• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces

    2021-06-04 05:18:38GeDONG

    Ge DONG

    Abstract In this paper, the author studies the existence of the minimal nonnegative solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or unbounded domains.She gets some comparison results between different solutions as tools to pass to the limit in the problems and to show the existence of the minimal solutions of the variational inequalities on bounded domains or unbounded domains.In both cases,coercive and noncoercive operators are handled.The sufficient and necessary conditions for the existence of the minimal nonnegative solution of the noncoercive variational inequality on bounded domains are established.

    Keywords Orlicz-Sobolev spaces,Elliptic variational inequalities, Minimal nonnegative solutions, Bounded domains, Unbounded domains

    1 Introduction

    In [10–12, 23], the sub-supersolution method was used to prove the existence of solutions and extremal solutions, confined between their subsolutions and supersolutions, for elliptic variational inequalities and nonlinear elliptic equations in Sobolev spaces or Orlicz-Sobolev spaces defined on bounded domains.There are many existence results for elliptic equations in Orlicz-Sobolev spaces on bounded domains such as[2–4,7–9,13–14,16–19].Landes[22]proved the existence of a weak solution of a quasilinear elliptic equation without any lower order term on an unbounded domain.In [6], a different method was used to establish the existence of the minimal solution to some elliptic variational inequalities in Sobolev spaces defined on bounded or unbounded domains.When trying to weaken the restriction on the operators in [6], one is led to replace Sobolev spaces by Orlicz-Sobolev spaces.In this paper, we will take into account the minimal solutions of elliptic variational inequalities on bounded and unbounded domains by using a method in [6] different from the above.

    In the present work,we will show the existence of the minimal nonnegative solutions for some variational inequalities with coercive operators or noncoercive operators on bounded domains or unbounded domains.Some comparison principles are investigated for the minimal solutions of variational inequalities on bounded domains or unbounded domains.In particular noncoercive one,the sufficient and necessary conditions for the existence of the minimal nonnegative solution are established on bounded domains.We will use the idea introduced in [6].

    The paper is organized as follows.Section 2 contains some preliminaries which will be needed in the next two sections.In Section 3, we start with the coercive case and prove the existence theorems of nonnegative solutions for some elliptic variational inequalities on bounded domain.Some comparison results between different solutions are established as tools to pass to the limit in the problems and we show the existence of the minimal solutions for the variational inequalities with coercive operators or noncoercive operators defined on bounded domains.The sufficient and necessary conditions for the existence of the minimal nonnegative solution for the noncoercive one are established.Section 4 is devoted to showing the existence of the minimal solutions for variational inequalities on unbounded domains.In both cases, coercive and noncoercive operators are handled.

    2 Preliminaries

    For quick reference, we recall some basic results of Orlicz spaces.Good references are[1, 7, 18, 21, 25].

    2.1 N-function

    Let M : R+→R+be an N-function, i.e., M is continuous, convex, with M(u) >0 for u >0,+∞as u →+∞.Equivalently, M admits the representation M(u) =φ(t)dt, where φ : R+→R+is a nondecreasing, right continuous function, with φ(0)=0, φ(t)>0 for t >0, and φ(t)→+∞as t →+∞.

    Clearly, M(u)≤uφ(u)≤M(2u) for all u ≥0.

    φ,φ are called the right-hand derivatives of M,, respectively.

    The N-function M is said to satisfy the Δ2condition near infinity (M ∈Δ2for short), if for some k >1 and u0>0, M(2u)≤kM(u), ?u ≥u0.It is readily seen that this will be the case if and only if for every l >1 there exists a positive constant k =k(l) and>0, such that

    Moreover, one has the following Young inequality: uv ≤M(u)+(v), ?u,v ≥0, and the equality holds if and only if v =φ(u) or u=φ(v).

    We will extend these N-functions into even functions on all R.

    Let P,Q be two N-functions.We say that P grows essentially less rapidly than Q near infinity, denoted as P ?Q, if for every ε >0,→0 as t →+∞.This is the case if and only if

    For a measurable function u on Ω, its modular is defined by

    The Sobolev conjugate N-function M*of M is defined by

    2.2 Orlicz spaces

    Let Ω be an open and bounded subset of RNand M be an N-function.The Orlicz class KM(Ω) (respectively, the Orlicz space LM(Ω)) is defined as the set of (equivalence classes of)real valued measurable functions u on Ω such that

    LM(Ω) is a Banach space under the (Luxemburg) norm

    and KM(Ω) is a convex subset of LM(Ω) but not necessarily a linear space.

    The closure in LM(Ω) of the set of bounded measurable functions with compact support inis denoted by EM(Ω).

    The equality EM(Ω)=LM(Ω) holds if and only if M ∈Δ2, moreover, LM(Ω) is separable.

    LM(Ω) is reflexive if and only if M ∈Δ2and∈Δ2.

    Convergences in norm and in modular are equivalent if and only if M ∈Δ2.

    The dual space of EM(Ω)can be identified withby means of the pairingu(x)v(x)dx,and the dual norm ofis equivalent to

    2.3 Orlicz-Sobolev spaces

    We now turn to the Orlicz-Sobolev space: W1LM(Ω) (respectively, W1EM(Ω)) is the space of all functions u such that u and its distributional partial derivatives lie in LM(Ω)(respectively,EM(Ω)).It is a Banach space under the norm

    Denote ‖Du‖(M)=‖|Du|‖(M)and ‖u‖1,M,Ω=‖u‖(M)+‖Du‖(M).Clearly, ‖u‖1,M,Ωis equivalent to ‖u‖Ω,M.

    Thus W1LM(Ω) and W1EM(Ω) can be identified with subspaces of the product of N +1 copies of LM(Ω).Denoting this product by ΠLM,we will use the weak topologies σ(ΠLM,ΠEM)and σ(ΠLM,).

    If M ∈Δ2, then W1LM(Ω) = W1EM(Ω).If M ∈Δ2and∈Δ2, then W1LM(Ω) =W1EM(Ω) are reflexive and the weak topologies σ(ΠLM,) and σ(ΠLM,) are equivalent.

    The space W10EM(Ω) is defined as the (norm) closure of the Schwartz space D(Ω) in W1EM(Ω) and the space W10LM(Ω) as the σ(ΠLM,ΠEM) closure of D(Ω) in W1LM(Ω).If M ∈Δ2, then W10LM(Ω) = W10EM(Ω) and W10LM(Ω) is separable.If M ∈Δ2and∈Δ2,then W10LM(Ω) is reflexive.

