧美bdsm另类| 国产黄a三级三级三级人| 一区二区三区四区激情视频| 亚洲va在线va天堂va国产| 一级黄片播放器| 久久精品国产鲁丝片午夜精品| 精品久久久久久久人妻蜜臀av| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 国产 一区精品| 五月玫瑰六月丁香| 在线观看美女被高潮喷水网站| 亚洲va在线va天堂va国产| 免费看av在线观看网站| 免费人成在线观看视频色| 亚洲欧美日韩东京热| 亚洲真实伦在线观看| 美女xxoo啪啪120秒动态图| 日韩一区二区三区影片| 成人高潮视频无遮挡免费网站| 日本色播在线视频| 丰满少妇做爰视频| 秋霞伦理黄片| 91aial.com中文字幕在线观看| 美女xxoo啪啪120秒动态图| 超碰97精品在线观看| 欧美+日韩+精品| 中文欧美无线码| 青青草视频在线视频观看| 一级av片app| 大香蕉久久网| 日韩制服骚丝袜av| 在现免费观看毛片| 看黄色毛片网站| freevideosex欧美| 久久精品久久精品一区二区三区| 亚洲天堂国产精品一区在线| 熟女电影av网| 五月玫瑰六月丁香| 亚洲精品成人av观看孕妇| 欧美老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 国产精品久久久久久av不卡| 国产日韩欧美在线精品| 亚洲av中文av极速乱| 久久影院123| 免费看日本二区| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 熟女人妻精品中文字幕| 看免费成人av毛片| 最近最新中文字幕免费大全7| 午夜老司机福利剧场| 久久久久久久亚洲中文字幕| 亚洲真实伦在线观看| 亚洲精品久久午夜乱码| tube8黄色片| 国内精品美女久久久久久| 七月丁香在线播放| 免费在线观看成人毛片| 成人免费观看视频高清| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 国产熟女欧美一区二区| 91久久精品国产一区二区三区| 三级国产精品片| 亚洲在久久综合| 亚洲av成人精品一二三区| 久久久久九九精品影院| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 国产欧美日韩精品一区二区| 中文欧美无线码| 卡戴珊不雅视频在线播放| 高清在线视频一区二区三区| 亚洲av日韩在线播放| 男女国产视频网站| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 日本午夜av视频| 性插视频无遮挡在线免费观看| 国产 一区 欧美 日韩| 亚洲av欧美aⅴ国产| 深爱激情五月婷婷| 久久精品国产鲁丝片午夜精品| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产91av在线免费观看| 精品国产一区二区三区久久久樱花 | 成人高潮视频无遮挡免费网站| 少妇丰满av| 日韩免费高清中文字幕av| av在线老鸭窝| 国产黄色免费在线视频| 免费观看无遮挡的男女| 午夜视频国产福利| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 日韩成人伦理影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男人添女人高潮全过程视频| 人妻夜夜爽99麻豆av| av播播在线观看一区| 国产成人福利小说| 亚洲美女视频黄频| 国产一区二区在线观看日韩| 成人特级av手机在线观看| 美女内射精品一级片tv| 青春草国产在线视频| 99久久精品一区二区三区| 日本熟妇午夜| 亚洲真实伦在线观看| 国产精品成人在线| 久久久成人免费电影| 亚洲av男天堂| 一级毛片黄色毛片免费观看视频| 国产黄频视频在线观看| 只有这里有精品99| 成人国产麻豆网| 久久久久久久午夜电影| 一区二区三区乱码不卡18| 国产精品一区www在线观看| 天堂俺去俺来也www色官网| 高清毛片免费看| 欧美老熟妇乱子伦牲交| 国产免费一级a男人的天堂| 亚洲精品久久久久久婷婷小说| av又黄又爽大尺度在线免费看| 69人妻影院| 熟女人妻精品中文字幕| 国产成人精品一,二区| 99久久九九国产精品国产免费| 中文欧美无线码| 久久久国产一区二区| 大片免费播放器 马上看| 少妇 在线观看| 精品一区二区三卡| 久久女婷五月综合色啪小说 | av播播在线观看一区| 久久久国产一区二区| 97热精品久久久久久| 