• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-Periodic Fitzhugh-Nagumo Equation and the Optimal Control Problems*

    2021-06-04 05:19:44HanbingLIUWenqiangLUOShaohuaLI

    Hanbing LIU Wenqiang LUO Shaohua LI

    Abstract In this work, the authors considered the periodic optimal control problem of Fitzhugh-Nagumo equation.They firstly prove the existence of time-periodic solution to Fitzhugh-Nagumo equation.Then they show the existence of optimal solution to the optimal control problem, and finally the first order necessary condition is obtained by constructing an appropriate penalty function.

    Keywords Fitzhugh-Nagumo equation, Time-periodic, Optimal control

    1 Introduction and Main Results

    Let Ω ?RNbe a bounded open set with smooth boundary ?Ω(N =1,2 or 3),and let T >0 be a finite number.Set Q = Ω×(0,T) and Σ = ?Ω×(0,T), and denote by |·| (resp.〈·,·〉)the usual norm (resp.scalar product) in L2(Ω).In the sequel, C denotes a generic positive constant.

    Let ψ1,ψ2and ψ3be three given functions in L∞(Q), ω ?Ω be an open nonempty set.We consider in this work the following controlled time-periodic FitzHugh-Nagumo equation

    where g ∈L2(Q),σ >0 and γ ≥0 are constants, and F0(x,t;u) is given by

    In the above system, g is the control, and u,v are the state variables.

    The FitzHugh-Nagumo model is a simplified version of the Hodgkin-Huxley model which models in a detailed manner activation and deactivation dynamics of a spiking neuron.This model plays an important role in physics, chemistry and mathematical biology.The variable u is the electrical potential across the axonal membrane; v is a recovery variable, associated to the permeability of the membrane to the principal ionic components of the transmembrane current; g is the medicine actuator (the control variable), see [8, 10] for more details.

    Compared with standard semilinear elliptic or parabolic equations, the analysis of the FitzHugh-Nagumo system is more difficult.The analysis of optimal control problems for FitzHugh-Nagumo equations have been already considered in several works.In [5], the authors have investigated associated problems by the Dubovitskij-Milyutin optimality conditions.In [11], the time-optimal control problems for a linear version of the FitzHugh-Nagumo equations was studied.The sparse optimal control problems for FitzHugh-Nagumo equations have been investigated in [6–7].

    In this work, we shall consider the periodic optimal control problem for the FitzHugh-Nagumo equations.To our best knowledge, the existence of the periodic solution to the FitzHugh-Nagumo equations is not known in the existed literatures.Therefore, we shall firstly apply the Leray-Schauder principle to prove the existence of the periodic solution to the FitzHugh-Nagumo equations.Then, the existence of the optimal solution and the first order necessary condition (maximum principle) will be given.Comparing the optimal control problems considered in the previous mentioned works, the periodic state constraint causes difficulties.We shall construct an appropriate penalty functional to deal with this type of state constraint.For time-periodic optimal control problems for other systems,we cite here(see[3–4,13, 15]).

    Now, we present the main results of this work.Concerning the existence and regularity of the periodic solution to (1.1), we have the the following result.

    Theorem 1.1Assume thatg ∈L2(Q).Then(1.1)admits at least one solution(u,v)with

    An equivalent formulation to (1.1) is

    Our second goal in this work is to study an optimal control problem for (1.2).We will mainly deal with the cost functional

    where udis a desired state, and the constant a >0.

    The second main result in this paper is as follows.

    Theorem 1.2There exists at least one global optimal state-control(u,g).Moreover, there existsp ∈H1,2(Q)satisfying

    and

    About the main results above, we give here several notes.

    (i)Theorem 1.1 claims the existence of periodic solution to the FitzHugh-Nagumo equations.Then it is natural to ask whether the solution is unique or not.Such kind of problem for nonlinear parabolic equations has been studied in [1], wherein the notations of “subsolution”and “supersolution” to (1.1) are introduced.In [1], using the comparison principle, which is based on the strong maximum principle, the author shows that the periodic solution exists between the subsolution and supersolution (see [1, Theorem 2.1]).Since the nonlinear term in FitzHugh-Nagumo equations is cubic, it is not difficult to see that, for certain specified ψi,i = 1,2,3, (1.1) may possess two subsolutions x1,x2and two supersolutions x1,x2which obey x1<x1<x2<x2.Thus, if we can prove similar results as those in [1] for the FitzHugh-Nagumo equations, then we can show that there may be multiple periodic solutions to (1.1).However, since the FitzHugh-Nagumo equation contains an integral term comparing with the classical parabolic equations, we find that it is not an easy job.Hence, we leave this problem for future research, and deal with the FitzHugh-Nagumo equations by assuming that it may possess multiple periodic solutions.

