• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On a Class of Generalized Curve Flows for Planar Convex Curves*

    2021-06-04 05:19:00HuaqiaoLIULiMA

    Huaqiao LIU Li MA

    Abstract In this paper, the authors consider a class of generalized curve flow for convex curves in the plane.They show that either the maximal existence time of the flow is finite and the evolving curve collapses to a round point with the enclosed area of the evolving curve tending to zero, i.e.,or the maximal time is infinite, that is, the flow is a global one.In the case that the maximal existence time of the flow is finite, they also obtain a convergence theorem for rescaled curves at the maximal time.

    Keywords Curve flow, Convex curve, Longtime existence, Convergence

    1 Introduction

    In this paper,we introduce a new curve flow in the plane and along the flow the isoperimetric defect is a monotone quantity.So the interesting question is to study the behavior of this flow.This is the main goal of this paper and the precise results will be stated as theorems below.With no doubt, in the last decades, there are many interesting progress about curve flows in the plane such as curve shortening flows, expanding flows, and nonlocal flows.Motivated by problems from fluid mechanics (see [2]), many people have considered different kinds of curve shortening flow problems.The most widely studied curve shortening flow in the plane is the family of evolving curves γ(t) such that

    where k and N are the curvature of the curve γ and the (inward pointing) unit normal vector to the curve respectively.It has been known that the embedding property is preserved along the flow (1.1), and any simple closed curve can be evolved by (1.1) into a convex one in finite time (see [12]) and at the finite maximal existing time the flow shrinks to a round point in the sense that it becomes asymptotically circular(see [7–9],for a summary of this problem see also[3]).Expanding evolution flows of planar curves also attract a lot of attention.Chow and Tsai[4] have studied the expanding flow such as

    where G is a positive smooth function with G′>0 everywhere.Andrew [1] has studied more general expanding flows, especially flows with isotropic speeds.Nonlocal curve flows have also been considered in last decades.The interesting parts of such flows are that they preserve some geometric quantities.Gage [10] has introduced an area-preserving flow

    where L is the length of the evolving curve γ.Then he has proved that the length of the evolving curve is non-increasing and the flow finally converges to a circle.Later on, many people try to find various curve flows which preserve the length of the evolving curve or the area enclosed.One may refer to the interesting papers of Pan, Ma and their coauthors (see [11, 13–14,16–17]for such results).In particular, in [13], Ma and Cheng have considered an area-preserving flow

    where γ(t) ?R2is a parametrization of any initial smooth embedded closed curve γ0, q(t) =and β is a real constant.For such a flow, the enclosed area A(t) of the evolving curve satisfies

    i.e., the changing rate of the enclosed area A(t) is a fixed constant.In the papers[5] and [6] for β ≥0,the authors have derived possible extinction shapes as the curve contracts to a point.In[19], the authors have considered the case-∞<β <∞and they have concluded the following conclusions.(1) When β >0, the flow converges to a point p as t tends to the finite maximal time.Especially when β ∈(0,2π], the rescaled evolving curveconverges to the unit circle in the sense that its curvature→1 in the C∞norm.(2) When β <0 the rescaled evolving curveconverges to the unit circle S1centered at the origin O=(0,0) in the C∞norm.

    By considering the first order expansion of the function q(t) at t = 0 in the generalized curve flow (1.2), we may simply have q(t) = a+bt with a,b being two real constants.The corresponding flow is still a geometric flow in the sense of[18],since the quantity q(t)is geometric one in the sense that it is independent from the parametrization of the curve γ(t).We refer to[18] for the generalized curve flow

    where β(t) is a geometric quantity in the sense that it is independent from the parametrization of the curve C(t).Note that up to a change of a time scale, C(t) = ψ(t)γ(t) for a smooth function ψ(t), we may change the evolution (1.1) into the geometric form as (1.3),

    where p(t) = 〈C(t),N(C(t))〉 is the support function of the curve C(t).The first order approximation of the quantityalso leads to the flow (1.4) below.We shall let β(t) = k - q(t) = k - βt with β being a real number.Then we are led to a new curve flow

    where X0(φ) : S1→γ0?R2is a parametrization of any given initial smoothly embedded closed curve γ0, k(φ,t) is the curvature of the evolving curve γ(·,t) (parametrized by X(φ,t)),Nin(φ,t) is the inward unit normal vector of γ(·,t) and K(φ,t) = k(φ,t)-βt with β being a real constant.Note that our new flow does not preserve the area or the length of the initial data, even the changing rate of the enclosed area or length.

    Remark 1.1When β =0, the flow (1.4) is the flow (1.1).

