• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Edge detection of magnetic tile cracks based on wavelet①

    2015-04-17 06:37:50LinLijun林麗君HeMinggeYinYing
    High Technology Letters 2015年3期

    Lin Lijun (林麗君), He Mingge, Yin Ying

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    ?

    Edge detection of magnetic tile cracks based on wavelet①

    Lin Lijun (林麗君)*, He Mingge**, Yin Ying②

    (*School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, P.R.China)(**Gas Production Engineering Research Institute, Petro China Southwest Oil & Gas Field Co., Guanghan 618300, P.R.China)

    In order to extract the defect edge information on the magnetic tile surface with low contrast and textured background, an edge detection algorithm based on image weighted information entropy and wavelet modulus maxima is proposed. At first, a new Butterworth high pass filter (BHPF) with adaptive cutoff frequency is produced, because the clarity and complexity of the textured background are described by the weighted information entropy of the image gradient variance quantitatively, and the filter can change its parameters through matching the non-linear relationship between the information entropy and the cutoff frequency. And then, the best decomposition scale is obtained by the level determination function to prevent edge information from missing. At last, edge points are got by double threshold after obtaining the wavelet modulus maxima, and then the edge image is linked by the edge points to ensure the edge continuity and veracity. Experiment results indicate that the proposed algorithm outperforms the conventional Canny and Sobel algorithm, and the edge detection algorithm can also detect other defects, and lays the foundation for defecting auto- recognition.

    edge detection, wavelet transform, textures processing, magnetic tile, information entropy

    0 Introduction

    Magnetic tile is an important part of the motor, and its surface defects must be removed which affects the motor safety performance directly. And most companies use the artificial vision to detect the defections due to the magnetic tile with gray color and low image contrast. At present, adopting machine vision to complete the defect detection is a hot research on the nondestructive testing, and the image edge information extraction is the key of image processing[1,2], thus many edge detection algorithms have been applied evolutionarily to all kinds of image edge features extraction[3-5]. Ref.[6] uses Sobel and Canny algorithm to locate the locked weld edge for avoiding outside interruptions. Ref.[7] employs the wavelet multi-scale analysis to extract the feature points on X-ray cephalometric, and gets the desired effect on the automatic location. Ref.[8] presents local modulus maxima and dynamic threshold to solve the wavelet edge detection’s shortage such as inaccurate location. Ref.[9] has employed an independent component analysis (ICA) and a particle swarm optimization (PSO) to detect the LCD panel defects, and the proposed algorithm is suitable for the defects with large size and low image contrast. The research on magnetic tile defects detection is quite few due to the magnetic tile characteristics.

    In Ref.[10], it proposes a defect extraction method based on adaptive morphological filter. Defects are removed or weakened by the adaptive morphological filtering to get the image background, and then the surface defects are extracted after comparing the original image with the background image, but it can’t get the accurate classification when the gray variety in small defects is big. Ref.[11] presents a texture analysis method to detect the defects on the magnetic tile surface. In this way, the original image is divided into several equal sized squares decomposed by the fast discrete curvelet transform(FDCT) at different scales and orientations, and then the coefficients are calculated as the feature vector of the support vector machine(SVM) classifier. However, it can’t get the desired result when defects percentage is less than 1/64 in magnetic tile image. Ref.[12] presents the learning vector quantization (LVQ) neural network to classify the magnetic tile defects, but it doesn’t explain how to extract the defects edge information correctly.

    A new edge detection algorithm of the magnetic tile crack is proposed in this paper. The BHPF filter’s cutoff frequency is changed adaptively by the image gradient variance weighted information entropy, so the background texture and noise are restrained adequately. To make good use of the feature of the wavelet multi-scale resolution, the original image is transformed by the translation invariance binary wavelet to calculate the wavelet modulus maxima, and then the level determination function (LDF) is adopted to decrease the interference from the wavelet level. At last, the edge points of crack are got by the double threshold, and then it can get the crack edge image by linking the edge points. The experimental results show that the proposed algorithm can decrease the influence from the background, and extract the crack edge accurately and effectively.