    (ii) In our setting of the control problems, the control is distributedly plugged into the system, and the initial data is not specified but subject to periodic endpoints constraint.In this formulation, the control system might be a kind of multi-response system since the initial data is not specified and the periodic solution to (1.4) might not be unique.Corresponding to the optimal control, there might be multiple state functions satisfying (1.4), the optimal state function is the one such that the cost functional is minimized.An equivalent setting of the control problem is to treat the initial data as another control variable,which can be realized by impulsive control.Then,the state function is uniquely determined by the two control variables,and the periodic state constraint can be viewed as a mixed control-state constraint.This is somehow the standard formulation for optimal control problems with endpoints state constraint(see[12]).Nevertheless,in our formulation,we can approximate the optimal control problem by an optimization problem, and the optimality condition can be obtained by a very constructive way.It has been used in periodic optimal control problem governed by fluid flows and turns out to be efficient (see [3–4, 13, 15]).

    (iii)Now that we obtain the optimality conditions presented in Theorem 1.2,we should try to see that whether we can apply these conditions to numerically approximate the optimal solution.

    We can see from Theorem 1.2 that, with the optimality conditions, we can obtain a coupled periodic system with unknowns u and p, which seems not difficult to be solved.However,there are two essential difficulties remain to be overcomed.One is that the system is periodic.Unlike the classical forward-backward evolution systems,solving nonlinear coupled periodic systems is not easy.A monotone sequence method based on comparing principle has been applied in [9]to solve the periodic optimality systems for optimal control of parabolic Volterra-Lotka type equations.For other computing methods of periodic optimal control problems governed by ODEs, we refer to [2, 14] and references therein.Another difficulty is that the optimal control problem is nonlinear, and the optimal solution is not necessarily unique.The convergence of numerical approximation usually requires additional condition, such as the second order sufficient optimality condition for optimal solution(see[6]).These problems will be investigated in future work.

    2 Existence and Regularity of Periodic Solution

    Notice that (1.4) can be written in the form

    where we have set

    We will first prove that (2.1) admits at least one solution u ∈H1,2(Q) with the help of the Leray-Schauder’s principle (see [16, Theorem 6.A]).

    Thus, let us consider the auxiliary problem

    for each λ ∈[0,1].Denote the space Y := {u ∈L6(Q)∩C([0,T];L2(Ω));u(0) = u(T)}, which is equipped with the norm‖u‖Y=‖u‖L6(Q)+‖u‖C([0,T];L2(Ω)).We also introduce the mapping Λ:Y ×[0,1]→Y with u=Λ(w,λ) if and only if u is the unique solution to

    We shall prove the following results.

    Lemma 2.1The mappingΛ:Y ×[0,1]→Yis well-defined, continuous and compact.

    Lemma 2.2All functionsusuch thatu=Λ(u,λ)for someλ ∈[0,1]are uniformly bounded inY.

    In view of the Leray-Schauder’s principle, these will suffice to affirm that (1.2) admits at least one solution.

    Proof of Lemma 2.1Step 1 (Well-posedness of (2.5)) Let u(0)=u0∈L2(Ω) be given.Define J :L2(Ω)→L2(Ω) by J(u0)=u(T), where u(·) is the solution to

    We claim firstly that J is well-defined, which suffices to prove that the above equation admits a weak solution u ∈L2(0,T;(Ω))∩C([0,T];L2(Ω)).Indeed, notice that

    We can infer that

    Multiplying the first equation of (2.6) by u in the sense of L2(Ω), and integrating on (0,t), we can obtain by the above identity that, for any given ε >0, there exists Cε>0, such that

    Since |?w|2≥c1|w|2for some c1>0, we can take ε =, and by the above energy estimate,we can obtain that

    Together with the classical Galerkin’s arguments,we can infer that(2.6)admits a weak solution,and it is unique.This subsequently implies the above claim.

    Now, we show that the map J is contraction.Letbe two different initial data, u1,u2be the corresponding solutions.Then=u1-u2is the solution to

    Similarly as the above estimate, multiplying the first equation of system (2.7) by w, we get that

    Since |?w|2≥c1|w|2for some c1>0, we obtain

    where c0=min{c1,γ}.This implies that

    Since e-c0T<1,we infer that the map J is contraction.This implies that(2.5)admits a unique periodic solution in u ∈L2(0,T;(Ω))∩C([0,T];L2(Ω)).