    As we shall see soon that, though the length and the area of the evolving curve may not be decreasing along the flow(1.4),the isoperimetric defect is a monotone quantity.This interesting property of the flow motivates us to consider the question if the flow has a nice global behavior.Using the standard arguments(see[9–10]),we may obtain the short time existence result about the flow(1.4)for any immersed closed curve.To understand the global behavior of the flow,we need to calculate some evolution equations for the curvature of the flow (1.4).We notice that the convexity of the evolving curve is preserved.Under the assumption that there are positive lower bound and upper bound of the enclosed area A(t), we shall show that there is a lower bound of the curvature.Meanwhile,we can obtain an integral estimate and a gradient estimate of the curvature along the flow.Then we can show that the curvature will not blow up along the flow, that is to say, there is an upper bound of the curvature.Then the standard parabolic regularity guarantees that all space-time derivatives of the curvature are bounded.Thus we may conclude the long time existence of the flow in below.

    Theorem 1.1Letγ0?R2be a smooth initial convex closed curve and letβbe a constant.Then the flow(1.4)has a smooth solution for short time[0,T)and each evolving curveγ(·,t)is a smooth convex curve on[0,T).Moreover, the flow(1.4)exists as long as its enclosed areaA(t)remains positive and finite.

    Remark 1.2As mentioned above,without convexity assumption,we always have the short time solution to (1.4).That is to say, if the initial data γ0?R2is a smooth embedded closed curve in the plane, there is a positive constant T >0 such that the solution to (1.4) exists in[0,T)and each evolving curve γ(·,t)is still a smooth embedded closed curve in the time interval[0,T).

    The main goal is to consider the behavior of the maximal time existing flow and we show that there is a convergence result in the case that β ≥0, which is stated in the following theorem.

    Theorem 1.2Letγ0?R2be aC2initial convex closed curve and letβbe a nonnegative constant.Then we have the family ofC2convex curvesγ(t), which satisfies the evolution equation(1.4)for0 <t <T, whereT >0is the maximal existing time of the flow, such thateither(1) T <∞,the flow converges to a round point ast →Tin the sense that

    and the normalized curvesη(t) =converge in the Hausdorffmetric to the unit circle;or(2) T =∞, i.e., the flow is a global one.

    Here we recall that for two closed convex sets A and B, the Hausdorffdistance between them is dH(A,B)=inf{∈|A ?B∈and B ?A∈}, where A∈={x ∈R2|dist(x,A)≤∈}.

    The higher order convergence about the normalized curves η(t) is possible following the argument in [9], which is by now well-known, and we may omit the details.We point out that there may occur the case that T = ∞for some initial data, which may be treated in latter chance.At this moment,we have no understanding about the omega limit of the flow at t=∞.In the case that β <0, we may know that the area and the length of evolving curves are both decreasing,however,we can not obtain a good estimate of the isoperimetric ratio.Thus we are unable to show any general asymptotically convergence result.We leave this problem open.

    The paper is organized as follows.We shall give some evolution equations related to the curve flow (1.4) in Section 2.Then we prove the long time existence Theorem 1.1 and the convergence Theorem 1.2 in Section 3.

    2 Convex Curves in the Plane

    In this section, we assume that q(t) is a continuous function on [0,∞)with q(0)=0 and we consider the evolution of curvature and the evolution of isoperimetric defect for the curve flow(1.4) with K =k-q(t).We also assume that each X =X(φ,t):=γ is a C2planar curve.

    We first consider the evolution of the length parameter ds=Recall that

    Then,

    Recall that

    and

    Then we have

    i.e.,

    Recall Gage’s inequality (see [7]) that for convex closed curves,

    Since q(0) = 0, we know that the length L(t) of evolving curve γ(·,t) is decreasing for short time interval of 0.By the assumption that q(t)≥0 for t ∈(0,T), we have

    for some uniform constant C0(T)>0.

    For the area A=A(t), we have

    Recall that

    Then,

    It implies that

    and then

    Using q(0)=0,we know again that the area A(t)of evolving curve γ(·,t)is decreasing for short time interval of 0.Using q(t)≥0 for t ∈(0,T), we have

    for some uniform constant C(T)>0.

    Recall the isoperimetric inequality in the plane that

    We now consider the evolution of the isoperimetric defect defined by

    By direct calculations, we obtain

    Using Gage’s inequality and the isoperimetric inequality for convex closed curves, we have

    Then we have

    which implies that

    Using q(t)≥0, we have

    In particular, the last two inequalities illustrate that along the curve flow (1.4) with q(t)=βt,β ≥0, the isoperimetric defect and isoperimetric ratio are both decreasing.

    By (2.7), we have that for t >0,

    If we assume A(t)→0 as t →T, we have

    Thus we have proved the below.

    Lemma 2.1For the flow(1.4)with the finite maximal timeT >0and withA(t) →0ast →T, the length of the evolving curveγ(·,t)tends to zero ast →T.