    1 The image preprocessing

    The crack is one of the most typical magnetic tile defects, some cracks are slight and mixed with the background, and are difficult to be identified. Due to the energy difference between the crack and background, the crack’s energy stays in high frequency area. The ideal high pass filter (IHPF) has ringing effect at the cut-off frequency, while the exponential high pass filter (EHPF) brings noise. The BHPF is proposed in this paper to process the original image, which can restrain the interference from random textures and smooth the curve more effectively while the cutoff frequency is increasing, so the cracks are enhanced[13].The n level BHPF filter is defined as

    (1)

    where the crack image isf(x, y), and its filtering is

    g(x, y)=F-1{F[f(x, y)]·H(u, v)}

    (2)

    In Eq.(2), F is Fourier transform, and F-1is inverse transform of F, g(x, y) is the filtered crack image.

    1.1 The texture estimation

    Information entropy can describe the image’s information content efficiently, but it ignores the space information of gray distribution[14]. The weighted entropy not only expresses the image’s average information content, but also reflects how the high gray value affects the image information entropy. The crack has high gray value and contains the noise, and the gray value is one of the standards about the image’s complexity degree.

    If the image has 256 gray levels, gray value s is the weighting factor, so the weighted information entropy is

    (if ps=0, pslogps=0)

    (3)

    In Eq.(3), S is the set of pixel values, psis the probability of the gray value s appearing in S.

    In order to describe the texture complexity more objectively, and the gradient variance can reflect the changes of the texture detail, the weighted information entropy adjusted by the gradient variance can describe the texture details clarity qualitatively. Image gradient variance is

    (4)

    gradAVR=

    (5)

    So the image gradient variance weighted information entropy (IGVWIE) can be expressed as

    (6)

    (7)

    The gradient variance is a reflection of the degree that the pixel gray value deviates from its average gray value, as the variance is bigger, the difference among the pixels is bigger, and the details of the image are more.

    1.2 The texture description

    In order to explain the reliability of the IGVWIE describing the different image background, the following is the analysis about this method.

    H(S)=

    (8)

    (9)

    Eq.(9) indicates that the whole intensity feature can reflect the background complexity at the same gray level.

    1.3 The adjusting cutoff frequency correction

    As a result, the system chart of the adjusting BHPF cutoff frequency is in Fig.1. According to the prior knowledge, the cutoff frequency of some typical magnetic tile crack which has different complexity are got, and then stored in the system. The weighted information entropy and the cutoff frequency is fitted by the segment linear interpolation while the system is running, and the relationship of the nonlinear function between them is determined. So it can get the cutoff frequency corresponding to the information entropy values of the different crack background, and the parameters of the BHPF is changed adaptively to realize the quantitative analysis of the energy change for the crack image.

    Fig.1 The system chart of adjusting BHPF cutoff frequency

    2 The edge detection principle

    Binary wavelet edge detection is that the waiting detection signal is transformed by the second differential smooth function, and the image edge points are got through the wavelet modulus maximum[15].

    Assume that the wavelet function ψ(t) and the signal f(t) is real function, and ψ(t) is the first derivation of smooth function θ(t), that ψ(t)=dθ(t)/dt, the f(t) binary wavelet transform is defined as follows

    (10)

    2.1 The wavelet modulus maxima

    For a binary wavelet transform sequence Wf(2j,0), Wf(2j,1), …, Wf(2j,n), if it satisfies the following conditions.

    (11)

    Also Eq.(11) can’t take equal at the same time, so the wavelet coefficients can get the modulus maxima at the point m(0≤m≤n).

    2.2 The optimal decomposition scale

    Because the crack edge information is influenced by the wavelet decomposition scale greatly, so it needs an optimal decomposition scale got through the level determination function (LDF)[17]. The function is

    (12)

    2.3 The threshold determination

    The threshold is the criterion of detecting the image edge, and affects the quality of the edge detection directly. Seeking the wavelet modulus’ maximum and minimum, and their average is the initial threshold T0.The window n×n scans image D, then it can get the wavelet coefficient Wj,k, so the threshold is

    (13)

    In Eq.(13), δ is the impact factor, and δ=0.5.

    3 The magnetic tile crack edge detection

    If crack D has N×N pixels, D={dn,m|n,m=0,1,…,N-1}, so the process of crack D multi-scale edge detection is as following:

    (1) Image D is filtered by the new BHPF, then it can get image D1.

    (2) Image D1is transformed by 2-D wavelet at 2j, W1f(2j, n, m), W2f(2j, n, m), n, m=0,1,…,N-1,1≤j≤J=log2N。

    (3) Modulus Mf(2j, n, m) and the tangent value tanAf(2j, n, m) are got at pixel point (n,m).

    (4) The optimal decomposition scale of image D1is determined by Eq.(12), and its flowchart is shown as Fig.2.