    Step 2 (The map Λ is well-defined and compact.) (2.5) can be equivalently written as

    Multiplying the first equation (resp.the second equation) of system (2.9) by u (resp.) in the sense of L2(Ω), and summing these two equations, we can obtain that

    This implies that

    Integrating the above inequality on [0,T], and notice that u(0)=u(T),v(0)=0, we infer that

    where C is a constant depending on Ω,T and ψi,i=1,2,3.This implies that

    Integrating (2.10) on [0,t], using (2.11), we can obtain that

    Multiplying the first equation of system (2.9) by -t△u, we obtain that

    This implies that

    Integrating on [0,T], we infer from (2.12)–(2.13)that

    Notice that u(0)=u(T), hence

    Finally, multiplying the first equation of system(2.9)by-△u,and integrating on [0,t], we can infer by (2.12) and (2.14) that

    By Aubin-Lions lemma, we know that H1,2(Q) is compact imbedded in Y.This implies that Λ is well-defined and compact.

    Step 3 (The map Λ is continuous) Let (wn,λn) be a sequence in Y ×[0,1], and wn→w strongly in Y,λn→λ as n →∞.Let

    By the result of Step 2, we see that

    Hence, there exists at least a subsequence of unwhich will be denoted by itself, such that

    Since F(w) is continuous in w, we see that

    Then, we can pass to limit in the equation satisfied by wnand unto get that

    Hence, we proved that Λ(wn,λn)→Λ(w,λ) strongly in Y.

    Proof of Lemma 2.2(2.4) can be written as

    Multiplying the first equation (resp.the second equation) of system (2.16) by u (resp.),integrating on Ω, and adding the resulting identities, we obtain that

    Notice that, for any ε >0, there exists Cε>0, such that

    It follows that

    This implies that

    Integrating on [0,T], we can infer that

    This in turn implies that

    Now multiply the first equation of (2.16) by tut, and integrating on Ω, we get that

    Notice that t ≤T and λ ≤1,we can check by Cauchy-Schwaz inequality and Young’s inequality that, for any ε >0, there exists Cε>0, such that

    This together with (2.18)–(2.19)imply that

    Taking ε small enough, and integrating on [0,T], we get that

    This in turn implies that

    It follows that

    By Aubin-Lions lemma, we know that H1,2(Q)is compact imbedded in Y.Hence, all functions u such that u = Λ(u,λ) for some λ ∈[0,1] are uniformly bounded in Y.This completes the proof.

    Proof of Theorem 1.1By Leray-Schauder’s principle, we can see from Lemmas 2.1–2.2 that (1.1) admits at least one periodic solution.The regularity properties (1.2)–(1.3) follows from the proof of Lemma 2.2.

    3 Time Periodic Optimal Control Problems

    We prove the existence of optimal solution firstly.

    Proof of Theorem 1.2(Part I: The existence of optimal solution.) Let (un,gn) be a minimizing sequence in problem (P), i.e.,

    By the definition of J, {gn} is bounded in L2(Q), and therefore, on a subsequence, again denoted by n, we have

    By Theorem 1.1, we see that

    Selecting further subsequences, if necessary, we have

    Moreover,it is not difficult to see that

    Then letting n goes to ∞in (3.1), we infer thatsatisfies the system (1.2) andinf(P).

    Now, given an optimal solution (u,g), to prove the second part of Theorem 1.2, that is, the first order necessary optimality condition, we need to firstly consider the approximate control problem as follows:

    where X ={u ∈H1,2(Q);u(0)=u(T)} and

    Remark 3.1Although we have shown that for each control g ∈L2(Q), there exists at leat one periodic solution to the state equation, there are still other problems to apply variation directly for the original optimal control problem.The essential problem is that the solution map might be multi-valued and might not be Fr′echet differentiable.Indeed, the linearized equation of the nonlinear equation (1.4) may do not have periodic solution.Therefore, we define an optimization problem to approximate the original control problem.We view the state and control as two independent variables, and view the state equation as constraint.The last term in (3.4) is defined to penalize this constraint.Notice that the optimal solution to the control problem is not necessarily unique, the second and third terms in the right-hand side of (3.4)are introduced to make sure that the optimal solutions for the approximate control problem converge to the specified optimal solution (u,g).

    Similar to the first part of the proof of Theorem 1.2, we have the following result.

    Lemma 3.1For eachε >0, problem(Pε)has at least one solution.

    Moreover, for the relation between the optimal solution for (Pε) and the optimal solutionfor the original optimal control problem, we have the following lemma.

    Lemma 3.2Let(uε,gε)∈X×L2(Q)be optimal for problem(Pε).Then,

    ProofDenote vε=?tuε-△εu+G(uε)+F(uε)-χωgε.Sinceit follows that

    By the proof of Theorem 1.1, we see that

    Hence, on a subsequence, again denoted by ε, we have

    In the space L2(Q), we introduce the operators

    and

    It is readily seen that

    The operators A and A*are defined by the same formulas (3.10) and (3.11), where uε=.