    Recall the Bonnesen inequality (see [15]) for the planar convex curve γ that

    where routis the radius of the smallest possible circle that encloses γ, while rinis the radius of the largest possible circle contained within the curve γ.By this inequality, we know that for the curve flow γ(·,t) with finite maximal time T >0 and with A(t) →0 as t →T, the flow γ(·,t)shrinks to a round point,i.e.,its extinction shape is circular in the C0sense(see[6]also).Generally speaking, it is possible that the parabolic curve flow may develop singularities before it shrinks to a point, which is a subtle point in the study of planar curve flows.

    We now consider the evolution of curvature along the curve flow (1.4) and obtain the following result.

    Lemma 2.2The evolution of curvature along the curve flow(1.4)is

    ProofDifferentiating (2.3) with respect to φ, we obtain

    Then we have

    which is equivalent to the desired result.

    Meanwhile we can obtain the below.

    Lemma 2.3Along the curve flow(1.4),

    Proof

    Furthermore, we obtain the following lemma.

    Lemma 2.4

    Proof

    By (2.3), we can easily get the second equality.

    Let θ be the angle between the tangent vector and the x axis.Then we have the following lemma.

    Lemma 2.5

    ProofSince the unit tangent vector is T =(cos θ,sin θ),

    Then

    Hence, it follows that

    By now, the curvature evolution can be given below.

    Lemma 2.6

    Proof

    3 Proof of Main Result

    In this section, we let K = k-βt in the curve flow (1.4), where β is a real number.We mainly consider the case when β ≥0.We shall show below that the convexity of the evolving curves of the flow is preserved provided the initial curve is a convex one.We shall study the behavior of the convex curve flow γ(·,t), 0 ≤t ≤T <∞with T being the finite maximal existing time, and we can show that the curvature of the curve flow remains bounded before T and A(t)→0 as t →T (see Lemma 3.7 below).

    We can use the angle θ of the tangent line as a parameter,so the curvature of the curve may be expressed by k=k(θ).To determine the evolution equation for curvature, we take τ =t as the time parameter and use θ as the other coordinate.Thus we change variables from (φ,t) to(θ,τ).Then we obtain the following equation for k in terms of θ and τ.

    Lemma 3.1

    Proof

    In the rest of the paper, we shall only deal with this equation and for simplicity we replace τ by t.This also means that the formula above can be rewritten as

    If β <0, then

    By maximum principle, we can obtain

    for all (θ,t)∈S1×[0,T), where kmin(t)=inf θ {k(θ,t)}.

    If β ≥0,t ∈[0,T), we have 0 ≤βt <βT =C1.It follows that

    Then by [6, Lemma 2.1], we obtain

    Thus we obtain a lower bound of the curvature for evolving curves below.

    Lemma 3.2

    where

    Remark 3.1The convexity of the evolving curves of the flow is preserved provided that the initial curve is a convex one.

    We now suppose that the flow has a smooth convex solution on a finite time interval [0,T)and A(t)has positive upper bound and lower bound on[0,T),i.e.,there exist positive constants c and C such that

    Since L2≥4πA and (2.6) hold, we have that for some constant C(0) depending only on the initial curve, L(t) satisfies

    As in [9], we define the median curvature by

    We consider estimate of the median curvature k*(t) for the evolving curve γ(·,t).By the geometric estimate in [9] and our assumption (3.3), we can obtain

    Note that

    For each time t ∈[0,T), we consider the open set U = {θ | k(θ,t) >k*(t)}.By the definition of k*(t), We can write U as a countable union of disjoint open intervals Ii, each of which must have length less than or equal to π.At the endpoints of the closure of these intervals,k(θ,t)=k*(t),and Wirtinger’s inequality can be applied to the function k(θ,t)-k*(t)overto obtain

    Then we have

    On the compliment of U, we have the estimate k ≤k*.Then

    Combining (3.7)–(3.8) with (3.6), we can obtain

    Recall that

    Then we have

    Assume that β ≥0.If 2k*-q ≤0, then

    where ρ is the constant defined in (3.5).

    If 2k*-q ≥0, then

    where C2=2πC1.Integrating over [0,T], we can obtain

    Assume that β <0.Then q ≤0 and (2k*-q)>0, we have

    Again integrating over [0,T], gives

    Thus, we obtain the following integral estimate of the curvature of the evolving curve.

    Lemma 3.3Letρ >0be the constant in(3.5).Then there exist constantsλ1>0andλ2>0and depending only onβ, c, ρsuch that

    We can also obtain a gradient estimate of the curvature.

    Lemma 3.4There exists a constantC(0)≥0depending only on the initial curve such that

    Proof

    So,

    This completes the proof.

    Then, we can get the following estimate.