    3 Variational Inequalities in Bounded Domains

    This section is devoted to studying the existence of nonnegative solutions and their minimal solutions for some quasilinear variational inequalities in bounded domains.We investigate variational inequalities with coercive operators in Subsection 3.1 and with noncoercive operators in Subsection 3.2, respectively.

    3.1 Variational inequalities with coercive operator

    Let Ω be a bounded domain in RN(N ≥1) with Lipschitz boundary, M be an N-function andbe the complementary function of M, and φ,φ are the right-hand derivatives of M,respectively.Assume that M,∈Δ2.

    In what follows we denote by L0(Ω) the set of all (equivalence classes of) Lebesgue measurable functions from Ω to R.For u,v ∈L0(Ω), U,V ?L0(Ω), we use the standard notation: u ≤v ?u(x) ≤v(x) for a.e.x ∈Ω, u ∧v = min{u,v},u ∨v = max{u,v},U ∧V ={u ∧v :u ∈U,v ∈V}, U ∨V ={u ∨v :u ∈U,v ∈V}, u+:=u ∨0,u-:=-u ∧0.We consider the usual ordering relation (W10LM(Ω),≤).

    We denote by K a closed convex subset of W10LM(Ω) containing 0 such that the lattice condition

    is satisfied.This type of lattice convex sets usually occurs in applications.For example,K =LM(Ω) for equations, and K = {u ∈W10LM(Ω) : u(x) ≥ψ(x) for a.e.x ∈Ω} for obstacle problems, where ψ :Ω →R is an obstacle function (see [8–9, 13, 19]).

    Let a(x,ξ) = (ai(x,ξ))1≤i≤Nand a0(x,ξ) be a family of Carath′eodory’s functions defined on Ω×RN+1such that

    where A is a nonlinear operator defined fromLM(Ω) into its dual by

    From (3.5), the operator A is well defined.For simplicity we set the dual pairing 〈·,·〉 =The above duality is equivalent to

    Let ? >0 be a real number and Ωlbe the cylinder (-?,?)×Ω.The points in RN+1are denoted by (y,x) with x=(x1,··· ,xN)∈RNand the gradient operator defined over RN+1is also denoted by ?′=(?y,?) with ?=(?x1,?x2,··· ,?xN).We set

    This is a closed convex subset ofLM(Ω?).

    Let ψ : [0,+∞) →[0,+∞) be an increasing function.By [20, Lemma 8.2],is monotone on Rn(n ≥1).However,we will show the strict monotonicity ofon Rnand give another method to proof the monotonicity of ψ(|ξ|).

    Lemma 3.1Ifψ :[0,+∞)→[0,+∞)is increasing, thenψ(|ξ|)is monotone onRn(n ≥1).Moreover, ifψis strictly increasing, thenψ(|ξ|)is strictly monotone.

    ProofLet ξ,η be two nonzero vectors in Rn, with angle θ ∈[0,π] between them at the origin.Then

    The first term of the right-hand side of (3.8) is nonnegative since ψ is increasing.Since

    the second term of the right-hand side of (3.8) is nonnegative.Consequently,

    Moreover, suppose that there exist ξ1,ξ2∈RNwith ξ1/=ξ2such thatIt follows from (3.8)–(3.9) that

    and cos θ1= 1, where θ1∈[0,π] is the angle between ξ1and ξ2at the origin.This yields that θ1= 0.Therefore, there exists λ >0 with λ /= 1 such that ξ1= λξ2.It implies that|ξ1| /= |ξ2|.Immediately, ψ(|ξ1|) /= ψ(|ξ2|) since ψ is strictly increasing.It contradicts (3.10).This completes the proof of the lemma.

    We recall the following notation which will be used later.It can be referred to [24, p.25] or[5, Definition 1].

    Definition 3.1(see [24])LetXbe a reflexive Banach space.The operatorT : X →X*is called pseudomonotone if

    (i) Tis bounded;and

    (ii)for any sequence{un}?Xsuch thatun?u0weakly inXand0, the inequality

    holds.

    Theorem 3.1Assume thatf ∈(Ω)is nonnegative and the assumptions(3.1)–(3.5)are satisfied.Then for every? >0, the following variational inequality

    has at least one solutionu?withu?≥0.Moreover, ifφis strictly increasing, oraanda0are strictly monotone, i.e., for a.e.x ∈Ωand allξ =(ξi)0≤i≤N,ξ′=(ξ′i)0≤i≤N∈RN+1,

    then there exists a unique solutionu?of(3.11)andu?≥0.

    ProofFor ? >0, we define the operator T?:LM(Ω?)→(LM(Ω?))*by

    Denote z = (y,x).Thanks to (2.1), (3.5) and the Young inequality, we can deduce that there exist positive constants C(β,N,K) and C(N,?,) such that

    for all u,v ∈W10LM(Ω?).Therefore,T?is well defined.From(3.13), it is easy to see that T?is bounded.In view of (3.4) and Lemma 3.1, we can show that T?is monotone.In a similar way as [10, Lemma 8], we can check that T?is continuous.Thanks to [26, Propositon 27.6(a)], T?is pseudomonotone.For u0∈K?, in a way similar to the proof of [10, Theorem 11], we have

    for some positive constants C1and C2.For u ∈W10LM(Ω?), define

    Therefore, 〈T?(u)-f,u-u0〉>0 when ‖u‖1,M,Ω?is sufficiently large.From the above results,we can deduce that the conditions (i)–(iv) in [19] hold.According to [19, Proposition 1], the variational inequality (3.11) has at least one solution u?.

    Now, we prove that u?is nonnegative.Taking v =∈K?in (3.11) we have

    In view of (3.4), we have

    Consequently, u?≥0.

    Suppose that there exists another solution u′?of (3.11) with u?/=u′?.When we take v =u′?in (3.11) and v =u?in (3.11) written for u′?and add the two inequalities, it comes

    If φ is strictly increasing or a and a0are strictly monotone, we can deduce, by Lemma 3.1 and(3.4), or by (3.12), u?=u′?.It is a contradiction.

    Similar to the proof of Theorem 3.1, it is easy to show the following theorem.

    Theorem 3.2Assume thatf ∈LM(Ω)is nonnegative and the assumptions(3.1)–(3.5)are satisfied.Then(3.6)has at least one solutionuwithu ≥0.Moreover, ifaanda0satisfy(3.12), then there exists a unique solution of(3.6)andu ≥0.