国产精品伦人一区二区| 国产伦精品一区二区三区四那| 看十八女毛片水多多多| 久久99蜜桃精品久久| 久久久久久久午夜电影| 色婷婷久久久亚洲欧美| 国产成人freesex在线| 亚洲一级一片aⅴ在线观看| 国产中年淑女户外野战色| 亚洲成色77777| 九色成人免费人妻av| 色视频www国产| 美女脱内裤让男人舔精品视频| 日韩强制内射视频| 免费少妇av软件| 国产 一区精品| 99久久精品国产国产毛片| 国产成人一区二区在线| 777米奇影视久久| 亚洲成人一二三区av| 国产有黄有色有爽视频| 少妇裸体淫交视频免费看高清| 五月天丁香电影| 国产欧美日韩一区二区三区在线 | 久久99热6这里只有精品| 插逼视频在线观看| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 免费在线观看成人毛片| 亚洲精品aⅴ在线观看| 久久99热这里只频精品6学生| 天堂网av新在线| 免费看a级黄色片| 99久久精品国产国产毛片| 十八禁网站网址无遮挡 | 亚洲怡红院男人天堂| 国产精品一区www在线观看| 白带黄色成豆腐渣| 免费大片18禁| 人人妻人人看人人澡| 一级毛片 在线播放| 欧美3d第一页| 亚洲一区二区三区欧美精品 | 亚洲精品日韩在线中文字幕| 亚洲精品国产av成人精品| 色5月婷婷丁香| 777米奇影视久久| 国产91av在线免费观看| 国产一区二区三区av在线| 国产片特级美女逼逼视频| 色综合色国产| 视频中文字幕在线观看| 人妻 亚洲 视频| 搡女人真爽免费视频火全软件| 另类亚洲欧美激情| av又黄又爽大尺度在线免费看| 国产精品蜜桃在线观看| 国产极品天堂在线| 婷婷色综合www| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩东京热| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品一区蜜桃| 少妇人妻一区二区三区视频| 国产黄色视频一区二区在线观看| 亚洲第一区二区三区不卡| 国产黄片视频在线免费观看| 中国美白少妇内射xxxbb| 777米奇影视久久| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 热99国产精品久久久久久7| 九草在线视频观看| 视频中文字幕在线观看| 国产伦理片在线播放av一区| 久久久久久久午夜电影| 免费人成在线观看视频色| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 91aial.com中文字幕在线观看| av女优亚洲男人天堂| .国产精品久久| 一级毛片电影观看| 日韩一区二区视频免费看| 高清日韩中文字幕在线| 日本三级黄在线观看| 自拍偷自拍亚洲精品老妇| 五月天丁香电影| av天堂中文字幕网| 欧美性感艳星| 日韩成人伦理影院| 舔av片在线| 国产免费又黄又爽又色| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| av免费观看日本| 少妇熟女欧美另类| 日韩一本色道免费dvd| 婷婷色综合www| 白带黄色成豆腐渣| 国产免费视频播放在线视频| 不卡视频在线观看欧美| 综合色丁香网| 亚洲,欧美,日韩| 国产亚洲午夜精品一区二区久久 | 日韩强制内射视频| 看十八女毛片水多多多| 一级二级三级毛片免费看| 免费人成在线观看视频色| 免费电影在线观看免费观看| 中文在线观看免费www的网站| 亚洲精品日韩av片在线观看| 免费看日本二区| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 国产有黄有色有爽视频| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 六月丁香七月| 黄色日韩在线| 国产成人免费无遮挡视频| 尾随美女入室| 青青草视频在线视频观看| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va| 国产成人a区在线观看| 久久久久久伊人网av| 亚洲久久久久久中文字幕| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 在线看a的网站| 亚洲一级一片aⅴ在线观看| 女人十人毛片免费观看3o分钟| 91精品国产九色| 最近中文字幕2019免费版| 自拍欧美九色日韩亚洲蝌蚪91 | www.