    Fig.2 The flowchart of getting the optimal decomposition scale

    (5) Threshold T got by Eq.(13) divides image D1into two parts. Modulus less than T are region R1, and the others are region R2. Also threshold T1in region R1and threshold T2in region R2can be got by Eq.(13), if T1

    (6) The boundary points at one scale are got. If one pixel’s gray value in image D1is less than threshold T1, the gray value is 0, then image D1is changed into image I1, at the same way, it can get image I2at threshold T2. The image I2is the base, the image I1is the supplement for image I2, and t The flowchart of finding the contour line is shown as Fig.3.

    Fig.3 The flowchart of seeking the boundary points

    (7) Connect all edge points at scale 2j, it can get the modulus maxima line.

    (8) The gray value of edge points meeting the algorithm is set as 255, and the others are set as 0, then the edge image I is got.

    4 The analysis of experimental results

    4.1 The analysis of filter result

    Fig.4 is the axial crack of magnetic tile, and Fig.5 is the crack filtered by BHPF. Fig.5 shows that the defect is enhanced, and the random texture and noise of background is reduced effectively.

    Fig.4 The axial crack

    Fig.5 The axial crack filtered by BHPF

    4.2 The analysis of edge detection results

    The magnetic tile image from the production line is analyzed by the proposed method, and the image size is 256×128, the used PC is powered by a 3.2GHz Intel Core i5 Quad processor. This experiment is realized by the Matlab R2013a encoding.

    The algorithm proposed in this paper is applied to the edge extraction of three crack defects, and the result is shown in Fig.6. From Fig.6(a), cracks can be seen on the end face and outside surface of magnetic tile obviously. The detection results of the Sobel operator in Fig.6(b) shows the crack defects can’t be extracted correctly, because the crack defects is multi-directional while the classical Sobel operator using only the horizontal direction and vertical direction template. It must add a new template to increase the direction detection information. Moreover, the false edges are smoothed by the Sobel operator, and the real edges are lost as well. On the other hand, because of lacking of the adaptability for different images, the threshold of the classical Sobel operator is determined by one’s experience. The results tested by Canny operator are shown in Fig.6(c), which shows the crack edges are interfered by the texture, and the real crack can’t be extracted correctly. That is because the traditional Canny operator calculates the gradient amplitude by using a finite difference average, which is sensitive to the noise and is easy to cause the real edge details lost or the false edge detected. The low contrast of magnetic tile makes the double threshold Canny algorithm based on gradient amplitude difficult to suppress the noise while preserving the edge in low-intensity, so that the effects of edge detection are affected. Tested results using the proposed algorithm are shown in Fig.6(d), in which the cracks are detected accurately, and the tested results are better than Sobel algorithm and Canny algorithm and achieve the desired effect.

    Fig.6 Comparison of the proposed algorithm with other algorithm

    There are 160 pieces of the magnetic tile, and the accepted products are 78, while the others have crack defects. The ones detected from the accepted magnetic tile is 72, so the false positive rate is (78-72)/78×100%=7.7%, and it indicates that there are 6 pieces of magnetic tile judged falsely because of the influence from the watermark or the dust on the magnetic tile surface. It can detect 77 pieces of the magnetic tile from the defects, and the missing rate is (82-77)/82×100%=6.1%, the reason of missing is that the direction of some cracks is consistent with the direction of grinding.

    5 Conclusion

    Using the image gradient variance to modify the weighted information entropy has made estimating the complexity of the magnetic tile crack defects background more accurately. The BHPF filter performance has been improved adaptively, and the background texture has been eliminated effectively. This paper uses the modulus maxima algorithm based on the wavelet transform to extract the crack edges, and the crack edge information is optimally retained because of the application of the optimal decomposition scale, and the double threshold has made finding the crack edges points more precisely. The experiment proves that the proposed algorithm of the edge detection is better than the classical edge detection algorithm, so it has laid the foundation for other magnetic tile defects detections.