    Lemma 3.5For sufficiently small∈>0,there exist two constantsδ >0andD >0depending only on∈,β,Tand the initial curve, such that

    for allθ ∈(θ(t)-δ2,θ(t)+δ2)and for alltsufficiently close toT.

    By Lemma 3.5 above, we can obtain an upper bound of the curvature.

    Lemma 3.6Suppose that the flow(1.4)withq(t) = βthas a smooth convex solution on a finite time interval[0,T)such thatA(t)has a positive upper boundCand a positive lower boundcon[0,T).Then the curvaturek(θ,t)will not blow up ast →T.

    ProofWe argue by contradiction.If the curvature blows up as t →T,we would have→∞as t →T.However, (3.13) shows that for t sufficiently close to T, the curvature is uniformly large on some interval of fixed length 2δ2.This leads to=∞.However, this is a contradiction to (3.10).Thus, the curvature k(θ,t) will not blow up as t →T.

    We now give the proof of Theorem 1.1.

    ProofNote that as long as A(t) remains positive and finite, by (3.4), the length L(t)will remain positive and finite.Moreover, by Lemmas 3.2 and 3.6, the curvature k(θ,t) has positive upper bound and positive lower bound.Following the arguments in [9, p 84–86], via the standard parabolic regularity applied to(3.1),we can obtain that all space-time derivatives of k(θ,t) remain bounded.As a consequence of this, the flow can continue to evolve smoothly.This completes the proof.

    To prove Theorem 1.2, we need some reparations.Roughly speaking, the idea of the proof of Theorem 1.2 is similar to the main theorem of [8].

    Firstly note that we have the area decay at T.

    Lemma 3.7For the curve flow(1.4)with finite maximal timeT >0, we have

    ProofIn fact, since T is the maximal existing time, we know that there is a sequence tjsuch that A(tj) →0 as tj→T.By (2.4) and (2.8), we know that for some uniform constant C >0 depending on T,

    In a small neighborhood of t=tj, A(t) is small such thatHence At<0 in the neighborhood of tj.This implies thatfor any t >tjand A(t) →0 as t →T.This completes the proof of Lemma 3.7.

    Furthermore, we have the following lemma.

    Lemma 3.8Ifthen

    ProofWe now consider the isoperimetric ratio.By (2.2) and (2.4), we can obtain

    For

    we have

    However,

    From which it follows by integration that

    The left-hand side is at least 4π, but the right-hand side tends to negative infinity as A(t) goes to zero.This gives us a contradiction.So we complete the proof.

    We also need two lemmas which have been proved by Gage [8].For convenience of readers,we present them here without proof.

    Lemma 3.9(see [8, Lemma 2])There is a non-negative functionF(γ)which is defined for allC1convex curvesγand which satisfies

    Here,p=-〈X,N〉.Given a sequence of regular convex curvesγisuch thatweconsider the normalized curvesIf these normalized curves lie in a fixed boundedregion of the plane, then the laminaeHienclosed converges to the unit disk in Hausdorffmetric.Finally,F(xiàn)(γ)=0if and only ifγis a circle.

    Lemma 3.10(see [8, Lemma 3])For the same functionF(γ)as above, we have

    wheneverγis aC2convex curve in the plane.

    We now prove Theorem 1.2.

    ProofLemma 3.7 shows A(t)→0 as t →T, and by Lemma 2.1 we have L(t)→0.Hence,the flow (1.4) must converge to a point p ∈R2as t →T.

    By (3.16) we obtain

    By the Cauchy-Schwartz inequality and the fact that the total curvature of a simple closed curve is 2π, we see that

    Then we can obtain

    By Lemma 3.8, we conclude that there is a subsequence of curves γ(ti) such that the left-hand side of (3.17) tends to zero.Then it follows that F(γ(ti)) tends to zero.

    Next, we want to show that the normalized curves lie in a bounded region.From the inequality (2.7), we observe thatdecreases under the curve flow.Using the Bonnesen inequality that we know that the outer radii of the normalized curves η(t) are bounded for all t ∈[0,T) by a constant C.As the evolving convex curve shrinking as time increasing,we can choose one point as the origin in the homothetic expansion of R2.Then all of the normalized curves η(t) will lie in a ball of radius 2C around this point.

    Applying Lemma 3.9,we see that the sequence of normalized laminae H(ti)converges to the unit disk in the Hausdorffmetric.Since L and A are continuous functions of convex laminae,converges to 4π for this sequence.Then,is decreasing under this curve evolution and thereforeconverges to 4π for the entire one parameter family of curves.For the normalized curves, (3.18) shows that both routand rinconverge to 1, forcing the normalized curves to converge to the unit circle.Thus we complete the proof.

    AcknowledgementThe authors are very grateful to the unknown referees for helpful suggestions.

