• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lp Solutions for Multidimensional BDSDEs with Locally Weak Monotonicity Coefficients*

    2021-06-04 05:19:20DejianTIANRunyuZHU

    Dejian TIAN Runyu ZHU

    Abstract In this paper, the authors establish the existence and uniqueness theorem of Lp (1 <p ≤2) solutions for multidimensional backward doubly stochastic differential equations (BDSDEs for short)under the p-order globally (locally) weak monotonicity conditions.Comparison theorem of Lp solutions for one-dimensional BDSDEs is also proved.These conclusions unify and generalize some known results.

    Keywords Backward doubly stochastic differential equation, Locally monotonicity condition, Lp solution

    1 Introduction

    The following backward stochastic differential equation (BSDE for short) was first introduced by Pardoux and Peng [13]:

    The existence and uniqueness result of L2solutions was proved under the Lipschitz condition.Since then, BSDEs have been developed rapidly and connected with other related fields, such as stochastic control and partial differential equations etc.Researchers have obtained several results under the weaker conditions on coefficients, such as [4–9, 15, 17, 19] etc.

    For studying a probabilistic representation of certain quasilinear stochastic partial differential equations (SPDEs for short), Pardoux and Peng [14] first proposed the BDSDE and got the existence and uniqueness result of L2solutions under the Lipschitz condition.The BDSDE is given as bellow:

    where{Bt}t≥0and {Wt}t≥0are mutually independent standard Brownian motions with values in Rland Rdrespectively.The integral with respect to W·is a standard forward It?o integral,while the integral with respect to B·is a backward one.These two kinds of integrals are special cases of It?o-Skorohod integral.For each (y,z)∈Rk×Rk×d, coefficients

    are jointly measurable.BDSDE (f,g,T,ξ) denotes the BDSDE with parameters (f,g,T,ξ).The following lemma comes from Section 3 in Bihari [3] and definitions will be used in the remaining of the paper.

    Lemma 1.1?0 ≤t ≤T,suppose thatD(t)andG(t)are continuous and positive functions.?u ≥0,q(u)is a non-negative and non-decreasing continuous function.Letδ ≥0,M ≥0.If

    and?u0>0, denoteQ(u)=then

    whereQ-1(·)is the inverse function ofQ(·), and the boundary furnished by(1.2)is independent ofu0.

    Definition 1.1A solution for BDSDE(1.1)is an(Ft)-measurable process(Yt,Zt)t∈[0,T]with values inRk× Rk×dsuch thatdP-a.s.,t →Ytcontinuous,t →Zt∈L2(0,T),t →f(t,Yt,Zt) ∈L1(0,T),t →g(t,Yt,Zt) ∈L2(0,T).And for allt ∈[0,T], the solution satisfies BDSDE(1.1).

    Definition 1.2Let(Yt,Zt)t∈[0,T]be a solution for BDSDE(1.1)andp >1,and(Yt,Zt)t∈[0,T]∈Sp×Mp.Then(Yt,Zt)t∈[0,T]is anLpsolution for BDSDE(1.1).

    There have been various extensions of the BDSDEs to non-Lipschitz condition on coefficients or to Lp(1 <p ≤2) solutions, and we refer to some references, Shi, Gu and Liu [16] for linear growth condition, Lin [10] and Lin and Wu [11] for left-Lipschitz or uniformly continuous conditions, Owo [12] for stochastic Lipschitz condition.It is important for studying BDSDEs with weaker conditions,because BDSDEs have the closely connection to the theory of stochastic partial differential equations (SPDEs for short).For the relationship between BDSDEs and SPDEs, the readers can refer to [1–2, 14, 18, 20–21] etc.

    Here, we would like to mention the following several results on multidimensional BDSDEs,which is related closely to our result.First of all, Wu and Zhang [20] investigated BDSDEs with locally monotone coefficients by adding the assumption that f satisfies γ-growth condition in (y,z).Second, Zong and Hu [24] considered the Lpsolution to BDSDEs for the monotone coefficient f with linear growth condition on z in the infinite time horizon.Furthermore, in BSDEs, Fan [6] studied the existence and uniqueness of Lp(p >1) solutions under the p-order weak monotonicity conditions.