    Does there exist the minimal nonnegative solution of problem (3.6) when it has more than one solution? The following theorem will give the answer.

    Theorem 3.3Assume thatf ∈LM(Ω)is nonnegative,φis strictly increasing and the assumptions(3.1)–(3.5)are satisfied.Then the pointwise limit of{u?}?is the minimal nonnegative solution of(3.6), whereu?is the solution of(3.11), for any? >0.

    Moreover, ifu1andu2are the minimal nonnegative solutions of(3.6)obtained by replacingfwithf1andf2respectively, thenf1≤f2impliesu1≤u2.

    ProofStep 1 The sequence{u?}?is nondecreasing and bounded above by any nonnegative solution of (3.6).

    Let 0 <? <?′.Extending u?by 0 on Ω?′and since u?′is nonnegative, when we take v =u?-(u?-u?′)+∈K?in (3.11)and v =u?′+(u?-u?′)+∈K?′in (3.11)written for u?′and Ω?′and add the two inequalities, it comes

    Thanks to the condition (3.4) we deduce

    Using Lemma 3.1, we have u?(y,x) ≤u?′(y,x) for a.e.(y,x) ∈Ω?, which shows that the sequence {u?}?is nondecreasing.

    Let ? >0 and u be a nonnegative solution of (3.6).Taking v =u+(u?(y,·)-u)+∈K as a test function in (3.6), for a.e.y ∈(-?,?), and integrating in y we derive

    Taking v =u?-(u?-u)+∈K?as a test function in (3.11) we can deduce that

    Adding the two inequalities (3.15)and (3.16)and using the fact that u is independent of y and the monotone condition (3.4) we obtain that

    By Lemma 3.1,

    Immediately, {u?}?is bounded above by any nonnegative solution of (3.6).

    Step 2 The pointwise limit of {u?}?is independent of y.

    It follows from Step 1 that u?has a pointwise limit we denote bysuch that

    Let h >0.Denote Thu?(y,x)=u?(y+h,x).Then the functions Thu?(y,x)and(Thu?(y,x)-u?+h(y,x))+are supported in the closure of:= (-l-h,l-h)×Ω.Thanks to (3.11), we have

    where K?,h:={Thv |v ∈K?}={v ∈LM()|v(y,·)∈K a.e.in(-?-h,?-h)}.Choosing v = Thu?-(Thu?-u?+h)+∈K?,hin (3.19) and v = u?+h+(Thu?-u?+h)+∈K?+hin (3.11)written for u?+hand adding the two inequalities, we have

    Using (3.4) we can obtain that

    By Lemma 3.1,

    Letting ? →+∞in (3.20), we have

    Similarly, we can show that (3.21) holds whenever h <0 for a.e.(y,x) ∈Ω?.Since h is arbitrary,(y,x)=(x) for a.e.(y,x)∈Ω?, that is,is independent of y.

    Step 3 For all ?0>0, there exists a constant C(?0) independent of ? such that

    Let now ?0>0.Clearly, it is need to consider the case ? >?0.Let ? ∈D(-2?0,2?0)such that 0 ≤? ≤1,? = 1 on (-?0,?0).Let u be a nonnegative solution of (3.6).Taking v =u?-?2(u?-u)∈K?as a test function in (3.11), we derive that

    By the fact ?=1 on (-?0,?0) and u is independent of y, it yields that

    By (2.1), (3.3), (3.5) and the Young inequality, we can obtain that

    where ε ∈(0,1) and the constant C >0 is independent of ?.Since M ∈Δ2, there exists a constant Kε>0 and some tε>0 such thatfor all t >tε.In view of (3.17),we get

    where ε ∈(0,1) and the positive constants C and C(ε) are independent of ?.Choosing ε small enough, we get

    for some positive constant C(?0) independent of ?.For u ∈W1LM(Ω?0), define

    and

    Then ‖u‖ρ,Ω?0is a norm of W1LM(Ω?0) equivalent to ‖u‖1,M,Ω?0(see [15]).It implies (3.22).

    Let ?0>0.In view of (3.22), {u?}?is bounded in W10LM(Ω?0) for all ? >0.Consequently,and {ai(x,u?,?u?)}?(i=0,1,··· ,N) are bounded in(Ω?0).Hence, there exist d and diinsuch that

    as ? →+∞,i=0,1,··· ,N.The two first convergences hold for the whole sequence since{u?}?is nondecreasing, which guarantees the uniqueness of the limit and the last two convergences hold up to a subsequence.

    Let ω be a nonnegative function in D(-?0,?0).By (3.4), (3.23) and (3.26), it follows that

    and thus

    Combining (3.27) and (3.28), we have

    and

    Let w ∈K and ω /≡0 be a nonnegative function inK?as a test function in (3.11), we have

    Thanks to (3.4), one has

    From(3.30), it is clear that ?yu?→0 strongly inThis can imply that φ(|?yu?|)→0 strongly inPassing to the limit in the above inequality as ? →+∞yields

    This implies

    Let u be an arbitrary solution of the problem (3.6).Letting ? →+∞in (3.17), we deduce≤u.This means thatis the minimal solution of the problem (3.6).

    Step 6 u1≤u2.

    Let u?,1and u?,2be the solutions of (3.11)obtained if we replace f by f1and f2,respectively.Then u?,1and u?,2converge to u1and u2, respectively, as ? →+∞.Taking v = u?,1-(u?,1-u?,2)+and v =u?,1+(u?,1-u?,2)+in (3.11) for f1and f2, respectively, we get

    Using the condition (3.4) one has

    This implies u?,1≤u?,2a.e.in Ω?.Letting ? →+∞, it follows that u1≤u2.

    3.2 Noncoercive variational inequalities

    We keep the notation and the assumptions of Subsection 3.1.Then we consider the following problem

    where F :Ω×R →R is a nonnegative function satisfying

    Clearly, (3.31) is the extension of (3.6).

    Remark 3.1If F : Ω×R →R is a nonnegative Carath′eodory function such that for a.e.x ∈Ω and all t ∈R, |F(x,t)| ≤q(x), where q(x) ∈Ω), then F satisfies the conditions(3.32)–(3.34).

    Lemma 3.2LetFbe a nonnegative function satisfying the hypotheses(3.32)–(3.34),φbe strictly increasing, and suppose that the assumptions(3.1)–(3.5)are fulfilled.Define thatunis the minimal nonnegative solution of the variational inequality in the last line of the following problem:

    ?n ≥1.Then the sequence{un}n∈Nis well defined and nondecreasing.