    [ 1] Lin K Y, Si H P, Zhou Q, et al. Plant leaf edge detection based on fuzzy logic. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6):227-231

    [ 2] Xiang R, Ying Y B, Jiang H Y, et al. Recognition of overlapping tomatoes based on edge curvature analysis. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3):157-162 (In Chinese)

    [ 3] Selvathi D, Dharani J. Realization of beamlet transform edge detection algorithm using FPGA. In: Proceedings of the 2013 International Conference on Signal Processing, Image Processing and Pattern Recognition, Coimbatore, India, 2013. 131-135

    [ 4] Hussain P S J, Ayesha S. Analysis of edge detection algorithm for feature extraction in satellite images. In: Proceedings of the 2013 3rd IEEE International Conference on Space Science and Communication, IconSpace2013, Melaka, Malaysia, 2013. 238-242

    [ 5] Zhao X F, Yin G F, Yin X Y, et al. Image edge detection based on support vector machine and cellular automata. Journal of Sichuan University (Engineering Science Edition), 2011, 43(1):137-142

    [ 6] Kong M, Chen S B, Lin T. Weld seam edge detection based on composite edge detectors. Journal of Shanghai Jiaotong University, 2009, 43(5):693-696 (In Chinese)

    [ 7] Ling X F, Yang J, Lu Y. Characteristic points extraction of X-Ray skull image based on wavelet multiscale analysis. Journal of Shanghai Jiaotong University, 2001, 35(9):1350-1354 (In Chinese)

    [ 8] Fan Y J, Wu X H, Luo D S. A modified image edge detection algorithm based on wavelet transform. Journal of Sichuan University (Natural Science Edition), 2012, 49(6):1264-1268 (In Chinese)

    [ 9] Tsneg Y H, Tsai D M. Defect detection of uneven brightness in low-contrast images using basis image representation. Pattern Recognition, 2010, 43(3):1129-1141

    [10] Yu Y W, Yin G F, Jiang H H, et al. Defect extraction method of arc magnet surface image based on adaptive morphological filtering. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3):351-356 (In Chinese)

    [11] Jiang H H, Yin G F, Liu P Y, et al. Defect detection on magnetic tile surface based on fast discrete curvelet transform and support vector machine. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3):147-152 (In Chinese)

    [12] Yan J L, Zheng X X, Li T Y. Application of LVQ neural network in classification of surface defects for arc segments ceramic magnet. Computer & Digital Engineering, 2009, 37(12):147-150 (In Chinese)

    [13] Rafael C G, Richard E W. Digital Image Processing. Third Edition. Beijing: Publishing House of Electronics Industry, 2011. 305-308

    [14] Li X Z, Yu H D, Yu Z J, et al. Optimal inspection method for surface defects of micro-components. Acta Armamentarii, 2011, 32(7):872-877 (In Chinese)

    [15] Sun Y K. Wavelet and Image Processing Technology. Beijing: Tsinghua University Press, 2012. 185-186 (In Chinese)

    [16] Maria P, Josef K. Optimal edge detectors for ramp edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5):483-491

    [17] Zhang X, Wang H L. Stationary lifting wavelet de-noising method based on optimal decomposition level. High Voltage Engineering, 2009, 35(3):501-508 (In Chinese)

    Lin Lijun, born in 1985. She is a Ph.D candidate of Sichuan University. She received her B.E. and M.E. degrees from Southwest Petroleum University in 2008 and 2011. Her research focuses on intelligent control and image processing.

    10.3772/j.issn.1006-6748.2015.03.005

    ①Supported by the National Natural Science Foundation of China (No. 51205265).

    ②To whom correspondence should be addressed. E-mail: kevin_yying@hotmail.com Received on Mar. 19, 2014*, Yin Xiangyun*, Yin Guofu*