    Motivated by Wu and Zhang [20] and Fan [6], this paper is devoted to the results of them to the BDSDEs with p-order globally (locally) weak monotonicity condition.We will prove the existence and uniqueness result of BDSDEs in this weak assumption.The methods in this paper should be explained in two aspects: (i) Compared with BSDEs’ situation, BDSDEs have two Brownian motions with two kinds of stochastic integrals.Conditional mathematical expectation can not make the integrals term w.r.t Brownian motions disappear simultaneously,and some standard approaches to deal with classical BSDEs can not be adapted effortless to the framework of BDSDEs, such as stopping time method.(ii)The existence and uniqueness result for solutions in p-order locally weak monotonicity situation is proved by the similar methods of Wu and Zhang [20] with a additional assumption ρN(x) := μN(yùn)·x+ρ(x).This assumption combines locally monotone and weak monotonicity conditions.

    We present two main results in this paper.Theorem 4.1 deals with the existence and uniqueness result of Lpsolutions for multidimensional BDSDEs under the p-order globally weak monotonicity conditions.A priori estimate and a truncation method are integrated together to derive the results.Theorem 5.1 investigates BDSDEs with p-order locally weak monotonicity conditions.Comparison theorem of Lpsolutions for one-dimensional BDSDEs is also put forward and proved.As a byproduct of Theorem 5.1, Remark 5.1 extends the results of Zhu and Tian [22–23].

    This paper is organized as follows.Some preliminaries are introduced in Section 2.We establish two priori estimates in Section 3.In Section 4, we give the existence and uniqueness theorem of Lp(1 <p <2) solutions for BDSDEs with p-order globally weak monotonicity coefficients.In Section 5, we present the existence and uniqueness theorem of Lp(1 <p ≤2)solutions for BDSDEs with p-order locally weak monotonicity coefficients.In Section 6,we give the comparison theorem.

    2 Preliminaries

    Suppose that k and d are two positive integers.|y| denotes the Euclidean norm of a vector y ∈Rk.〈x,y〉 denotes the inner product of vectors x,y ∈Rk.For a k×d matrix z, |z| :=where zTis the transpose of z.S denotes the set of all nondecreasing and concave functions ρ(·):R+→R+with ρ(0)=0; ?x >0, ρ(x)>0 and

    Let (Ω,F(xiàn),P) be a complete probability space.(Bt)t≥0and (Wt)t≥0are two mutually independent Brownian motions in this space.Suppose that N is the class of P-null sets of F.?t ∈[0,T],F(xiàn)or a process η,

    Especially, {Ft,0 ≤t ≤T} is neither increasing nor decreasing, and it can not be a filtration.In this paper, a given real number T >0 is the terminal time; random vector ξ ∈Rkis FTmeasurable; f,g are (Ft)-measurable.Lp(FT;Rk) (or Lp) denotes the set of all Rk-valued,F(xiàn)T-measurable random vectors ξ such that E[|ξ|p] <∞.Sp(0,T;Rk) (or Sp) denotes the set of all Rk-valued, (Ft)-adapted and continuous processes (Yt)t∈[0,T]such that

    Mp(0,T;Rk×d) (or Mp) denotes the set of all Rk×d-valued, (Ft)-progressively measurable processes (Zt)t∈[0,T]such that

    In the sequel, we introduce the following hypotheses.

    (H1) (g(t,0,0))t∈[0,T]∈M2.And there exist constants K >0 and 0 <α <1 such that for all (yi,zi)∈Rk×Rk×d, i=1,2, dP ×dt-a.e.,

    (H2) For any given (ω,t), f(ω,t,·,·) is continuous.

    (H3)p

    (H4) f satisfies γ-growth condition in (y,z), i.e., ?K >0, γ ∈[0,1), such that ?(y,z) ∈Rk×Rk×d,

    Remark 2.1According to inequality|x|γ≤1+|x|,γ ∈[0,1),(H4)implies that|f(t,y,z)|≤K(3+|y|+|z|).

    3 Priori Estimates

    In this section, we establish two useful priori estimates.We first introduce the following assumptions.

    (A1) dP ×dt-a.e., ?(y,z)∈Rk×Rk×d,

    where θ and λ are two non-negative constants, (ft)t∈[0,T]and (υt)t∈[0,T]are two non-negative,(Ft)-progressively measurable processes with

    (A2) dP ×dt-a.e., ?(y,z)∈Rk×Rk×d,

    where λ is a non-negative constant, ?(·) ∈S, (ft)t∈[0,T]is a non-negative (Ft)-progressively measurable process and satisfies

    In the same way and steps of Proposition 3.1 in[23],it is not difficult to obtain the following proposition.