    ProofThe existence of unis insured by Theorem 3.3 since F(x,un-1)∈(Ω).In a way similar to the proof in[6],the sequence of functions{un}n∈Nis nonnegative and nondecreasing.This completes the proof of Lemma 3.2.

    Denote by u∞the pointwise nonnegative limit of {un}nwhich is not necessarily in LM(Ω)and may equal ∞.We also denotewhich may also be infinite on some subset.Assume that

    Note that the above assumption is satisfied.For example,Then we have the following result.

    Theorem 3.4LetFbe a nonnegative function satisfying the hypotheses(3.32)–(3.34),φbe strictly increasing, and suppose that the assumptions(3.1)–(3.5)are fulfilled.Then we have the equivalence between the following assertions:

    (1) (3.31)has at least one nonnegative solution,

    (2) (3.31)has a minimal nonnegative solution,

    (3)the hypothesis(3.36)holds.Moreover if the hypothesis(3.36)holds, thenu∞, the limit ofun, belongs toKand is the minimal solution of(3.31).

    ProofClearly,(2)?(1).Suppose that(3.31)has a nonnegative solution w ∈K.According to Theorem 3.3, there exits a minimal nonnegative solution∈K of the following problem:

    It is clearly that w is also a solution of (3.37).Then w ≥w.Since w is nonnegative and F is nondecreasing in the second variable, F(x,w) ≥F(x,0) for a.e.x ∈Ω.By Theorem 3.3,we have w ≥u1, where u1is the minimal nonnegative solution of the variational inequality in the last line of (3.35) for n = 1.Consequently, F(x,w) ≥F(x,w) ≥F(x,u1) for a.e.x ∈Ω.This implies that w ≥u2by Theorem 3.3, where u2is the minimal nonnegative solution of the variational inequality in the last line of (3.35) for n=2.By induction, we can obtain that

    and

    which yields (3.36).Hence, (1)?(3).

    Let the hypothesis (3.36) hold.By Theorem 3.3, there exists the minimal solution u∞of the following problem:

    Since F(·,un-1)≤F∞, ?n ≥1, and thanks to Theorem 3.3, we deduce that

    It follows that there exists u∞such that

    as n →∞.Therefore, u∞≤u∞, and F∞=F(·,u∞) a.e.in Ω.Consequently, u∞∈LM(Ω).

    for some positive constants C and C(ε) independent of n, where ε ∈(0,1) and ?x0un= un.Choosing ε small enough, we have

    for some constant C >0 independent of n.This yields that ‖un‖1,M,Ω≤C for some positive constant C independent of n.Combining the above results, it follows, as n →∞, that

    Since K is a closed convex subset of W10LM(Ω), it is also weakly closed, which yields that u∞∈K.

    From (3.4) and (3.35), it follows that

    Taking w =u∞+t(v-u∞) with 0 <t <1 and v ∈K, and letting t →0, one has

    that is, u∞is a solution of (3.31).Therefore, (3)?(1).

    Suppose that the hypothesis (3.36) holds.Let w ∈K be a nonnegative solution of (3.31).By the above arguments, letting ? →+∞in (3.38), we get w ≥u∞.Since w is an arbitrary solution of (3.31), we have that u∞is the minimal solution of (3.31).Hence (3)?(2) and the proof is achieved.

    4 Variational Inequalities in Unbounded Domains

    This section is devoted to studying the existence of nonnegative solutions and their minimal solutions for some quasilinear variational inequalities in unbounded domains.We investigate variational inequalities with coercive operators in Subsection 4.1 and with noncoercive operators in Subsection 4.2, respectively.

    4.1 Variational inequalities with coercive operator

    Let G be a bounded domain in RN-1(N ≥2)with Lipschitz boundary,and KGbe a closed convex subset of W10LM(G) containing 0 such that the lattice condition

    is satisfied.Let M be an N-function,be the complementary function of M, and φ,φ are the right-hand derivatives of M,, respectively.Assume that M,∈Δ2.

    For x ∈R×G, denote x=(x1,X2) with X2=(x2,··· ,xN), and

    We set

    and

    Note that if ?x1a1(x,u,?u) ∈the above variational inequality can be written as

    Since the domain is unbounded and f is not necessarily in the dual ofLM(R × G),the existence of nonnegative solutions to problem (4.1) is not an ordinary issue.Once this is ensured, we can then look for the minimal nonnegative solution.Here, we will use the same approach as in Subsection 3.1 to prove these existence results.To this end, in addition to the hypotheses (3.1)–(3.5), assume that

    i = 0,1,··· ,N.That is to say if ξ1= 0 then the coefficients aifor i = 0,1,··· ,N are independent of x1.We also assume that there exists h ∈G) such that

    For ? >0,let Ω?,G=(-?,?)2×G.For simplicity we denoteandWe set

    Let ? >0.Consider the following variational inequalities:

    and

    Theorem 4.1Suppose that the assumptions(3.1)–(3.5)and(4.2)–(4.3)are satisfied, whereΩis replaced byR×Gin(3.1)–(3.5).Assume thatφis strictly increasing.Then the pointwise limit of{u?}?is the minimal nonnegative solution of(4.1), whereu?is the solution of(4.5),for every? >0.

    Moreover, the following assertions hold:

    (i)Letu1andu2be the minimum nonnegative solutions of(4.1)obtained by replacingfwithf1andf2, respectively.Iff1≤f2, thenu1≤u2.

    (ii)Letbe the minimum nonnegative solution of(4.1)obtained by replacingfwithf1,andbe a nonnegative solution of(4.1)obtained by replacingfwithf2, wheref2does not necessarily satisfy(4.3).Iff1≤f2, then≤.

    ProofStep 1 The sequence{u?}?is nondecreasing and bounded by any solution u of (4.4).

    As the same arguments in the proof of Theorem 3.3, we can get {u?}?is a nondecreasing sequence.

    Taking v =u+(u?(y,x1,·)-u)+∈KGas a test function in(4.4)and integrating on(-?,?)2,we obtain by (4.2) that

    Taking v =u?-(u?-u)+∈as a test function in (4.5) and adding the resulting inequality with (4.6) one yields

    In view of (3.4) and (4.3), we derive

    Since u is independent of y, this implies that

    It follows that u?≤u.

    Step 2 The pointwise limit of u?is independent of y.