    女人被躁到高潮嗷嗷叫费观| 你懂的网址亚洲精品在线观看| 大香蕉久久成人网| 狂野欧美激情性xxxx在线观看| 欧美人与性动交α欧美软件 | 免费播放大片免费观看视频在线观看| 久久 成人 亚洲| 国产69精品久久久久777片| 午夜影院在线不卡| 高清黄色对白视频在线免费看| 桃花免费在线播放| 久久 成人 亚洲| 国产69精品久久久久777片| 久久毛片免费看一区二区三区| 久久久久久久久久人人人人人人| 国产欧美日韩综合在线一区二区| 一区二区三区四区激情视频| 午夜精品国产一区二区电影| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 男男h啪啪无遮挡| 黄色 视频免费看| kizo精华| 高清av免费在线| 黄色怎么调成土黄色| 少妇熟女欧美另类| 久久久欧美国产精品| 永久免费av网站大全| 日韩中文字幕视频在线看片| 亚洲欧美中文字幕日韩二区| 欧美97在线视频| 肉色欧美久久久久久久蜜桃| 午夜激情久久久久久久| 男人爽女人下面视频在线观看| 一个人免费看片子| 交换朋友夫妻互换小说| 欧美少妇被猛烈插入视频| 亚洲精品日本国产第一区| 久久久国产欧美日韩av| 国产精品久久久久久久电影| 国产国拍精品亚洲av在线观看| 国产精品久久久久成人av| 日日啪夜夜爽| 亚洲av日韩在线播放| 少妇的丰满在线观看| 亚洲国产最新在线播放| 国产成人精品一,二区| 国产有黄有色有爽视频| 日韩制服骚丝袜av| 国产精品熟女久久久久浪| 久久久a久久爽久久v久久| 大陆偷拍与自拍| 国产一区二区在线观看av| 大片免费播放器 马上看| 男人舔女人的私密视频| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 男男h啪啪无遮挡| 水蜜桃什么品种好| 999精品在线视频| 免费黄网站久久成人精品| 三上悠亚av全集在线观看| 91成人精品电影| 国产又色又爽无遮挡免| 久久久国产精品麻豆| 亚洲国产精品一区二区三区在线| 大香蕉久久成人网| 七月丁香在线播放| 亚洲av福利一区| 亚洲色图综合在线观看| 欧美国产精品va在线观看不卡| 国产精品一二三区在线看| 久久久久久久国产电影| 亚洲三级黄色毛片| 亚洲国产日韩一区二区| 国产免费一级a男人的天堂| 精品国产一区二区久久| 在线观看国产h片| 久热久热在线精品观看| 午夜免费观看性视频| 成人亚洲欧美一区二区av| 一区在线观看完整版| 一边亲一边摸免费视频| 午夜老司机福利剧场| a 毛片基地| 黄色 视频免费看| 高清在线视频一区二区三区| 亚洲一区二区三区欧美精品| 国产黄频视频在线观看| 中国国产av一级| 性色av一级| 亚洲久久久国产精品| 欧美人与性动交α欧美精品济南到 | 日韩在线高清观看一区二区三区| av福利片在线| 一本大道久久a久久精品| 国产免费又黄又爽又色| 伊人亚洲综合成人网| 蜜臀久久99精品久久宅男| 成人手机av| 两性夫妻黄色片 | 两个人看的免费小视频| av电影中文网址| 超碰97精品在线观看| 国产xxxxx性猛交| 超色免费av| 欧美国产精品一级二级三级| 人妻少妇偷人精品九色| h视频一区二区三区| 美女大奶头黄色视频| 九色成人免费人妻av| 99久国产av精品国产电影| 侵犯人妻中文字幕一二三四区| 久久久久久人人人人人| videos熟女内射| 成人午夜精彩视频在线观看| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 国产白丝娇喘喷水9色精品| 美女大奶头黄色视频| 国产精品秋霞免费鲁丝片| 国产亚洲午夜精品一区二区久久| 高清不卡的av网站| 欧美xxxx性猛交bbbb| 伊人久久国产一区二区| 国产免费一级a男人的天堂| av片东京热男人的天堂| 卡戴珊不雅视频在线播放| 欧美日韩av久久| av线在线观看网站| tube8黄色片| 九草在线视频观看| 久久免费观看电影| 亚洲av男天堂| 亚洲情色 制服丝袜| 婷婷色综合www| 亚洲国产欧美日韩在线播放| 秋霞伦理黄片| 精品国产露脸久久av麻豆| 两性夫妻黄色片 | 中文乱码字字幕精品一区二区三区| 亚洲av综合色区一区| 考比视频在线观看| 伦精品一区二区三区| 老司机亚洲免费影院| 99热全是精品| videos熟女内射| 亚洲,欧美精品.