    一本大道久久a久久精品| 黄片播放在线免费| 国产精品三级大全| 精品第一国产精品| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| 丰满少妇做爰视频| 久久久久网色| 亚洲精品国产区一区二| 老熟女久久久| 男女无遮挡免费网站观看| 午夜福利,免费看| 五月开心婷婷网| 亚洲七黄色美女视频| 免费观看a级毛片全部| 亚洲国产欧美在线一区| 少妇人妻久久综合中文| 人妻 亚洲 视频| 欧美老熟妇乱子伦牲交| 午夜免费观看性视频| 久久久久国产精品人妻一区二区| 悠悠久久av| 午夜影院在线不卡| 亚洲男人天堂网一区| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区黑人| 交换朋友夫妻互换小说| 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频| 在线免费观看不下载黄p国产| 久久久久久久国产电影| 青春草视频在线免费观看| 深夜精品福利| 精品酒店卫生间| 高清黄色对白视频在线免费看| 香蕉国产在线看| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 亚洲国产欧美网| 免费黄色在线免费观看| 乱人伦中国视频| av视频免费观看在线观看| 捣出白浆h1v1| 久久久国产精品麻豆| 久久久亚洲精品成人影院| 日韩伦理黄色片| 欧美国产精品一级二级三级| 91精品国产国语对白视频| 欧美日韩精品网址| 久久久久久久国产电影| 人妻 亚洲 视频| 欧美最新免费一区二区三区| 麻豆av在线久日| 性少妇av在线| 久久热在线av| av国产久精品久网站免费入址| 久热爱精品视频在线9| 97在线人人人人妻| 蜜桃在线观看..| 一级毛片黄色毛片免费观看视频| 免费人妻精品一区二区三区视频| 国产极品粉嫩免费观看在线| 多毛熟女@视频| 黑人猛操日本美女一级片| 亚洲免费av在线视频| 最黄视频免费看| 男人操女人黄网站| 亚洲av成人精品一二三区| 亚洲伊人久久精品综合| 免费在线观看黄色视频的| 美女主播在线视频| 日韩不卡一区二区三区视频在线| 中国三级夫妇交换| 亚洲精品国产色婷婷电影| 91精品国产国语对白视频| 欧美 亚洲 国产 日韩一| 亚洲精品第二区| 亚洲精品一区蜜桃| 亚洲精品久久成人aⅴ小说| 亚洲久久久国产精品| 欧美日韩亚洲综合一区二区三区_| 亚洲一区二区三区欧美精品| 国产精品秋霞免费鲁丝片| 制服人妻中文乱码| 不卡av一区二区三区| 性色av一级| 18禁观看日本| 一本久久精品| 亚洲国产欧美在线一区| 欧美人与性动交α欧美软件| 熟妇人妻不卡中文字幕| 免费在线观看完整版高清| 亚洲av日韩在线播放| 日韩中文字幕视频在线看片| 亚洲,一卡二卡三卡| 少妇人妻精品综合一区二区| 男女无遮挡免费网站观看| 人体艺术视频欧美日本| 亚洲欧洲国产日韩| 看免费av毛片| 国产精品久久久久久久久免| 国产在线视频一区二区| 十八禁人妻一区二区| 777米奇影视久久| 日韩免费高清中文字幕av| 人人妻,人人澡人人爽秒播 | 女人精品久久久久毛片| 久久这里只有精品19| 久久久久人妻精品一区果冻| 欧美乱码精品一区二区三区| 国产片特级美女逼逼视频| 国产日韩欧美亚洲二区| 午夜福利,免费看| 国产成人一区二区在线| 狂野欧美激情性bbbbbb| 色婷婷久久久亚洲欧美| 97人妻天天添夜夜摸| 老司机靠b影院| 美女中出高潮动态图| 亚洲,欧美,日韩| 亚洲国产精品一区二区三区在线| 如日韩欧美国产精品一区二区三区| 免费久久久久久久精品成人欧美视频| 少妇猛男粗大的猛烈进出视频| 啦啦啦中文免费视频观看日本| av国产精品久久久久影院| 亚洲欧美中文字幕日韩二区| 韩国精品一区二区三区| 男女无遮挡免费网站观看| 成年人免费黄色播放视频| 精品国产乱码久久久久久男人| 男女下面插进去视频免费观看| 亚洲国产av新网站| 中文精品一卡2卡3卡4更新| 国产免费一区二区三区四区乱码| 九色亚洲精品在线播放| 国产日韩欧美亚洲二区| 精品少妇黑人巨大在线播放| 美女大奶头黄色视频| 日韩伦理黄色片| av一本久久久久| 咕卡用的链子| 欧美日韩av久久| 男女午夜视频在线观看| 亚洲视频免费观看视频| 你懂的网址亚洲精品在线观看| 成人手机av| 黑人猛操日本美女一级片| 亚洲色图综合在线观看| 国产精品一二三区在线看| 国产xxxxx性猛交| 国产探花极品一区二区| 这个男人来自地球电影免费观看 | 亚洲色图综合在线观看| 成年人午夜在线观看视频| 999精品在线视频| 免费少妇av软件| 国产成人精品在线电影| 午夜av观看不卡| 国精品久久久久久国模美| 建设人人有责人人尽责人人享有的| 国产日韩欧美亚洲二区| 伦理电影大哥的女人| 