    Step 3 For all ?0>0, there exists a constant C?0independent of ? such that Let ? ∈D((-2?0,2?0)2) such that

    Let ?0>0 and u be a nonnegative solution of (4.4).Taking v =u?-?2(u?-u)∈in (4.5),then following the same arguments as in the proof of Theorem 3.3 we can deduce (4.8).

    For ?0>0, according to (4.7)–(4.8), we can deduce that

    and

    as ? →+∞.

    where diis the weak limit of ai(x,u?,?u?) in LM(Ω?0,G).(4.11)–(4.12)hold for a subsequence of {u?}?, still denoted by {u?}?.

    Passing to the limit as ? →+∞and taking into account (4.9)–(4.12) we obtain

    Let t >0 and ψ be a nonnegative function inThen it follows from the condition(3.4) that

    Passing to the limit as ? →+∞, it follows from (3.5), (4.9)–(4.11) that

    which implies that

    Combining (4.13) and (4.14), we have

    Since ?0is arbitrary, we get

    Let u be an arbitrary nonnegative solution of (4.1).Then (u?-u)+are supported in the closure of Ω?,G.Choosing ? ∈D(R)such that ?=1 on(-?,?),taking v =u+(u?(y,·)-u)+∈as a test function in (4.1), and integrating on (-?,?), we have

    Taking v =u?-(u?-u)+∈as a test function in(4.5)and summing the produced inequality with (4.16), we obtain

    According to (3.4), we get

    since u is independent of y.It follows from Lemma 3.1 that u?≤u a.e.in Ω?.Letting ? →+∞in (4.7), we have≤u a.e.in R×G.This means thatis the minimal nonnegative solution of (4.1).

    Let u1?and u2?be the converging sequences defined above as solutions of (4.5) for f = f1and f = f2, respectively.By the same arguments as in the proof of Theorem 3.3,≤since f1≤f2.Letting ? →+∞, it follows that≤a.e.in R×G, whereandare the minimum nonnegative solutions of (4.1) obtained by replacing f with f1and f2, respectively.Hence, the assertion (i) holds.

    Let u1?be the converging sequence defined above as the solution of (4.5)for f =f1,be the minimum nonnegative solution of (4.1)obtained by replacing f with f1,andbe a nonnegative solution of (4.1) obtained by replacing f with f2, where f2does not necessarily satisfy (4.3).Note that (u1?-)+are supported in the closure of Ω?,G.Takingas a test function in (4.5) for f = f1and v =+(u1?(y,·)-)+∈as a test function in(4.1) for f =f2, choosing ? ∈D(R) such that ?=1 on (-?,?) and integrating on (-?,?), then summing the produced inequalities we have

    Consider the following nonlinear elliptic problem defined on the infinite cylinder R×G,

    A function u is called a (weak) solution of (4.17) if u ∈and

    Then any solution of problem (4.1) for KG=LM(G) is a solution of (4.17) and vice versa.Thus the existence of nonnegative solutions of problem(4.17)is proved in Theorem 4.1.Indeed,let u ∈be a solution of (4.1).Choosing v =u±v′with v′∈D(R×G) in (4.1)and ?=1 on the support of v′, we can obtain (4.18).The converse is an immediate consequence of (4.18).

    Therefore, we have the following result as an immediate consequence of Theorem 4.1.

    Corollary 4.1Under the assumptions of Theorem4.1, there exists a minimal nonnegative solution of(4.17).Moreover, letandbe the minimal nonnegative solutions of(4.17)obtained by replacingfwithf1andf2respectively.Then iff1≤f2we have

    4.2 Noncoercive variational inequalities

    We consider the following nonlinear variational inequality defined on the infinite cylinder R×G,

    where F is defined as in Subsection 3.2, replacing Ω by R×G.In addition, we assume that

    satisfies

    Lemma 4.1LetFandhbe nonnegative functions satisfying the hypotheses above.Suppose that the assumptions(3.1)–(3.5)and(4.2)hold, whereΩis replaced byR×Gin(3.1)–(3.5).Assume thatφis strictly increasing.Defineunandunare respectively the minimal nonnegative solutions of variational inequalities in the last line of the following problems:

    and

    respectively, for everyn ≥1.Then the sequences{un}n∈Nand{un}n∈Nare well defined and nondecreasing satisfying

    ProofIt is clear that u0, u0satisfy (4.24).Suppose that {un-1} and {un-1} are defined and satisfy (4.24), i.e.,

    Thanks to (4.21), one has h(X2,un-1)∈LM(G).Consequently, unexists by Theorem 3.3.In view of (4.25), F(x,un-1)∈LM(G).Therefore, unexists by Theorem 4.1.Arguing as Step 1 in the proof of Theorem 4.1 one can deduce that un≤un.According to (3.33) and (4.20), we have

    i.e., (4.24) holds.

    Theorem 4.2LetFandhbe nonnegative functions satisfying the hypotheses above and suppose that the assumptions(3.1)–(3.5)and(4.2)hold, whereΩis replaced byR×Gin(3.1)–(3.5).Assume thatφis strictly increasing.Then there exists a minimal nonnegative solution of(4.19).

    ProofBy (3.33), F(·,un-1) ≤F∞, ?n ≥1 a.e.in R×G.It follows, by using Theorem 4.1, that {un}n∈Nis nondecreasing and

    where u is the minimal solution of

    Note that F∞≤h∞a.e.in R×G, and h∞is independent of x1.By Lemma 4.1, there existssuch that un→a.e.on R×G.

    Let ?0>0.Taking v =un-?(un-u) as a test function in (4.23)and choosing ? such that ?=1 on (-?0,?0), we have

    which implies that

    Since M ∈Δ2,using the conditions(3.3),(3.5),(4.27)and the Young inequality,we can deduce

    as Theorem 3.3, for some constant C =C(?0) independent of n, and consequently,

    Therefore, one has

    and

    as n →∞.Since ?0is arbitrary,

    By the same arguments as in the proof of Theorem 4.1, it is easy to see thatis a nonnegative solution of (4.19).

    Let w be a nonnegative solution of (4.19).Then w is a solution of the following problem:

    Since w ≥0, F(x,w) ≥F(x,0) = F(x,u0) for a.e.x ∈R×G.By Lemma 4.1 and Theorem 4.1(ii), w ≥u1.Therefore,F(xiàn)(x,w)≥F(x,u1)for a.e.x ∈R×G.By Lemma 4.1 and Theorem 4.1(ii), w ≥u2.By induction, we can obtain that w ≥un, ?n ∈N.Letting n →∞, w ≥,that is,is the minimal solution of (4.19).