| 男女免费视频国产| 色婷婷av一区二区三区视频| 成人漫画全彩无遮挡| 欧美国产精品va在线观看不卡| 国产深夜福利视频在线观看| 欧美老熟妇乱子伦牲交| 免费观看av网站的网址| 日韩伦理黄色片| 两个人看的免费小视频| 久久久久网色| 自线自在国产av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美激情极品国产一区二区三区 | 久久婷婷青草| 久久精品久久久久久噜噜老黄| 人妻人人澡人人爽人人| 国产毛片在线视频| 草草在线视频免费看| 国产精品熟女久久久久浪| a级片在线免费高清观看视频| 看非洲黑人一级黄片| 大香蕉97超碰在线| 精品人妻熟女毛片av久久网站| 美女国产视频在线观看| 青春草国产在线视频| 亚洲中文av在线| 日韩三级伦理在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品乱码久久久久久按摩| 久久青草综合色| 少妇精品久久久久久久| 国产 一区精品| 日韩欧美精品免费久久| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 一二三四在线观看免费中文在 | 中文字幕最新亚洲高清| 久久久a久久爽久久v久久| 日产精品乱码卡一卡2卡三| 丝袜美足系列| 国产午夜精品一二区理论片| 精品久久久久久电影网| 丰满饥渴人妻一区二区三| 国产在线免费精品| 男女高潮啪啪啪动态图| 午夜福利视频在线观看免费| 国产黄色免费在线视频| 99久国产av精品国产电影| 人人妻人人爽人人添夜夜欢视频| 大片电影免费在线观看免费| 伊人久久国产一区二区| 一区在线观看完整版| av不卡在线播放| 亚洲,欧美,日韩| av免费在线看不卡| 999精品在线视频| 永久网站在线| 亚洲高清免费不卡视频| 熟女av电影| 极品人妻少妇av视频| 在线免费观看不下载黄p国产| 亚洲成色77777| 男女边吃奶边做爰视频| av在线app专区| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 亚洲欧美成人精品一区二区| 亚洲精品乱久久久久久| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 国产精品熟女久久久久浪| 久久久久精品人妻al黑| 国产高清国产精品国产三级| tube8黄色片| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| xxxhd国产人妻xxx| 亚洲人成网站在线观看播放| 国产欧美另类精品又又久久亚洲欧美| 久久人人97超碰香蕉20202| 美女大奶头黄色视频| 热re99久久国产66热| 免费人成在线观看视频色| 欧美bdsm另类| 性色av一级| 国产成人精品久久久久久| 日本爱情动作片www.在线观看| 美女中出高潮动态图| 成年动漫av网址| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美软件 | 性色avwww在线观看| 高清视频免费观看一区二区| 97在线视频观看| 999精品在线视频| videosex国产| 99视频精品全部免费 在线| 国产精品不卡视频一区二区| 熟女电影av网| 国产国拍精品亚洲av在线观看| 国产精品久久久久久精品电影小说| 欧美97在线视频| 大话2 男鬼变身卡| 久久久国产一区二区| 最后的刺客免费高清国语| 国产爽快片一区二区三区| 亚洲国产精品999| 亚洲精品视频女| 亚洲精品国产色婷婷电影| 少妇人妻精品综合一区二区| 一区二区日韩欧美中文字幕 | 99热国产这里只有精品6| 亚洲色图综合在线观看| 女的被弄到高潮叫床怎么办| 欧美激情国产日韩精品一区| 国产精品无大码| 久久久久久久精品精品| 中文字幕制服av| 国产免费现黄频在线看| 男女边吃奶边做爰视频| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| 精品少妇内射三级| 欧美激情极品国产一区二区三区 | 高清视频免费观看一区二区| 亚洲欧美成人综合另类久久久| 日韩电影二区| 国产成人精品一,二区| 国产高清不卡午夜福利| 日韩大片免费观看网站| 中文乱码字字幕精品一区二区三区| 秋霞伦理黄片| 婷婷色麻豆天堂久久| 91久久精品国产一区二区三区| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看 | 热99国产精品久久久久久7| 久久精品熟女亚洲av麻豆精品| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 在线亚洲精品国产二区图片欧美| 99精国产麻豆久久婷婷| 777米奇影视久久| 高清毛片免费看| 免费人妻精品一区二区三区视频| 一边摸一边做爽爽视频免费| 美女大奶头黄色视频| 又黄又粗又硬又大视频| 久久女婷五月综合色啪小说| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 日本av手机在线免费观看| 美女中出高潮动态图| 久久久久精品久久久久真实原创| 国产69精品久久久久777片| 国产免费福利视频在线观看| 日日爽夜夜爽网站| 九草在线视频观看| 日日摸夜夜添夜夜爱| 欧美人与善性xxx| 