    To obtain the first order optimality condition, we need to use some properties of operators Aε,,A and A*, which can be stated as follows.(Similar properties for the 2-D and 3-D Navier-Stokes equations has been obtained in [3] and [15] respectively, and here we shall apply the same method to prove these properties for the FitzHugh-Nagumo equation.)

    Lemma 3.3The operatorsAε,,AandA*are closed, densely defined, and have closed ranges inL2(Q).Moreover,dim N(Aε) ≤n0, independent onε, and the following estimates hold:

    Similarly, the operatorsAandA*are mutually adjoint and estimates(3.12)remain true forAandA*.Here we use the symbolsNandRto denote the null space and the range of the corresponding operators.

    ProofConsider the linear equation

    We claim that system (3.13) has a unique solution φ = φε(t;φ0,g) ∈ C([0,T];L2(Ω)) ∩L2(0,T;(Ω)), for each φ0∈L2(Ω),g ∈L2(Q).Indeed, to get the energy estimate, we multiply the first equation of (3.13) by φ, and it follows that

    Notice that ‖uε‖H1,2(Q)≤C, and H1,2(Q)?C([0,T];(Ω)), we can infer that

    This implies that

    Taking η small enough, and integrating (3.14) from 0 to T, we can obtain by (3.15) that φ=φε(t;φ0,g) satisfies the following energy estimate

    This indicates the existence and uniqueness of solution to (3.13).Moreover, if φ0∈(Ω), it is not difficult to show that the solution φε∈H1,2(Q)?C([0,T];Ω)).

    Multiplying (3.13)by -t?tφε, integrating on Q, and using (3.17), we can get by the similar approach applied to obtain (2.20) that φε(T)∈(Ω), and

    We define Gε: L2(Q) →L2(Ω) by Gε(g) = φε(t;0,g), and define Γε: L2(Ω) →L2(Ω) by Γεφ0=φε(t;φ0,0).It is clear that

    and the estimate (3.18) yields that

    Similarly as the proof of Theorem 1.1, we can get that (φ,g)∈Aε, i.e., Aεis closed.

    Now, let Γ ∈L(L2(Ω),L2(Ω)) be defined by Γφ0=φ(T,φ0,0), where φ is the solution to

    As seen earlier,Γ ∈L(L2(Ω),(Ω)), and so Γ is completely continuous from L2(Ω)into itself.Moreover,it is not difficult to show that

    Since dim N(I-Γ)<∞, (3.23)implies that there exists n0>0, such that dim N(I-Γε)≤n0for all ε >0.Hence dim N(Aε)≤n0for all ε >0, as claimed.Moreover, we claim that

    Indeed, otherwise, there exist φ0ε∈N(I -Γε)⊥= R((I -Γε)*), fε∈R(I -Γε) such that(I -Γε)φ0ε= fεand |fε| = 1,|φ0ε| →∞.LetandWe can see from (3.18) thathas a subsequence which converges strongly in L2(Ω).Sincewe infer that there exists a subsequence of, and|φ0|=1.Moreover,we can see that φ0∈R((I-Γ)*)∩N(I-Γ),which contradicts the fact that R((I-Γ)*)⊕N(I-Γ)=L2(Ω).

    By (3.24), we see that

    Finally, we have that

    This implies the first inequality of (3.12).The corresponding properties of the operator A*εfollow from the same arguments as above.The corresponding results of the operators of A and A*follow similarly.

    Proof of Theorem 1.2(Part II: The necessary condition of optimality) Let (uε,gε) be optimal for(Pε).For any w ∈X,h ∈L2(Q)fixed, we set=uε+ρw and=gε+ρh.Then∈X ×L2(0,T;Q).Then,

    By taking h=0 in (3.27), we get that

    Hence, pε∈D()=X and

    By taking w =0 in (3.27), we get that

    This yields that

    Define the linear bounded operator D :L2(Q)→L2(Q) by Dp=χωp.(3.31) implies that

    Now, by Lemma 3.3 and the closed range theorem, we may write

    Then, by (3.29) and Lemma 3.3 again, we get that

    On the other hand, since the space N()is finite dimensional,we infer that the restriction of D to N(), still denoted by D, has closed range.Then, we may write

    Then, by (3.32), we see that {} is bounded in L2(Q).Sincen0, there exist p3∈L2(Q) and a subsequence ofstill denoted by itself, such that

    By (3.29), we know that there exist p1∈L2(Q) and a subsequence ofstill denoted by itself, such that

    which is equivalent to

    Passing to the limit for ε →0, we get

    This shows that p1+p3∈D(A*), and

    Passing to the limit in (3.31) for ε →0, we get

    Let p= p1+p3∈X.Then p ∈X.By (3.39)–(3.40), we derive (1.5)–(1.6).This competes the proof.

    AcknowledgementThe authors want to thank the anonymous referees for their valuable remarks and suggestions on the original version of this paper.