青草久久国产| √禁漫天堂资源中文www| 国产精品久久久久成人av| 免费黄网站久久成人精品| 在线精品无人区一区二区三| 亚洲av中文av极速乱| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品电影小说| av在线老鸭窝| 国产精品一区二区在线观看99| 女性被躁到高潮视频| 亚洲熟女毛片儿| 久久精品aⅴ一区二区三区四区| 国产熟女欧美一区二区| 亚洲美女视频黄频| 午夜日韩欧美国产| 久久久久久人妻| 极品少妇高潮喷水抽搐| 国精品久久久久久国模美| 精品少妇久久久久久888优播| 婷婷色综合www| 男人舔女人的私密视频| 欧美激情 高清一区二区三区| 欧美最新免费一区二区三区| 国产精品成人在线| 欧美国产精品一级二级三级| 成年人午夜在线观看视频| 97在线人人人人妻| 伦理电影大哥的女人| 免费高清在线观看视频在线观看| √禁漫天堂资源中文www| 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 国产精品二区激情视频| 久久99精品国语久久久| www.精华液| 亚洲四区av| tube8黄色片| 国产精品久久久久久人妻精品电影 | 亚洲国产欧美网| 赤兔流量卡办理| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 精品国产一区二区三区久久久樱花| 国产视频首页在线观看| 少妇精品久久久久久久| 又大又黄又爽视频免费| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃| 国产99久久九九免费精品| 亚洲国产看品久久| 99热国产这里只有精品6| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 精品第一国产精品| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| 免费日韩欧美在线观看| 久久国产精品大桥未久av| 国产人伦9x9x在线观看| 天天影视国产精品| 国产一区二区在线观看av| 99热全是精品| 交换朋友夫妻互换小说| 久久天躁狠狠躁夜夜2o2o | 婷婷成人精品国产| 午夜日本视频在线| 老司机影院成人| 岛国毛片在线播放| 我的亚洲天堂| 亚洲视频免费观看视频| 国产97色在线日韩免费| 嫩草影视91久久| 一级片免费观看大全| 中文字幕高清在线视频| 久久鲁丝午夜福利片| 高清av免费在线| 日韩制服丝袜自拍偷拍| 欧美日韩视频精品一区| 日韩一区二区三区影片| 久久久国产一区二区| 国产成人欧美在线观看 | 国产一区有黄有色的免费视频| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡 | 免费日韩欧美在线观看| 色网站视频免费| 人人澡人人妻人| 国产精品香港三级国产av潘金莲 | 一区二区三区精品91| 操美女的视频在线观看| 国产成人a∨麻豆精品| a级毛片黄视频| 久久久欧美国产精品| 国产极品天堂在线| 精品一区二区三区av网在线观看 | 国产成人精品福利久久| 亚洲色图 男人天堂 中文字幕| 中国国产av一级| 女人被躁到高潮嗷嗷叫费观| 久久女婷五月综合色啪小说| 日韩熟女老妇一区二区性免费视频| 纵有疾风起免费观看全集完整版| 伊人久久国产一区二区| 99热网站在线观看| 亚洲精品日韩在线中文字幕| 男的添女的下面高潮视频| 男女之事视频高清在线观看 | 九色亚洲精品在线播放| 久久久国产一区二区| av网站在线播放免费| 18禁裸乳无遮挡动漫免费视频| 少妇人妻 视频| av又黄又爽大尺度在线免费看| 国产97色在线日韩免费| 久久精品亚洲av国产电影网| 久久天躁狠狠躁夜夜2o2o | 国产一区二区三区综合在线观看| 人妻一区二区av| 90打野战视频偷拍视频| 久久精品国产亚洲av高清一级| 成年人免费黄色播放视频| 久久久久精品人妻al黑| 国产一区二区激情短视频 | 国产精品免费视频内射| 一二三四在线观看免费中文在| 亚洲精品第二区| 亚洲精品第二区| 韩国高清视频一区二区三区| 国产片特级美女逼逼视频| 亚洲精品国产av蜜桃| 人妻 亚洲 视频| 久久久久久久久久久免费av| 久久免费观看电影| 亚洲激情五月婷婷啪啪| 又大又爽又粗| av在线观看视频网站免费| 国产成人精品在线电影| 天天添夜夜摸| 男女边摸边吃奶| 成人手机av| 国产成人91sexporn| 国产一区亚洲一区在线观看| 国产亚洲午夜精品一区二区久久| 精品少妇内射三级| 欧美国产精品va在线观看不卡| 97人妻天天添夜夜摸| 黄网站色视频无遮挡免费观看| 999精品在线视频| 老熟女久久久| 精品一区二区三卡| 宅男免费午夜| 看十八女毛片水多多多| 