色视频.com| 亚洲人与动物交配视频| www.av在线官网国产| 亚洲av福利一区| a级毛色黄片| 欧美人与善性xxx| 成人国产av品久久久| 人人妻人人看人人澡| 纵有疾风起免费观看全集完整版| 亚洲av一区综合| 真实男女啪啪啪动态图| 只有这里有精品99| 久久久久精品性色| 亚洲欧美精品自产自拍| 日本一二三区视频观看| 大话2 男鬼变身卡| 热99国产精品久久久久久7| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人精品欧美一级黄| 国产黄频视频在线观看| 日韩一区二区三区影片| 欧美日韩在线观看h| 色视频www国产| av在线观看视频网站免费| 亚洲人与动物交配视频| 国产极品天堂在线| 干丝袜人妻中文字幕| 久久99精品国语久久久| 久久精品久久久久久久性| 只有这里有精品99| 国产一级毛片在线| 精品久久久久久久久亚洲| 国产精品久久久久久精品古装| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 精品国产乱码久久久久久小说| 美女视频免费永久观看网站| 亚洲精品成人久久久久久| 亚洲成人一二三区av| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 如何舔出高潮| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 国产 一区精品| 美女视频免费永久观看网站| 免费播放大片免费观看视频在线观看| 亚洲精品乱码久久久v下载方式| 精品国产乱码久久久久久小说| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 又黄又爽又刺激的免费视频.| 黑人高潮一二区| 国产色爽女视频免费观看| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| 日韩av免费高清视频| 午夜免费观看性视频| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| 嫩草影院精品99| 亚洲性久久影院| 午夜免费鲁丝| 国产精品.久久久| 国产精品久久久久久av不卡| 菩萨蛮人人尽说江南好唐韦庄| 色视频www国产| 少妇人妻一区二区三区视频| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 午夜免费观看性视频| 综合色av麻豆| 亚洲,欧美,日韩| 91在线精品国自产拍蜜月| 欧美激情久久久久久爽电影| 丰满少妇做爰视频| 1000部很黄的大片| 国产精品国产三级国产专区5o| av播播在线观看一区| 如何舔出高潮| 亚洲av男天堂| 一级毛片aaaaaa免费看小| 国产精品人妻久久久影院| 亚洲久久久久久中文字幕| 永久网站在线| 我的老师免费观看完整版| 在线观看国产h片| 精品亚洲乱码少妇综合久久| 国产黄色免费在线视频| 久久精品夜色国产| 在线播放无遮挡| 国产成年人精品一区二区| 亚洲不卡免费看| 亚洲av中文av极速乱| 狂野欧美白嫩少妇大欣赏| 国产精品99久久99久久久不卡 | 亚洲内射少妇av| 国产久久久一区二区三区| av播播在线观看一区| 国产精品熟女久久久久浪| www.av在线官网国产| 舔av片在线| 国产探花在线观看一区二区| 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 亚洲激情五月婷婷啪啪| 国产亚洲av嫩草精品影院| 国产白丝娇喘喷水9色精品| 一级毛片久久久久久久久女| 秋霞伦理黄片| 大码成人一级视频| 国产日韩欧美亚洲二区| 国产亚洲91精品色在线| kizo精华| 国产成人a∨麻豆精品| 日本免费在线观看一区| 亚洲人与动物交配视频| 婷婷色综合大香蕉| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 六月丁香七月| 成人毛片a级毛片在线播放| 国产中年淑女户外野战色| 哪个播放器可以免费观看大片| 日本三级黄在线观看| 亚洲精品色激情综合| 秋霞伦理黄片| 免费观看性生交大片5| 国产男女超爽视频在线观看| 简卡轻食公司| av国产免费在线观看| 高清在线视频一区二区三区| 男女边吃奶边做爰视频| 日韩国内少妇激情av| 能在线免费看毛片的网站| 中文天堂在线官网| 久热久热在线精品观看| 亚洲一级一片aⅴ在线观看| 亚洲av中文字字幕乱码综合| 国产av国产精品国产| 99精国产麻豆久久婷婷| 最近2019中文字幕mv第一页| 美女主播在线视频| 