    黑丝袜美女国产一区| 久久精品久久久久久噜噜老黄| 日韩在线高清观看一区二区三区| av线在线观看网站| 久久精品久久久久久久性| 最近的中文字幕免费完整| 国产精品久久久久成人av| 日韩免费高清中文字幕av| 大片免费播放器 马上看| 久久99热这里只频精品6学生| 97超视频在线观看视频| 看非洲黑人一级黄片| 国产精品无大码| 在线天堂最新版资源| 黑丝袜美女国产一区| 久久女婷五月综合色啪小说| 人妻制服诱惑在线中文字幕| 国产在线视频一区二区| 欧美日本视频| 欧美日本视频| 国产精品不卡视频一区二区| 中文资源天堂在线| 赤兔流量卡办理| 国产又色又爽无遮挡免| 国产在线男女| tube8黄色片| 在线观看一区二区三区激情| 新久久久久国产一级毛片| 一本一本综合久久| 国产片特级美女逼逼视频| 久久久色成人| 亚洲精品第二区| 男人狂女人下面高潮的视频| 国产爽快片一区二区三区| 直男gayav资源| 亚洲人成网站高清观看| 成人午夜精彩视频在线观看| 国产成人一区二区在线| 国产白丝娇喘喷水9色精品| 我的老师免费观看完整版| 91aial.com中文字幕在线观看| 亚洲一级一片aⅴ在线观看| 大片免费播放器 马上看| 精品99又大又爽又粗少妇毛片| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 免费大片18禁| 国产欧美日韩一区二区三区在线 | 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 免费观看a级毛片全部| 色视频在线一区二区三区| 建设人人有责人人尽责人人享有的 | 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 亚洲美女视频黄频| 久久午夜福利片| 久久久久久久国产电影| 国产av码专区亚洲av| 久久久久久久久大av| 亚洲成人手机| 国产亚洲av片在线观看秒播厂| 亚洲精品,欧美精品| 激情 狠狠 欧美| 韩国av在线不卡| 国产精品国产av在线观看| 男女边摸边吃奶| 黑人猛操日本美女一级片| 黄色视频在线播放观看不卡| 欧美高清成人免费视频www| 久久久午夜欧美精品| 亚洲精品国产色婷婷电影| 狂野欧美激情性bbbbbb| 在线观看免费视频网站a站| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 亚洲精品中文字幕在线视频 | 99视频精品全部免费 在线| 亚洲av.av天堂| 中文字幕精品免费在线观看视频 | 在线观看国产h片| 国产乱来视频区| 人妻一区二区av| 国产精品偷伦视频观看了| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品古装| 精品少妇黑人巨大在线播放| 国产成人91sexporn| 午夜老司机福利剧场| 亚洲人成网站高清观看| 国产精品国产三级专区第一集| 在线观看国产h片| 国产精品久久久久久精品古装| 看免费成人av毛片| 少妇人妻久久综合中文| 久久久久精品性色| 蜜桃在线观看..| 91aial.com中文字幕在线观看| 嫩草影院新地址| 国产欧美日韩一区二区三区在线 | 国产成人精品福利久久| 少妇被粗大猛烈的视频| 大香蕉97超碰在线| 中文资源天堂在线| 免费播放大片免费观看视频在线观看| 国产亚洲精品久久久com| 精品一区二区三卡| 少妇人妻一区二区三区视频| 精品久久久精品久久久| 亚洲av中文字字幕乱码综合| 日韩中字成人| 国内精品宾馆在线| 亚洲国产精品999| 深夜a级毛片| 亚洲,一卡二卡三卡| 免费黄网站久久成人精品| 欧美区成人在线视频| 国产精品国产三级国产av玫瑰| 国产精品嫩草影院av在线观看| 一级毛片aaaaaa免费看小| 国产黄色免费在线视频| 一区二区三区免费毛片| 人妻 亚洲 视频| 日本与韩国留学比较| 国精品久久久久久国模美| 欧美高清性xxxxhd video| 美女脱内裤让男人舔精品视频| 欧美精品国产亚洲| 日产精品乱码卡一卡2卡三| 国国产精品蜜臀av免费| 亚洲人成网站在线播| 成人亚洲欧美一区二区av| 国产精品人妻久久久影院| 简卡轻食公司| 大香蕉久久网| 国产男人的电影天堂91| 久热久热在线精品观看| 色网站视频免费| 免费久久久久久久精品成人欧美视频 | 青春草视频在线免费观看| 日韩一本色道免费dvd| 青春草亚洲视频在线观看| 亚洲av不卡在线观看| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 亚洲国产色片| 综合色丁香网| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 啦啦啦中文免费视频观看日本| 国产精品伦人一区二区| 