    Proposition 3.1Suppose that1 <p ≤2, and(A1),(H1)and(H3)phold.Let(Y,Z)be a solution of BDSDE(1.1)such thatY ∈Sp.ThenZ ∈Mp.Moreover,?t ∈[0,T],

    wheredθ,λ,K,p,T,αis a non-negative constant depending on(θ,λ,K,p,T,α), dα,pis another non-negative constant depending on(α,p).

    The proof of the following estimate is similar to that of Proposition 3.2 in [23], so we omit its partial proof.

    Proposition 3.2Suppose that1 <p ≤2, and(A2),(H1)and(H3)phold.Let(Y,Z)be anLpsolution of BDSDE(1.1).Then there exists a non-negative constantdp,λ,α,K,Tdepending on(p,λ,α,K,T)such that?t ∈[0,T],

    ProofAccording to the proof of Proposition 3.2 in [23], we can easily get

    where constant hp,K,αdepends on (p,K,α)and

    Applying Gronwall’s inequality in the previous inequality, the proof of Proposition 3.2 can be completed.

    4 BDSDEs with p-Order Globally Weak Monotonicity Coefficients

    In this section, we study the BDSDEs with p-order globally weak monotonicity coefficients.The following assumptions will be used.

    (H5)f is Lipschitz continuous in z,i.e.,there exists a constant K >0 such that dP×dt-a.e.,?y ∈Rk,z1,z2∈Rk×d,

    (H6)pf satisfies p-order globally weak monotonicity condition in y, i.e., there exists a function ρ(·)∈S s.t., dP ×dt-a.e., ?y1,y2∈Rk, z ∈Rk×d,

    Remark 4.1According to [6, Proposition 1], we can know that for any 1 <p ≤2, (H6)p?(H6)2.

    Under the assumptions (H1)–(H2), (H3)2, (H4)–(H5) and (H6)2, Zhu and Tian [22] showed that BDSDE has a unique L2solution.The following theorem generalizes the result to Lpsituation.

    Theorem 4.1Let1 <p <2.under the conditions(H1)–(H2),(H3)p,(H4)–(H5)and(H6)p, BDSDE(1.1)has a uniqueLpsolution.

    ProofWe divide the proof into two steps.

    Step 1Let 1 <p <2.Under the conditions (H1)–(H2), (H3)p, (H4)–(H5) and (H6)p, we prove the existence of Lpsolutions for BDSDE (1.1).

    For any n ≥1, x ∈Rk, let qn(x):=

    Obviously, ξn,fnsatisfy (H2), (H3)2, (H4)–(H5) and (H6)p.Furthermore, by Remark 4.1,it implies that fnalso satisfies (H6)2.Then by [22, Theorem 3.2], for each n ≥1, BDSDE(ξn,fn,g,T) has a unique L2solution (Yn,Zn).Therefore, (Yn,Zn)∈Sp×Mp.

    On the other hand, by the definitions of ξnand fn(t,0,0) and the assumption (H3)p, we know that

    In the sequel,we will prove thatis a Cauchy sequence in Sp×Mp.For any integrals n,m ≥1, let (Ymn,Zmn) be a solution of the following BDSDE:

    Assumptions (H5) and (H6)pyield that

    Proposition 3.2 yields that there exists a constant C >0 independent of n,m such that

    Noting that gmn(s,0,0)= 0.Using (4.1), the fact that ρ(·) is of linear growth and Gronwall’s inequality yields

    Thus,by taking limsup in(4.3)with respect to m and n,and by virtue of(4.1),F(xiàn)atou’s lemma,the continuity and monotonicity of ρ(·) and Bihari’s inequality, we obtain

    On the other hand, fnsatisfies (H6)2and ρ(·) is of linear growth.Then for any k ≥1, we have

    Here, we use the estimate (see [6]): ρ(x) ≤(k +2A)x+for any x ≥0 and k ≥1,where A is the constant such that ρ(x)≤A(1+x), ?x ≥0.

    By Proposition 3.1, there exist constants Ck,K,p,T,αand Cα,pdepending on (k,K,p,T,α)and (α,p) respectively such that

    In the previous inequality, first letting n,m →∞and then k →∞, it implies

    Step 2We prove the uniqueness.Let (Yi,Zi) be Lpsolutions of BDSDE (1.1), i = 1,2.(H5) and (H6)pimply that

    According to Proposition 3.2, there exists a constant Cp,K,α,Tdepending on (p,K,α,T) such that

    We get Y1=Y2by Bihari’s inequality.