99热这里只有是精品50| 中国国产av一级| 黄色配什么色好看| 老司机影院成人| av在线观看视频网站免费| 亚洲久久久久久中文字幕| 大码成人一级视频| 99热6这里只有精品| 秋霞在线观看毛片| 国产精品一区二区性色av| 国产亚洲av嫩草精品影院| 国产熟女欧美一区二区| 成人无遮挡网站| av福利片在线观看| 美女内射精品一级片tv| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看 | 亚洲av成人精品一区久久| 美女国产视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 色吧在线观看| 国产成人精品一,二区| 亚洲内射少妇av| 欧美变态另类bdsm刘玥| 久久ye,这里只有精品| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 熟女av电影| 超碰av人人做人人爽久久| 在线精品无人区一区二区三 | 久久久久精品性色| 日韩一本色道免费dvd| a级毛色黄片| 精华霜和精华液先用哪个| 在线亚洲精品国产二区图片欧美 | 欧美亚洲 丝袜 人妻 在线| 好男人视频免费观看在线| 女人久久www免费人成看片| 18禁在线播放成人免费| av专区在线播放| 男女国产视频网站| 午夜视频国产福利| 青春草亚洲视频在线观看| 在线精品无人区一区二区三 | 亚洲精品国产av成人精品| 在线看a的网站| 97精品久久久久久久久久精品| 免费高清在线观看视频在线观看| 美女高潮的动态| 亚洲精品成人久久久久久| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 免费在线观看成人毛片| 国产极品天堂在线| 色视频www国产| 亚洲成人中文字幕在线播放| 水蜜桃什么品种好| 91午夜精品亚洲一区二区三区| 国产黄色视频一区二区在线观看| 婷婷色麻豆天堂久久| 国产一级毛片在线| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 亚洲欧洲国产日韩| 亚洲国产精品国产精品| 视频区图区小说| tube8黄色片| 亚洲精品国产色婷婷电影| 国产伦在线观看视频一区| 久久精品久久精品一区二区三区| 九草在线视频观看| 性色avwww在线观看| 三级国产精品欧美在线观看| 亚洲成人久久爱视频| 亚洲av国产av综合av卡| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 亚洲av不卡在线观看| 最近最新中文字幕免费大全7| 亚洲人成网站高清观看| 午夜激情久久久久久久| 日韩欧美一区视频在线观看 | 中文天堂在线官网| 人妻系列 视频| 国产 一区精品| 丝瓜视频免费看黄片| 美女国产视频在线观看| 欧美一级a爱片免费观看看| 国产永久视频网站| 一级av片app| 国产成人免费观看mmmm| 免费黄频网站在线观看国产| 亚洲自偷自拍三级| 99久久精品一区二区三区| 一级毛片电影观看| 欧美日本视频| 少妇猛男粗大的猛烈进出视频 | 国产国拍精品亚洲av在线观看| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 十八禁网站网址无遮挡 | 黄色日韩在线| 一个人观看的视频www高清免费观看| 肉色欧美久久久久久久蜜桃 | 免费观看av网站的网址| 熟女人妻精品中文字幕| 国产黄频视频在线观看| 国产久久久一区二区三区| 一边亲一边摸免费视频| 欧美+日韩+精品| 亚洲欧美日韩卡通动漫| 三级经典国产精品| 亚洲最大成人手机在线| 边亲边吃奶的免费视频| 亚洲成人一二三区av| 色吧在线观看| 日韩成人伦理影院| 精品一区在线观看国产| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 久久久久久九九精品二区国产| 久久99热6这里只有精品| 久久久午夜欧美精品| 国产爽快片一区二区三区| 啦啦啦在线观看免费高清www| 91狼人影院| 女人十人毛片免费观看3o分钟| 寂寞人妻少妇视频99o| 成年免费大片在线观看| 日日撸夜夜添| 国产欧美日韩精品一区二区| 日本av手机在线免费观看| 国产高清不卡午夜福利| 热99国产精品久久久久久7| 神马国产精品三级电影在线观看| 丝瓜视频免费看黄片| 男女国产视频网站| 国产男女超爽视频在线观看| 乱系列少妇在线播放| 欧美日韩视频精品一区| 直男gayav资源| 国产成人福利小说| 搞女人的毛片| 日韩免费高清中文字幕av|