    AcknowledgementThe author is highly grateful for the referees’ careful reading and comments on this paper.

    久久精品亚洲精品国产色婷小说| 嫁个100分男人电影在线观看| 男女下面进入的视频免费午夜| 又黄又爽又免费观看的视频| 色av中文字幕| 午夜福利在线观看吧| 免费在线观看完整版高清| 国产三级中文精品| 欧美精品啪啪一区二区三区| 老司机福利观看| 在线观看午夜福利视频| 中文字幕人妻丝袜一区二区| 波多野结衣高清无吗| av福利片在线观看| 欧美日本视频| 91大片在线观看| 日韩有码中文字幕| 精品免费久久久久久久清纯| 亚洲av美国av| 精品久久久久久,| 老熟妇仑乱视频hdxx| 亚洲自偷自拍图片 自拍| 欧美高清成人免费视频www| 久久久精品大字幕| 欧美黄色淫秽网站| 欧美黑人巨大hd| 免费在线观看完整版高清| 久久久国产欧美日韩av| 午夜两性在线视频| netflix在线观看网站| 人妻久久中文字幕网| 成人手机av| 九九热线精品视视频播放| 国产在线观看jvid| 一边摸一边做爽爽视频免费| 久久久久国产精品人妻aⅴ院| 欧美最黄视频在线播放免费| aaaaa片日本免费| or卡值多少钱| 搡老岳熟女国产| 两性午夜刺激爽爽歪歪视频在线观看 | 丰满人妻一区二区三区视频av | 18禁国产床啪视频网站| 男人舔女人下体高潮全视频| 一进一出抽搐gif免费好疼| 国产亚洲精品一区二区www| 国产高清videossex| 国产69精品久久久久777片 | 9191精品国产免费久久| 日日摸夜夜添夜夜添小说| 美女扒开内裤让男人捅视频| 国产成人一区二区三区免费视频网站| 午夜免费激情av| 99久久无色码亚洲精品果冻| 亚洲九九香蕉| 亚洲av电影在线进入| 黄色视频,在线免费观看| 一个人免费在线观看的高清视频| 亚洲成人中文字幕在线播放| 99国产极品粉嫩在线观看| 妹子高潮喷水视频| 日本黄色视频三级网站网址| 无限看片的www在线观看| 九色国产91popny在线| 久久香蕉激情| 国内毛片毛片毛片毛片毛片| 五月玫瑰六月丁香| 国产男靠女视频免费网站| 精品国产超薄肉色丝袜足j| 国产亚洲精品av在线| 国内久久婷婷六月综合欲色啪| 成人av在线播放网站| 日韩av在线大香蕉| 极品教师在线免费播放| 88av欧美| 久久精品夜夜夜夜夜久久蜜豆 | 2021天堂中文幕一二区在线观| 久久久久久人人人人人| 日本熟妇午夜| 亚洲av成人精品一区久久| 免费看日本二区| 国产精品久久视频播放| 久久精品夜夜夜夜夜久久蜜豆 | 天堂av国产一区二区熟女人妻 | 国产成人精品久久二区二区91| 国产黄片美女视频| 非洲黑人性xxxx精品又粗又长| 国产精品av视频在线免费观看| 麻豆成人av在线观看| 久久久国产成人精品二区| 俄罗斯特黄特色一大片| av天堂在线播放| 手机成人av网站| 熟女少妇亚洲综合色aaa.| 久久中文字幕一级| av免费在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 日本精品一区二区三区蜜桃| 国产黄片美女视频| 亚洲一区高清亚洲精品| 国产一区在线观看成人免费| 午夜精品一区二区三区免费看| 成在线人永久免费视频| 免费av毛片视频| 97碰自拍视频| 欧美不卡视频在线免费观看 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲成人国产一区在线观看| 狂野欧美激情性xxxx| 色噜噜av男人的天堂激情| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 午夜免费成人在线视频| 国产v大片淫在线免费观看| 精品免费久久久久久久清纯| 久久婷婷成人综合色麻豆| 中文资源天堂在线| 欧美成人免费av一区二区三区| 欧美在线一区亚洲| av欧美777| 国产精品国产高清国产av| 在线观看免费午夜福利视频| 在线观看一区二区三区| 亚洲色图av天堂| 99久久精品国产亚洲精品| 久久中文字幕一级| 身体一侧抽搐| 脱女人内裤的视频| 欧美成狂野欧美在线观看| 成在线人永久免费视频| 午夜福利18| 黑人巨大精品欧美一区二区mp4| 免费在线观看日本一区| 久久久国产成人免费| 久久久国产精品麻豆| 欧美+亚洲+日韩+国产| 中文字幕av在线有码专区| 久久久久性生活片| 久久久水蜜桃国产精品网| 午夜福利高清视频| 亚洲第一欧美日韩一区二区三区| 欧美黑人巨大hd| 一二三四社区在线视频社区8| 国产精品国产高清国产av| 日本三级黄在线观看| 两个人视频免费观看高清| 国产99白浆流出| 成人亚洲精品av一区二区| 97碰自拍视频| 色尼玛亚洲综合影院| 一夜夜www| 无遮挡黄片免费观看| 国产精品98久久久久久宅男小说| 亚洲av成人精品一区久久| 亚洲国产中文字幕在线视频| 1024手机看黄色片| 亚洲九九香蕉| 老司机靠b影院| 欧美 亚洲 国产 日韩一| 国产成人欧美在线观看| 一个人免费在线观看电影 | 香蕉丝袜av| 国产高清视频在线播放一区| 成人高潮视频无遮挡免费网站| 国产99久久九九免费精品| 精品日产1卡2卡| 麻豆成人午夜福利视频| 成人午夜高清在线视频| 日韩精品免费视频一区二区三区| 小说图片视频综合网站| 亚洲 欧美一区二区三区| 免费在线观看黄色视频的| 亚洲午夜精品一区,二区,三区| 69av精品久久久久久| АⅤ资源中文在线天堂| 丁香欧美五月| 色噜噜av男人的天堂激情| 午夜福利18| 日韩成人在线观看一区二区三区| av天堂在线播放| ponron亚洲| 国产一区二区三区视频了| 久久国产乱子伦精品免费另类| 美女午夜性视频免费| 丁香欧美五月| 久久久久久人人人人人| 白带黄色成豆腐渣| 久久久久免费精品人妻一区二区| 久久久精品大字幕| 欧美一级毛片孕妇| 国产精品美女特级片免费视频播放器 | 97超级碰碰碰精品色视频在线观看| 一个人免费在线观看的高清视频| 色综合站精品国产| 99riav亚洲国产免费| 亚洲免费av在线视频| 国产激情久久老熟女| 黄色a级毛片大全视频| 好看av亚洲va欧美ⅴa在| 亚洲一区中文字幕在线| 精品久久久久久久久久免费视频| 亚洲在线自拍视频| 久久精品国产综合久久久| 亚洲一区二区三区不卡视频| 在线十欧美十亚洲十日本专区| 国产精品1区2区在线观看.