    On the other hand, f satisfies (H6)2, then

    Proposition 3.1 yields that there exist constants Cα,pand Cp,K,α,T,kdepending on (α,p) and(p,K,α,T,k) respectively such that

    Letting k →∞in previous inequality, we obtain the uniqueness of the solutions.

    Now, we give an example of BDSDEs which satisfies the assumptions in Theorem 4.1.

    Example 4.1Assume that k = 1, 1 <p ≤2, ξ ∈Lp, N ∈N.Let g(t,y,z) := y+0.5z,f(t,y,z):=sin|z|+h(|y|), where

    Obviously, f,g satisfy (H1)–(H2) and (H3)p.?y,z, |f(t,y,z)| ≤3, then f satisfies 0-growth condition in (y,z); |f(t,y,z1)-f(t,y,z2)|≤|z1-z2|, then f satisfies Lipschitz condition in z;

    and h(·)∈S.Then f satisfies p-order globally weak monotonicity condition in y.Theorem 4.1 yields that BDSDE (1.1) with the above f,g,ξ has a unique Lpsolution.

    5 BDSDEs with p-Order Locally Weak Monotonicity Coefficients

    In this section, we will extend the globally weak monotonicity condition to locally weak monotonicity condition.Let g(t,0,0) ≡0 for all t ∈[0,T] throughout this section.We first introduce the following assumptions.

    (H5′) f satisfies locally Lipschitz condition in z, i.e., ?N ∈N, ?LN>0 such that for any y,z1,z2with |z1|,|z2|,|y|≤N,

    (H6′)pf satisfies p-order locally weak monotonicity condition in y,i.e.,for any N ∈N,there exist functions ρN(·) such that for any z, y1, y2with |z|,|y1|,|y2|≤N,

    where ?x ≥0, ρN(x):=μN(yùn)·x+ρ(x) with μN(yùn)∈R, ρ(·)∈S.

    The following lemma can be proved in a similar way as [20, Lemma 3.3], so we omit its proof.

    Lemma 5.1?1 <p ≤2, under the conditions(H2),(H3)p,(H4),(H5′)and(H6′)p, there exists a sequencesuch that

    (i)for any givenn,ω,t,fn(t,·,·)continuous;

    (ii) ?n,|fn(t,y,z)|≤|f(t,y,z)|≤K(1+|y|γ+|z|γ);

    (iii) ?N,n →∞, then(fn-f)→0, where

    (iv) ?n,fnsatisfiesp-order globally weak monotonicity condition iny;moreover, for anyn,Nwithn ≥N,

    whereρN(·)is the same as the concave function in(H6′)pandy1,y2,zsatisfy|y1|,|y2|,|z|≤N;

    (v) ?n,fnsatisfies globally Lipschitz condition inz;moreover, for anyn,Nwithn ≥N,

    whereLN>0andy,z1,z2satisfy|y|,|z1|,|z2|≤N.

    The following two estimates are useful for dealing with the locally weak monotonicity coefficients.

    Proposition 5.1Let1 <p ≤2.Letfi,gsatisfy(H1)–(H2),(H3)p,(H4),(H5′),(H6′)p.Suppose that(Yi,Zi)isLpsolution ofBDSDE (ξ,fi,g,T),i = 1,2.Then there exist nonnegative constantsd1,d2independent ofNsuch that

    where

    with(x)=ρ(x)+x, x ≥0and0 <ε <1-α.

    ProofNote that |fi(t,y,z)| ≤K(3+|y|+|z|) and g(t,0,0) ≡0.By the similar methods in Propositions 3.1–3.2, we can obtain that there exists a non-negative constant Cp,K,α,Tdepending on (p,K,α,T) such that

    Set

    It?o’s formula yields that

    where

    Applying H¨older’s inequality and Young’s inequality deduces

    where C >0 depends on p,K,α,T,γ,E[|ξ|p].The above inequality comes from

    and (5.2), where CK,pand Cp,γare two positive constants related with (K,p) and (p,γ)respectively.By (H6′)p, we obtain

    From (H5′), there exists a constant ε >0 such that

    In view of H¨older’s inequality and Young’s inequality again, it implies

    Adding up the last five inequalities, we finally obtain that

    where

    Therefore,by the method in Proposition 3.2,we obtain that there exists a non-negative constant Cα,p,ε,Kdepending on (α,p,ε,K) such that

    Proposition 5.2Let1 <p ≤2.Letfi,gsatisfy(H1)–(H2),(H3)p,(H4),(H5′),(H6′)p.Suppose that(Yi,Zi)isLpsolutions of BDSDE(ξ,fi,g,T),i=1,2.Then for anyk ≥1, there exists a constantA >0such that

    where non-negative constantd3is independent ofNandk,d4is independent ofNbut depends onk.