肉色欧美久久久久久久蜜桃| 噜噜噜噜噜久久久久久91| 亚洲国产成人一精品久久久| 九九在线视频观看精品| 亚洲av福利一区| 99热全是精品| 美女脱内裤让男人舔精品视频| 日韩av免费高清视频| 成年免费大片在线观看| 亚洲第一区二区三区不卡| 国产视频首页在线观看| av在线app专区| 日韩欧美 国产精品| 偷拍熟女少妇极品色| 久久精品国产a三级三级三级| 国产成人精品久久久久久| 男女国产视频网站| 高清在线视频一区二区三区| 久久久亚洲精品成人影院| 少妇裸体淫交视频免费看高清| 高清在线视频一区二区三区| 中文欧美无线码| 日韩欧美精品免费久久| 亚洲国产精品999| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 亚洲成色77777| 一边亲一边摸免费视频| 国产久久久一区二区三区| 三级国产精品欧美在线观看| 国产av国产精品国产| 国产色爽女视频免费观看| 男人舔奶头视频| 久久韩国三级中文字幕| 少妇的逼水好多| 日韩伦理黄色片| 在线 av 中文字幕| 色综合色国产| 啦啦啦在线观看免费高清www| 性色av一级| 精品酒店卫生间| av又黄又爽大尺度在线免费看| 99热全是精品| 国产免费福利视频在线观看| 在线观看免费高清a一片| 黄色欧美视频在线观看| 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 久久人妻熟女aⅴ| 舔av片在线| 亚洲精品国产av蜜桃| av在线蜜桃| 国产综合精华液| 国产乱人偷精品视频| 国产女主播在线喷水免费视频网站| 视频中文字幕在线观看| 秋霞伦理黄片| av免费在线看不卡| 香蕉精品网在线| 永久网站在线| 久久青草综合色| 亚洲人成网站高清观看| 久久久久精品久久久久真实原创| 一级黄片播放器| 亚洲经典国产精华液单| 偷拍熟女少妇极品色| 在线观看人妻少妇| 国产精品成人在线| 精品人妻熟女av久视频| 九九在线视频观看精品| 国产成人免费无遮挡视频| 国产伦精品一区二区三区四那| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 成人免费观看视频高清| 美女xxoo啪啪120秒动态图| 新久久久久国产一级毛片| 国产亚洲5aaaaa淫片| 18禁裸乳无遮挡免费网站照片| 蜜桃在线观看..| 高清日韩中文字幕在线| 欧美极品一区二区三区四区| 只有这里有精品99| 丝袜脚勾引网站| 免费av不卡在线播放| 精品一区在线观看国产| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 欧美日韩一区二区视频在线观看视频在线| 美女福利国产在线 | 国产精品一及| 国产欧美日韩一区二区三区在线 | 日本黄大片高清| 国产黄片视频在线免费观看| 国产午夜精品一二区理论片| 国产成人精品婷婷| 免费黄频网站在线观看国产| 观看av在线不卡| 久久久久精品性色| 欧美三级亚洲精品| 大片免费播放器 马上看| 91精品一卡2卡3卡4卡| 色吧在线观看| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 国产 精品1| 夫妻性生交免费视频一级片| 亚洲色图综合在线观看| 人人妻人人爽人人添夜夜欢视频 | 午夜免费鲁丝| 国产伦在线观看视频一区| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 国产黄色免费在线视频| 中文乱码字字幕精品一区二区三区| 少妇高潮的动态图| 综合色丁香网| 日韩成人伦理影院| 夫妻午夜视频| 一级毛片aaaaaa免费看小| 亚洲国产精品专区欧美| 丝瓜视频免费看黄片| 国产午夜精品久久久久久一区二区三区| 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区 | 看免费成人av毛片| 波野结衣二区三区在线| 免费av中文字幕在线| 丝袜喷水一区| 久久99热这里只有精品18| 久久精品久久久久久久性| 中文天堂在线官网| 在现免费观看毛片| 国产成人精品久久久久久| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频 | av国产精品久久久久影院| 久久久精品免费免费高清| 十分钟在线观看高清视频www | 大又大粗又爽又黄少妇毛片口| 草草在线视频免费看| 干丝袜人妻中文字幕| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 国产精品一区二区三区四区免费观看| www.