| 欧美精品啪啪一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产99白浆流出| 午夜福利高清视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人系列免费观看| 国产免费av片在线观看野外av| 深夜精品福利| av在线天堂中文字幕| 精品国产乱码久久久久久男人| 日韩欧美免费精品| 最近最新免费中文字幕在线| 欧美色视频一区免费| 成年免费大片在线观看| 熟女少妇亚洲综合色aaa.| 国产片内射在线| 91大片在线观看| 成人精品一区二区免费| 欧美性长视频在线观看| 国产视频一区二区在线看| 亚洲成人久久性| 亚洲激情在线av| 亚洲av日韩精品久久久久久密| 极品教师在线免费播放| 男插女下体视频免费在线播放| 成人国语在线视频| 中文字幕久久专区| 国内精品一区二区在线观看| 欧美一区二区精品小视频在线| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 国内精品久久久久久久电影| www日本在线高清视频| 国语自产精品视频在线第100页| 一进一出抽搐gif免费好疼| 在线观看一区二区三区| 国产精品爽爽va在线观看网站| 夜夜爽天天搞| bbb黄色大片| 一本精品99久久精品77| 国产成人精品久久二区二区免费| 成人国产综合亚洲| 一进一出抽搐gif免费好疼| 99re在线观看精品视频| 久久久国产精品麻豆| av超薄肉色丝袜交足视频| 久久午夜亚洲精品久久| 国产v大片淫在线免费观看| 国产真实乱freesex| 久久久久性生活片| 国产久久久一区二区三区| 免费在线观看日本一区| 又黄又爽又免费观看的视频| 两个人的视频大全免费| 色在线成人网| 亚洲成人国产一区在线观看| 国产黄a三级三级三级人| 亚洲精品中文字幕一二三四区| www.www免费av| 欧美色欧美亚洲另类二区| www.熟女人妻精品国产| 欧美高清成人免费视频www| 久久精品91蜜桃| 少妇粗大呻吟视频| 日韩精品免费视频一区二区三区| 久久中文字幕一级| 很黄的视频免费| 精品第一国产精品| 黄色成人免费大全| 日韩精品青青久久久久久| 在线永久观看黄色视频| 国产一区二区激情短视频| 极品教师在线免费播放| 精品欧美国产一区二区三| 色av中文字幕| 99精品在免费线老司机午夜| 国产精品免费视频内射| 亚洲成人中文字幕在线播放| 黄色视频不卡| www.www免费av| 欧美日韩亚洲国产一区二区在线观看| 欧美 亚洲 国产 日韩一| 12—13女人毛片做爰片一| av欧美777| 狠狠狠狠99中文字幕| 99久久国产精品久久久| 精品第一国产精品| 婷婷亚洲欧美| 999久久久精品免费观看国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美午夜高清在线| 亚洲九九香蕉| 国产熟女午夜一区二区三区| 欧美国产日韩亚洲一区| 真人做人爱边吃奶动态| 婷婷亚洲欧美| 午夜影院日韩av| 99热只有精品国产| 久久久久久久午夜电影| 亚洲精品久久国产高清桃花| 国产视频内射| 一本精品99久久精品77| 国产亚洲精品综合一区在线观看 | 日韩免费av在线播放| 88av欧美| 又大又爽又粗| 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 国产一级毛片七仙女欲春2| 亚洲熟妇中文字幕五十中出| 国产高清有码在线观看视频 | 亚洲精品av麻豆狂野| 欧美成人午夜精品| 久久99热这里只有精品18| av超薄肉色丝袜交足视频| 精品欧美一区二区三区在线| 亚洲av成人一区二区三| 人人妻,人人澡人人爽秒播| 国产免费av片在线观看野外av| 久久精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 女警被强在线播放| 国内久久婷婷六月综合欲色啪| 一级毛片女人18水好多| 国产精品1区2区在线观看.| 亚洲欧美日韩无卡精品| 亚洲av日韩精品久久久久久密| 午夜福利视频1000在线观看| √禁漫天堂资源中文www| 特级一级黄色大片| 又粗又爽又猛毛片免费看| 国产成年人精品一区二区| 母亲3免费完整高清在线观看| 国产精品亚洲av一区麻豆| 国产av麻豆久久久久久久| 亚洲 欧美 日韩 在线 免费| 国产精品,欧美在线| 美女午夜性视频免费| 亚洲国产欧美人成| 亚洲色图 男人天堂 中文字幕| 欧美中文综合在线视频| 老司机深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 久久久水蜜桃国产精品网| 1024视频免费在线观看| 特大巨黑吊av在线直播| 9191精品国产免费久久| 欧美一区二区精品小视频在线| 久久久久久久久久黄片| 又大又爽又粗| 精品日产1卡2卡| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| 亚洲精品美女久久av网站| 国产亚洲av嫩草精品影院| 日本三级黄在线观看| 国产精品一区二区三区四区免费观看 | 校园春色视频在线观看| 中文资源天堂在线| 又粗又爽又猛毛片免费看| 欧美人与性动交α欧美精品济南到| 国内精品久久久久精免费| 村上凉子中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色成人免费大全| 免费看美女性在线毛片视频| 黑人欧美特级aaaaaa片| 97人妻精品一区二区三区麻豆| 99久久国产精品久久久| 日韩中文字幕欧美一区二区| 一个人免费在线观看电影 | 男男h啪啪无遮挡| 深夜精品福利| 国产久久久一区二区三区| 天天躁夜夜躁狠狠躁躁| 男女之事视频高清在线观看| 国产视频内射| 国产成人精品久久二区二区免费| 不卡一级毛片| 九九热线精品视视频播放| 国产v大片淫在线免费观看| 国产精品久久久久久久电影 | 免费看日本二区| 99国产精品一区二区三区| 99国产极品粉嫩在线观看| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看影片大全网站| 久久99热这里只有精品18| 久久精品国产亚洲av高清一级| tocl精华| www国产在线视频色| 日日夜夜操网爽| 特级一级黄色大片| 久久久久久九九精品二区国产 | 一本一本综合久久| 亚洲自偷自拍图片 自拍| 一a级毛片在线观看| 欧美成人性av电影在线观看| 国产片内射在线| 久久香蕉精品热| 久久久久久久久久黄片| 国产av又大| 