    ProofLetbe an Lpsolution of (5.3).SetThen (5.2) still holds.It?o’s formula and (H1) yield

    (H6′)2holds for f1according to Remark 4.1.By the method similar to Proposition 5.1, we have

    Note that ρ(·) is of linear growth.Then for any k ≥1, there exists a constant A >0 such that

    where Cα,p,K,T,ε,k>0 depends on (α,p,K,T,ε,k).

    In the sequel, motivated by Wu and Zhang [20, Theorem 3.2], we prove the following existence and uniqueness theorem by assuming a technical assumption (5.6).

    Theorem 5.1Let1 <p ≤2,(H1)–(H2),(H3)p,(H4),(H5′),(H6′)phold and

    whereQ(u)=u0>0,u ≥0withd1,d2,ρ(·)andΠ2in(5.1).Then BDSDE(1.1)has a unique solution inSp×Mp.

    ProofLet (Yi,Zi), i = 1,2 are two solutions of BDSDE (1.1).By Lemma 1.1 and (5.1),we get

    where C1>0 is independent of N and d1,d2,Π2,Q(·) are defined in (5.6).Letting N →∞in previous inequality yields Y1=Y2.Furthermore,can be obtained by (5.4).Letting first N →∞and then k →∞in above inequality yields Z1=Z2.The proof of uniqueness is completed.

    In the sequel, we prove the existence.Let {fn}n≥1be the approximation sequence in Lemma 5.1.Then for every n, fnsatisfies p-order globally weak monotonicity condition in y and globally Lipschitz condition in z.From Theorem 4.1,we have that BDSDE(ξ,fn,g,T)has an Lpsolution (Yn,Zn).For any n ≥1, fnsatisfies (iv) and (v) in Lemma 5.1.According to Proposition 5.1 and Lemma 1.1, we can know that there exists a constant C2>0 independent of m,n,N such that

    where d1,d2,Q(·),Π2are defined in(5.6).First letting m,n →∞and then N →∞in previous inequality, by virtue of (5.6), we obtain

    Furthermore, combined with (5.4), we have

    Letting m,n →∞, N →∞, k →∞r(nóng)espectively, we get

    In the sequel, we only need to prove that in Lp(Ω), as n →∞,

    where

    with a constant C >0 independent of n,N.Note thatis a Cauchy sequence in Sp×Mp, then,dP ×dt-a.s.As n →∞, the continuity of f and Lebesgue’s dominated convergence theorem yield

    Hence, letting n,N →∞in (5.7), it yields that

    Therefore,the existence of Lpsolutions can be obtained by taking limit in BDSDE(ξ,fn,g,T).

    Remark 5.1In Theorem 5.1,ρN(x)=μN(yùn)·x+ρ(x), x ≥0, 1 <p ≤2.Assume that(H1)–(H2), (H3)p, (H4), (H5′), (H6′)phold.The existence and uniqueness result of Lpsolutions in the following two special cases are corollaries of Theorem 5.1.

    Case 1ρN(·)=ρ(·), μN(yùn)=0, LN=K.

    In this case, BDSDE (f,g,T,ξ) satisfies (H1)–(H2), (H3)p, (H4)–(H5) and (H6)p.Assumption (5.6) is reduced to

    where Q1(u)=(5.6) holds.

    This case is reduced to Theorem 4.1, and it generalizes the result of Zhu and Tian [22] to Lpsituation.

    Case 2ρN(x)=μN(yùn)·x, ?x >0; ρ(·)=0.

    Assumption (5.6) is

    where Q2(u)=Then

    Then (5.6) becomes

    In this situation, we can choose d2×Π2=in Proposition 5.1.Taking, we equivalently have that

    In fact, our condition is slightly weaker than [23, Theorem 5.1] since we only focus on Y in Proposition 5.1.

    6 Comparison Theorem

    We establish the comparison theorem of Lpsolutions for one-dimensional BDSDE (1.1).