狂野欧美激情性xxxx在线观看| 久久狼人影院| 日韩av免费高清视频| 涩涩av久久男人的天堂| 亚洲国产av新网站| 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 国产日韩欧美视频二区| 欧美亚洲 丝袜 人妻 在线| 日韩 亚洲 欧美在线| 满18在线观看网站| 国产老妇伦熟女老妇高清| 狠狠婷婷综合久久久久久88av| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 国产视频首页在线观看| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 亚洲精品一二三| 五月玫瑰六月丁香| 国产一区有黄有色的免费视频| www.色视频.com| 欧美亚洲日本最大视频资源| 国产精品久久久久久久电影| av电影中文网址| 免费av不卡在线播放| 国精品久久久久久国模美| 99re6热这里在线精品视频| 在线观看国产h片| 久久毛片免费看一区二区三区| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 免费久久久久久久精品成人欧美视频 | 国产成人精品福利久久| 免费观看无遮挡的男女| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲情色 制服丝袜| 国产不卡av网站在线观看| 丰满乱子伦码专区| 国产不卡av网站在线观看| 男女国产视频网站| 熟女av电影| 青春草亚洲视频在线观看| 日韩欧美一区视频在线观看| 97在线视频观看| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久 | 久久热在线av| 精品少妇黑人巨大在线播放| 久久久久久久精品精品| 五月开心婷婷网| 亚洲,一卡二卡三卡| 国产欧美亚洲国产| 国产成人a∨麻豆精品| 五月开心婷婷网| 91精品国产国语对白视频| 欧美+日韩+精品| 天美传媒精品一区二区| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 成年人免费黄色播放视频| 日韩成人av中文字幕在线观看| 在线精品无人区一区二区三| 亚洲欧美日韩卡通动漫| 国产高清不卡午夜福利| 性色avwww在线观看| 国产熟女欧美一区二区| 99久国产av精品国产电影| 大话2 男鬼变身卡| 欧美xxxx性猛交bbbb| 亚洲精品视频女| 秋霞在线观看毛片| 国产精品一国产av| 自线自在国产av| 日韩制服骚丝袜av| 午夜影院在线不卡| 国国产精品蜜臀av免费| 午夜免费男女啪啪视频观看| 亚洲国产精品一区三区| 国产一区二区三区综合在线观看 | 男女免费视频国产| 九色亚洲精品在线播放| 免费高清在线观看视频在线观看| 亚洲中文av在线| 美女内射精品一级片tv| 国产av码专区亚洲av| 最后的刺客免费高清国语| 国产精品久久久久久久电影| 亚洲欧美中文字幕日韩二区| 国产精品国产三级专区第一集| 久久精品久久久久久久性| 中文欧美无线码| 如何舔出高潮| 少妇人妻久久综合中文| 欧美精品高潮呻吟av久久| 午夜激情久久久久久久| 日韩在线高清观看一区二区三区| 久久青草综合色| 国产精品.久久久| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 伊人亚洲综合成人网| 久久精品夜色国产| 亚洲精品日韩在线中文字幕| 久热久热在线精品观看| 亚洲综合色惰| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 在线天堂中文资源库| 亚洲成人手机| 免费女性裸体啪啪无遮挡网站| 午夜福利影视在线免费观看| 母亲3免费完整高清在线观看 | 午夜精品国产一区二区电影| 十分钟在线观看高清视频www| 男女午夜视频在线观看 | 精品亚洲成国产av| 欧美精品一区二区大全| 国产永久视频网站| 91精品国产国语对白视频| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 日韩免费高清中文字幕av| 女人久久www免费人成看片| 亚洲精品色激情综合| 国产精品久久久久久久久免| 1024视频免费在线观看| 成人无遮挡网站| 赤兔流量卡办理| 久久久久视频综合| 黄色 视频免费看| 国产精品 国内视频| av电影中文网址| 看免费成人av毛片| 激情五月婷婷亚洲| 国产日韩欧美在线精品| 欧美日韩亚洲高清精品| 久久免费观看电影| 国产精品嫩草影院av在线观看| 宅男免费午夜| 日韩在线高清观看一区二区三区| 少妇人妻久久综合中文| 国产精品一二三区在线看| 亚洲成人av在线免费| 久久青草综合色| 亚洲精品一二三| 免费av中文字幕在线| 国产一区有黄有色的免费视频| 亚洲国产av影院在线观看| 