久久人妻熟女aⅴ| 日韩大片免费观看网站| 亚洲国产中文字幕在线视频| 人人澡人人妻人| 嫩草影院入口| a级毛片黄视频| 国产成人欧美| 国产亚洲av片在线观看秒播厂| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 亚洲人成电影观看| 久久这里只有精品19| 久久久久精品国产欧美久久久 | 久久青草综合色| 水蜜桃什么品种好| 欧美日韩亚洲高清精品| 美女中出高潮动态图| 中文字幕人妻丝袜一区二区 | 观看美女的网站| 欧美 亚洲 国产 日韩一| 一边摸一边做爽爽视频免费| 亚洲专区中文字幕在线 | 中文字幕人妻熟女乱码| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频| 亚洲精品日本国产第一区| 日韩一区二区三区影片| 久久精品国产a三级三级三级| 男女无遮挡免费网站观看| 男女床上黄色一级片免费看| 美女脱内裤让男人舔精品视频| 日韩人妻精品一区2区三区| 最黄视频免费看| 日韩av免费高清视频| 亚洲精品av麻豆狂野| 色婷婷久久久亚洲欧美| 午夜精品国产一区二区电影| 天天影视国产精品| 亚洲国产日韩一区二区| 在线看a的网站| 国产熟女午夜一区二区三区| av网站在线播放免费| 午夜福利视频精品| 一二三四在线观看免费中文在| 国产精品久久久av美女十八| 十八禁网站网址无遮挡| 免费观看人在逋| 高清黄色对白视频在线免费看| 国产精品无大码| 色综合欧美亚洲国产小说| 国产精品三级大全| 国产男女内射视频| 丰满乱子伦码专区| av在线播放精品| 一本大道久久a久久精品| 国产在视频线精品| 欧美日韩av久久| 国产一区二区三区综合在线观看| 久久97久久精品| 男女床上黄色一级片免费看| 久久99热这里只频精品6学生| 亚洲精华国产精华液的使用体验| 精品一区在线观看国产| 久久久欧美国产精品| 国产精品免费大片| 秋霞伦理黄片| 一级毛片电影观看| 亚洲第一青青草原| 国产一区二区 视频在线| a级片在线免费高清观看视频| 欧美另类一区| 国产又色又爽无遮挡免| 久久久久人妻精品一区果冻| 蜜桃在线观看..| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 亚洲精品国产色婷婷电影| 午夜免费观看性视频| 国产精品三级大全| 亚洲精品一二三| 国产人伦9x9x在线观看| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 赤兔流量卡办理| 欧美国产精品一级二级三级| 亚洲第一青青草原| 日本爱情动作片www.在线观看| 免费少妇av软件| 爱豆传媒免费全集在线观看| 日本欧美视频一区| svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 一边亲一边摸免费视频| 精品人妻在线不人妻| 日日撸夜夜添| 国产精品久久久av美女十八| 国产成人啪精品午夜网站| 免费黄色在线免费观看| 两个人免费观看高清视频| 国产在线免费精品| 亚洲欧美精品自产自拍| 青草久久国产| av一本久久久久| 精品久久久精品久久久| 蜜桃国产av成人99| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 久久久国产精品麻豆| 精品少妇内射三级| 黄频高清免费视频| 国产片特级美女逼逼视频| 亚洲av欧美aⅴ国产| 老司机在亚洲福利影院| 这个男人来自地球电影免费观看 | 久久久久精品久久久久真实原创| 精品亚洲乱码少妇综合久久| 亚洲精品乱久久久久久| 男女无遮挡免费网站观看| 欧美国产精品一级二级三级| 高清视频免费观看一区二区| 亚洲,一卡二卡三卡| 国产一区二区激情短视频 | 亚洲色图综合在线观看| 国产高清不卡午夜福利| 国产精品嫩草影院av在线观看| 中文天堂在线官网| 天堂俺去俺来也www色官网| 国产 一区精品| 天天躁夜夜躁狠狠躁躁| 日韩中文字幕视频在线看片| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 亚洲人成77777在线视频| 最近手机中文字幕大全| 久久久久久久久久久久大奶| 婷婷成人精品国产| 亚洲国产av影院在线观看| 丝袜喷水一区| svipshipincom国产片| 欧美人与善性xxx| 丁香六月欧美| 欧美激情高清一区二区三区 | 如日韩欧美国产精品一区二区三区| 热re99久久精品国产66热6| 香蕉国产在线看| 亚洲专区中文字幕在线 | 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 国产亚洲av片在线观看秒播厂| 国产成人欧美在线观看 | 久久久久久人妻| 久久久久精品久久久久真实原创| tube8黄色片| 