午夜久久久久精精品| 小说图片视频综合网站| 亚洲成人国产一区在线观看| 一个人观看的视频www高清免费观看 | 久久久久久久久中文| 欧美成人午夜精品| 免费av毛片视频| 日本免费a在线| 国产69精品久久久久777片 | 亚洲人成伊人成综合网2020| 91老司机精品| 国产视频一区二区在线看| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 青草久久国产| 午夜福利成人在线免费观看| 9191精品国产免费久久| 欧美又色又爽又黄视频| 亚洲中文av在线| 非洲黑人性xxxx精品又粗又长| 男男h啪啪无遮挡| 最好的美女福利视频网| 久久人妻福利社区极品人妻图片| 91麻豆av在线| 日韩精品中文字幕看吧| 男人舔女人的私密视频| 深夜精品福利| 午夜免费激情av| 国产单亲对白刺激| 国产激情偷乱视频一区二区| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 人妻丰满熟妇av一区二区三区| 中出人妻视频一区二区| 欧美日本亚洲视频在线播放| 免费高清视频大片| 搡老妇女老女人老熟妇| av福利片在线| 99国产精品99久久久久| 女人高潮潮喷娇喘18禁视频| or卡值多少钱| 久9热在线精品视频| 久久久久久久久中文| 国产三级中文精品| 亚洲无线在线观看| 午夜精品久久久久久毛片777| 中文字幕高清在线视频| 国产午夜福利久久久久久| www日本黄色视频网| 两个人视频免费观看高清| 美女扒开内裤让男人捅视频| 亚洲色图av天堂| 国产一区在线观看成人免费| 久久精品国产亚洲av高清一级| 精品一区二区三区四区五区乱码| 真人做人爱边吃奶动态| 午夜视频精品福利| 视频区欧美日本亚洲| 99久久综合精品五月天人人| 亚洲国产精品合色在线| 免费看a级黄色片| 日本 欧美在线| 一本精品99久久精品77| 亚洲中文字幕一区二区三区有码在线看 | 老司机午夜十八禁免费视频| 天堂av国产一区二区熟女人妻 | 久久精品aⅴ一区二区三区四区| 欧美成人一区二区免费高清观看 | 久久性视频一级片| 一级毛片高清免费大全| 2021天堂中文幕一二区在线观| 制服丝袜大香蕉在线| 国产v大片淫在线免费观看| 日本成人三级电影网站| 岛国视频午夜一区免费看| 欧美日韩福利视频一区二区| 亚洲欧美日韩高清在线视频| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 国产真实乱freesex| 久久精品国产综合久久久| 国产精品久久久av美女十八| 高清毛片免费观看视频网站| 亚洲av中文字字幕乱码综合| 久久人人精品亚洲av| 1024视频免费在线观看| 国产在线精品亚洲第一网站| 老司机靠b影院| 亚洲精品国产精品久久久不卡| 成人亚洲精品av一区二区| 久久香蕉精品热| 国产三级黄色录像| 久久精品国产99精品国产亚洲性色| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 真人做人爱边吃奶动态| 色综合亚洲欧美另类图片| 青草久久国产| 成人高潮视频无遮挡免费网站| 黄片小视频在线播放| 三级毛片av免费| 亚洲专区国产一区二区| 露出奶头的视频| 久久热在线av| 人人妻人人澡欧美一区二区| 男插女下体视频免费在线播放| 日韩精品中文字幕看吧| 欧美性猛交黑人性爽| 中文在线观看免费www的网站 | 免费观看人在逋| 亚洲在线自拍视频| 国产一区在线观看成人免费| 在线观看免费日韩欧美大片| 99国产精品一区二区三区| 国产成年人精品一区二区| 国产97色在线日韩免费| 国产99白浆流出| 日韩av在线大香蕉| 中文字幕av在线有码专区| 久久99热这里只有精品18| bbb黄色大片| 一边摸一边做爽爽视频免费| 最近视频中文字幕2019在线8| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 99国产精品一区二区三区| 亚洲熟妇中文字幕五十中出| 熟女少妇亚洲综合色aaa.| 此物有八面人人有两片| 在线观看免费日韩欧美大片| 在线十欧美十亚洲十日本专区| 淫秽高清视频在线观看| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 免费在线观看成人毛片| 身体一侧抽搐| 久久久久国内视频| 国产乱人伦免费视频| 99国产综合亚洲精品| 国产精品野战在线观看| 国产精品一及| 欧美另类亚洲清纯唯美| 欧美日本亚洲视频在线播放| av福利片在线| 国产精品久久久久久久电影 | 狂野欧美激情性xxxx| 欧美一区二区精品小视频在线| 18美女黄网站色大片免费观看| 一本大道久久a久久精品| 亚洲中文av在线| 欧美大码av| 亚洲国产看品久久| 首页视频小说图片口味搜索| 12—13女人毛片做爰片一| a级毛片在线看网站| 久久精品亚洲精品国产色婷小说| 国产午夜精品久久久久久| 最新美女视频免费是黄的| 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产三级在线视频| 欧美一级毛片孕妇| 亚洲美女视频黄频| 婷婷丁香在线五月| av国产免费在线观看| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区四区五区乱码| 黄色 视频免费看| 91国产中文字幕| 精品福利观看| 两个人视频免费观看高清| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站| 一级毛片精品| 亚洲狠狠婷婷综合久久图片| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| 一级毛片女人18水好多| 哪里可以看免费的av片| 成人一区二区视频在线观看| 国产精品九九99| 波多野结衣巨乳人妻| 午夜福利免费观看在线| 国产熟女xx| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美一区二区三区黑人| 国产精品乱码一区二三区的特点| 岛国在线免费视频观看| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| 国产精品免费视频内射| 日韩大码丰满熟妇| 国产一区二区三区视频了| 在线观看日韩欧美| 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频|