亚洲精品国产av蜜桃| 久久99蜜桃精品久久| 一边摸一边做爽爽视频免费| 天天躁夜夜躁狠狠久久av| 国内精品宾馆在线| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 久久影院123| 两个人免费观看高清视频| 大码成人一级视频| tube8黄色片| av片东京热男人的天堂| 伊人久久国产一区二区| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 哪个播放器可以免费观看大片| 国产乱来视频区| 欧美精品一区二区免费开放| 高清毛片免费看| 一级片'在线观看视频| 久久av网站| 精品少妇内射三级| 成人毛片60女人毛片免费| 韩国高清视频一区二区三区| 免费播放大片免费观看视频在线观看| 少妇精品久久久久久久| 国产亚洲最大av| 大香蕉久久网| 在现免费观看毛片| 日本与韩国留学比较| 久久精品国产亚洲av天美| 一边亲一边摸免费视频| 91精品三级在线观看| 亚洲综合精品二区| 视频在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 欧美老熟妇乱子伦牲交| 美女内射精品一级片tv| 中文天堂在线官网| 亚洲国产欧美日韩在线播放| 一本—道久久a久久精品蜜桃钙片| 午夜免费男女啪啪视频观看| 久久韩国三级中文字幕| 欧美精品一区二区大全| 如何舔出高潮| 大码成人一级视频| 高清视频免费观看一区二区| 一区二区三区乱码不卡18| 婷婷色麻豆天堂久久| 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美在线精品| 久久人人爽av亚洲精品天堂| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区国产| 99热国产这里只有精品6| 精品国产一区二区三区四区第35| 人人妻人人添人人爽欧美一区卜| 大陆偷拍与自拍| 99热6这里只有精品| 国产精品秋霞免费鲁丝片| 久热这里只有精品99| 一二三四中文在线观看免费高清| 成人毛片60女人毛片免费| 久热久热在线精品观看| 精品午夜福利在线看| 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| av一本久久久久| 久久女婷五月综合色啪小说| 51国产日韩欧美| 国产麻豆69| 久久久欧美国产精品| 国产免费一区二区三区四区乱码| 精品人妻偷拍中文字幕| 自线自在国产av| 久久久精品94久久精品| 成人亚洲精品一区在线观看| 狂野欧美激情性bbbbbb| 亚洲欧美成人综合另类久久久| 久久久精品免费免费高清| 亚洲欧美日韩卡通动漫| 欧美精品人与动牲交sv欧美| 久久久久久久国产电影| 国产精品三级大全| 国产免费现黄频在线看| 97精品久久久久久久久久精品| 亚洲国产av影院在线观看| 国产精品人妻久久久久久| 最后的刺客免费高清国语| 亚洲精品,欧美精品| av在线老鸭窝| 亚洲精品久久午夜乱码| 中文字幕另类日韩欧美亚洲嫩草| 免费看av在线观看网站| xxx大片免费视频| 九草在线视频观看| 九色亚洲精品在线播放| 菩萨蛮人人尽说江南好唐韦庄| 免费看不卡的av| 欧美日韩国产mv在线观看视频| 大香蕉久久成人网| 又黄又爽又刺激的免费视频.| 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 午夜精品国产一区二区电影| 欧美另类一区| 夫妻性生交免费视频一级片| 麻豆乱淫一区二区| 少妇的丰满在线观看| 日韩,欧美,国产一区二区三区| 精品一区二区三区视频在线| 一区二区av电影网| a级片在线免费高清观看视频| 2021少妇久久久久久久久久久| 成人黄色视频免费在线看| 成人综合一区亚洲| 日日爽夜夜爽网站| 视频在线观看一区二区三区| 丝袜喷水一区| 免费观看性生交大片5| 一级片免费观看大全| 十八禁高潮呻吟视频| 黄片播放在线免费| 亚洲av日韩在线播放| 自线自在国产av| 成人漫画全彩无遮挡| 最近最新中文字幕大全免费视频 | 九色成人免费人妻av| 国产免费现黄频在线看| 久久99热6这里只有精品| 国产欧美另类精品又又久久亚洲欧美| www.av在线官网国产| 少妇熟女欧美另类| 五月玫瑰六月丁香| 久久久久久久久久久免费av| 建设人人有责人人尽责人人享有的| 在线观看三级黄色| 人人妻人人澡人人爽人人夜夜| 成人无遮挡网站| 制服诱惑二区| 日韩精品免费视频一区二区三区 | 免费大片黄手机在线观看| 久久精品夜色国产| 亚洲精品色激情综合| 久久久久久久久久久免费av| 丰满饥渴人妻一区二区三| 一边亲一边摸免费视频| 99精国产麻豆久久婷婷| 欧美 日韩 精品 国产| 久久ye,这里只有精品| 国产熟女欧美一区二区| 午夜精品国产一区二区电影|