又粗又硬又长又爽又黄的视频| 男人添女人高潮全过程视频| av一本久久久久| 欧美黄色片欧美黄色片| 久久青草综合色| 久久久久久久久久久免费av| 91精品伊人久久大香线蕉| 1024香蕉在线观看| 精品久久久久久电影网| 久热爱精品视频在线9| 叶爱在线成人免费视频播放| 人人澡人人妻人| 久热这里只有精品99| 亚洲欧美成人综合另类久久久| 97精品久久久久久久久久精品| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| avwww免费| 中国三级夫妇交换| 18禁动态无遮挡网站| 一区二区三区精品91| 男人爽女人下面视频在线观看| 免费高清在线观看日韩| 一二三四中文在线观看免费高清| 国产精品二区激情视频| 成人影院久久| 两个人免费观看高清视频| 国产精品三级大全| 亚洲精品久久成人aⅴ小说| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 高清av免费在线| 日韩欧美一区视频在线观看| 777米奇影视久久| 日本91视频免费播放| 操美女的视频在线观看| 国产深夜福利视频在线观看| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三区在线| 欧美日韩福利视频一区二区| 婷婷色av中文字幕| 街头女战士在线观看网站| 精品国产超薄肉色丝袜足j| 这个男人来自地球电影免费观看 | 1024视频免费在线观看| 9热在线视频观看99| 满18在线观看网站| 高清欧美精品videossex| 美女脱内裤让男人舔精品视频| 精品久久久精品久久久| 在线天堂最新版资源| 亚洲国产欧美网| 久久女婷五月综合色啪小说| 一级毛片我不卡| 美女脱内裤让男人舔精品视频| 一本久久精品| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 亚洲久久久国产精品| 久久综合国产亚洲精品| 国产伦理片在线播放av一区| 青青草视频在线视频观看| 尾随美女入室| 久久人人爽av亚洲精品天堂| 亚洲成av片中文字幕在线观看| 久久青草综合色| 国产成人精品福利久久| 亚洲成人手机| 国产男女超爽视频在线观看| 国语对白做爰xxxⅹ性视频网站| 肉色欧美久久久久久久蜜桃| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| a级毛片黄视频| 男女边摸边吃奶| 黄网站色视频无遮挡免费观看| 91aial.com中文字幕在线观看| 另类精品久久| 欧美人与性动交α欧美精品济南到| 国产欧美亚洲国产| 中文字幕av电影在线播放| 亚洲中文av在线| 热re99久久国产66热| 美女脱内裤让男人舔精品视频| 免费在线观看视频国产中文字幕亚洲 | 国产免费福利视频在线观看| 99久国产av精品国产电影| 久久99一区二区三区| 老司机在亚洲福利影院| 国产精品国产三级专区第一集| 超碰97精品在线观看| 免费观看a级毛片全部| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 亚洲成人免费av在线播放| 国产亚洲欧美精品永久| 久久毛片免费看一区二区三区| 天美传媒精品一区二区| 黄色视频不卡| 精品卡一卡二卡四卡免费| 免费女性裸体啪啪无遮挡网站| 亚洲精品日本国产第一区| 国产精品国产三级专区第一集| 侵犯人妻中文字幕一二三四区| 又大又爽又粗| 欧美亚洲日本最大视频资源| 日韩伦理黄色片| 91成人精品电影| 午夜久久久在线观看| 亚洲久久久国产精品| 好男人视频免费观看在线| 国产成人精品无人区| 日韩一区二区三区影片| 91aial.com中文字幕在线观看| 午夜精品国产一区二区电影| 99热网站在线观看| 久久精品aⅴ一区二区三区四区| 天堂8中文在线网| 女人久久www免费人成看片| 高清欧美精品videossex| 久久天躁狠狠躁夜夜2o2o | 水蜜桃什么品种好| 国产精品无大码| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| 午夜免费男女啪啪视频观看| 高清不卡的av网站| 人体艺术视频欧美日本| 久久久久网色| 男女之事视频高清在线观看 | av在线播放精品| 国产成人精品在线电影| 国产精品熟女久久久久浪| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看| 欧美人与性动交α欧美精品济南到| 国产亚洲av片在线观看秒播厂| 欧美中文综合在线视频| 欧美人与善性xxx| 午夜91福利影院| 国产伦人伦偷精品视频| 水蜜桃什么品种好| 欧美日韩视频精品一区| 亚洲成人免费av在线播放| 熟女少妇亚洲综合色aaa.| 国产成人午夜福利电影在线观看|