色视频.com| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 毛片女人毛片| 免费观看av网站的网址| 国语对白做爰xxxⅹ性视频网站| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 一级毛片久久久久久久久女| 91精品一卡2卡3卡4卡| 精品久久国产蜜桃| 国产一区有黄有色的免费视频| 一区二区av电影网| 亚洲美女搞黄在线观看| 视频区图区小说| 一级av片app| 亚洲精品久久久久久婷婷小说| 在线免费十八禁| 夜夜看夜夜爽夜夜摸| 国产免费一区二区三区四区乱码| 波野结衣二区三区在线| 男男h啪啪无遮挡| 国产在线视频一区二区| 国精品久久久久久国模美| 伦精品一区二区三区| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 欧美国产精品一级二级三级 | 国产精品.久久久| 久久ye,这里只有精品| av专区在线播放| 国产欧美另类精品又又久久亚洲欧美| 直男gayav资源| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 久久99蜜桃精品久久| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 国产一区二区三区综合在线观看 | 精品一区二区三卡| 啦啦啦在线观看免费高清www| 99久久人妻综合| 最黄视频免费看| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 高清毛片免费看| 美女主播在线视频| 亚洲人成网站在线播| 亚洲精品日韩av片在线观看| 久久久久久久大尺度免费视频| 日本色播在线视频| 极品教师在线视频| 26uuu在线亚洲综合色| 免费看日本二区| 欧美日韩视频精品一区| 干丝袜人妻中文字幕| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 日日撸夜夜添| 日日啪夜夜爽| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 亚洲综合色惰| 观看免费一级毛片| 国产欧美另类精品又又久久亚洲欧美| 高清在线视频一区二区三区| 97超视频在线观看视频| 精品一区二区三卡| 成人特级av手机在线观看| 少妇精品久久久久久久| 十分钟在线观看高清视频www | 国产成人午夜福利电影在线观看| 精品一区在线观看国产| 18+在线观看网站| 午夜激情久久久久久久| 国产色爽女视频免费观看| 爱豆传媒免费全集在线观看| 成人综合一区亚洲| 亚洲欧洲日产国产| 蜜桃在线观看..| 我要看日韩黄色一级片| 精品少妇黑人巨大在线播放| 少妇猛男粗大的猛烈进出视频| 人妻制服诱惑在线中文字幕| 美女内射精品一级片tv| 国产有黄有色有爽视频| 一本一本综合久久| 在线观看av片永久免费下载| 久久精品国产亚洲网站| 欧美日韩在线观看h| 啦啦啦啦在线视频资源| 精华霜和精华液先用哪个| 香蕉精品网在线| 男女下面进入的视频免费午夜| 高清毛片免费看| 日本vs欧美在线观看视频 | 精品熟女少妇av免费看| 国产淫片久久久久久久久| 国产永久视频网站| 99热这里只有是精品在线观看| av播播在线观看一区| 美女视频免费永久观看网站| 亚洲国产av新网站| 丝袜喷水一区| 国产精品欧美亚洲77777| 午夜视频国产福利| 久久综合国产亚洲精品| 看十八女毛片水多多多| 18禁裸乳无遮挡免费网站照片| 制服丝袜香蕉在线| 久久精品夜色国产| 亚洲熟女精品中文字幕| 伊人久久国产一区二区| 久久人人爽人人爽人人片va| 国产午夜精品一二区理论片| 免费大片18禁| 网址你懂的国产日韩在线| 能在线免费看毛片的网站| 亚洲第一区二区三区不卡| 简卡轻食公司| 91aial.com中文字幕在线观看| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 精品一品国产午夜福利视频| 久久人人爽av亚洲精品天堂 | 毛片女人毛片| 亚洲一区二区三区欧美精品| 如何舔出高潮| 日日撸夜夜添| 国产欧美日韩精品一区二区| 成人漫画全彩无遮挡| 伦精品一区二区三区| 国产黄片视频在线免费观看| 九九在线视频观看精品| 国产成人aa在线观看| 国产黄频视频在线观看| 国产久久久一区二区三区| av免费在线看不卡| 80岁老熟妇乱子伦牲交| 91在线精品国自产拍蜜月| 久久久久久久久久久免费av| 国产精品嫩草影院av在线观看| 内地一区二区视频在线| 99久久中文字幕三级久久日本| 亚洲三级黄色毛片| 国产精品爽爽va在线观看网站| 亚洲在久久综合| 天天躁日日操中文字幕| 三级国产精品欧美在线观看| 建设人人有责人人尽责人人享有的 | 深爱激情五月婷婷| 亚洲色图av天堂| 我要看黄色一级片免费的| 日韩人妻高清精品专区| 免费看日本二区| 日本vs欧美在线观看视频 | 国产女主播在线喷水免费视频网站| 免费黄色在线免费观看| 观看av在线不卡| 老师上课跳d突然被开到最大视频| 啦啦啦在线观看免费高清www| 国产精品人妻久久久久久| 啦啦啦中文免费视频观看日本| 欧美区成人在线视频| 五月天丁香电影| 久久久午夜欧美精品| 久久久久久久大尺度免费视频| 99久久中文字幕三级久久日本| a级一级毛片免费在线观看| 欧美性感艳星| 欧美日韩综合久久久久久| 久久久久精品性色| 欧美日韩视频精品一区| 一个人免费看片子| 在线观看国产h片| 性高湖久久久久久久久免费观看| 大香蕉97超碰在线| 国产精品福利在线免费观看| 国产在线一区二区三区精| 人妻一区二区av| 国产精品久久久久久av不卡| 两个人的视频大全免费| 国产无遮挡羞羞视频在线观看| 久久久成人免费电影| 国产淫语在线视频| 嫩草影院新地址| 99视频精品全部免费 在线| 乱系列少妇在线播放| 亚洲天堂av无毛| 极品少妇高潮喷水抽搐| 免费av中文字幕在线| 九草在线视频观看| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| 我的女老师完整版在线观看| 亚洲精品一二三| 日日摸夜夜添夜夜爱| 国产免费福利视频在线观看| 国产无遮挡羞羞视频在线观看| 又大又黄又爽视频免费| 成年女人在线观看亚洲视频| 精品少妇久久久久久888优播| 全区人妻精品视频| 韩国av在线不卡| 一区二区av电影网| 赤兔流量卡办理| 国产成人a∨麻豆精品| 交换朋友夫妻互换小说| 女的被弄到高潮叫床怎么办| 一级片'在线观看视频| 伦精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 亚洲精品视频女| 亚洲精品国产av蜜桃| 2018国产大陆天天弄谢| 久久鲁丝午夜福利片| 大香蕉97超碰在线| 亚洲美女黄色视频免费看| 一个人免费看片子| 少妇裸体淫交视频免费看高清| 全区人妻精品视频| 美女高潮的动态| 最近最新中文字幕免费大全7| 午夜免费男女啪啪视频观看| 毛片一级片免费看久久久久| 日韩av在线免费看完整版不卡| 欧美成人午夜免费资源| av一本久久久久| 波野结衣二区三区在线| 亚洲欧美日韩另类电影网站 | 亚洲成人一二三区av| 各种免费的搞黄视频| 人人妻人人爽人人添夜夜欢视频 | a级毛色黄片| 国产成人免费观看mmmm| 中国美白少妇内射xxxbb| 亚洲va在线va天堂va国产| 自拍偷自拍亚洲精品老妇| 新久久久久国产一级毛片| 亚洲av电影在线观看一区二区三区| 最近中文字幕2019免费版| 97精品久久久久久久久久精品| 亚洲欧美成人综合另类久久久| 99久久精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 精品人妻偷拍中文字幕| 国产爽快片一区二区三区| 欧美国产精品一级二级三级 | 高清日韩中文字幕在线| 人人妻人人爽人人添夜夜欢视频 | 美女高潮的动态| 黑人高潮一二区| 国产在线视频一区二区| 下体分泌物呈黄色| 国产伦精品一区二区三区视频9| 成人一区二区视频在线观看| 毛片一级片免费看久久久久| 午夜福利在线在线| tube8黄色片| 嫩草影院新地址| 纵有疾风起免费观看全集完整版| 狠狠精品人妻久久久久久综合| 欧美国产精品一级二级三级 | 大码成人一级视频| 亚洲最大成人中文| 精品人妻熟女av久视频| 亚洲国产精品专区欧美| 伦精品一区二区三区| 五月天丁香电影| 国内揄拍国产精品人妻在线| 国产精品人妻久久久久久| 亚洲欧美清纯卡通| 深夜a级毛片| 亚洲丝袜综合中文字幕| 好男人视频免费观看在线| 亚洲真实伦在线观看| 国产日韩欧美在线精品| 国产成人免费无遮挡视频| 亚洲av国产av综合av卡| 涩涩av久久男人的天堂| 少妇裸体淫交视频免费看高清| 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式| 舔av片在线| 寂寞人妻少妇视频99o| 女的被弄到高潮叫床怎么办| 欧美少妇被猛烈插入视频| 国产av码专区亚洲av| 国产精品久久久久久久久免| 免费久久久久久久精品成人欧美视频 | 在线观看一区二区三区| 亚洲人成网站在线观看播放| 亚洲欧美清纯卡通| 精品国产乱码久久久久久小说| 18+在线观看网站| 国产亚洲精品久久久com| 少妇丰满av| 国产又色又爽无遮挡免| 国内精品宾馆在线| 亚洲av成人精品一二三区| 久久av网站| 在线免费十八禁| 久久久久久久久大av| 日本黄色日本黄色录像| 亚洲精品第二区| xxx大片免费视频| 久久女婷五月综合色啪小说| 亚洲成人一二三区av| 夫妻午夜视频| 免费观看在线日韩| 欧美高清性xxxxhd video| 超碰av人人做人人爽久久| 纵有疾风起免费观看全集完整版|