    Theorem 6.1Let1 <p <2,ξ1≤ξ2, and(Yi,Zi)beLpsolutions forBDSDE(ξi,fi,g,T),i=1,2.Assume that one of the following conditions holds:

    (i) f1satisfies(H5),(H6)p, andf1(t,Y2t ,)≤f2(t,Y2t ,),dP ×dt-a.e.;

    (ii) f2satisfies(H5),(H6)p, andf1(t,Y1t ,)≤f2(t,Y1t ,),dP ×dt-a.e.

    Then, for anyt ∈[0,T],Y1t≤Y2t,dP-a.s.

    ProofThe comparison theorems under the above two conditions are proved in a same way,so we only give the proof under (i).SetUsing It?o’s formula and Tanaka’s formula yield

    Note that f1satisfies (H5) and (H6)p.Then

    we have

    By using the concavity of ρ(·) and Jensen’s inequality, we obtain that there exists a constant Cp,K,αdepending on (p,K,α) such that

    AcknowledgementThe authors would like to thank the editors and the anonymous reviewers for their insightful comments and valuable suggestions, which have helped them to improve the paper.

    午夜福利18| 国产成人av教育| 亚洲自偷自拍三级| 自拍偷自拍亚洲精品老妇| 精品国产亚洲在线| 国内精品美女久久久久久| 天天一区二区日本电影三级| 免费看光身美女| 在线观看66精品国产| 成人特级黄色片久久久久久久| 亚洲经典国产精华液单 | 深夜精品福利| 亚洲欧美清纯卡通| 国产成人a区在线观看| 人妻制服诱惑在线中文字幕| 日本与韩国留学比较| 国产精品日韩av在线免费观看| 欧美黑人巨大hd| 成年女人毛片免费观看观看9| 亚洲午夜理论影院| 自拍偷自拍亚洲精品老妇| 午夜福利免费观看在线| 首页视频小说图片口味搜索| 悠悠久久av| 国产精品,欧美在线| 性插视频无遮挡在线免费观看| 免费看日本二区| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区 | 美女xxoo啪啪120秒动态图 | 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 午夜视频国产福利| 小蜜桃在线观看免费完整版高清| 国内精品一区二区在线观看| 亚洲第一区二区三区不卡| av中文乱码字幕在线| 一a级毛片在线观看| 国产高清激情床上av| 国产国拍精品亚洲av在线观看| 日韩av在线大香蕉| 欧美乱妇无乱码| 性欧美人与动物交配| 成人美女网站在线观看视频| 欧美日本视频| 女同久久另类99精品国产91| 日本五十路高清| 午夜激情欧美在线| 国产精品1区2区在线观看.| 人妻夜夜爽99麻豆av| 精品人妻视频免费看| 久久精品久久久久久噜噜老黄 | 亚洲第一电影网av| 人妻久久中文字幕网| 日韩欧美国产在线观看| 91九色精品人成在线观看| 欧美三级亚洲精品| 久久人人精品亚洲av| 欧美黄色片欧美黄色片| 美女黄网站色视频| 91午夜精品亚洲一区二区三区 | 久久中文看片网| 亚洲av成人av| or卡值多少钱| 两个人视频免费观看高清| 最后的刺客免费高清国语| 午夜激情欧美在线| 日本三级黄在线观看| 久久久久久久久中文| 一区二区三区激情视频| 中文字幕av成人在线电影| 久久国产乱子伦精品免费另类| 搡老岳熟女国产| 国产三级黄色录像| 最近最新免费中文字幕在线| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看 | 亚洲一区高清亚洲精品| 高清在线国产一区| 亚洲欧美日韩高清在线视频| 级片在线观看| 在线播放无遮挡| 精品不卡国产一区二区三区| 在线观看66精品国产| 悠悠久久av| 国产成年人精品一区二区| 日韩免费av在线播放| 少妇被粗大猛烈的视频| 99久久精品热视频| 香蕉av资源在线| or卡值多少钱| 老鸭窝网址在线观看| 亚洲人与动物交配视频| 一边摸一边抽搐一进一小说| 别揉我奶头~嗯~啊~动态视频| 欧美中文日本在线观看视频| 成人一区二区视频在线观看| 9191精品国产免费久久| .国产精品久久| 久久精品91蜜桃| 国产精品综合久久久久久久免费| 午夜福利高清视频| 搡老岳熟女国产| 久久久久久久久大av| 亚洲真实伦在线观看| 日韩欧美一区二区三区在线观看| 俄罗斯特黄特色一大片| www.www免费av| 国产亚洲av嫩草精品影院| 99久久精品国产亚洲精品| 欧美中文日本在线观看视频| 99热这里只有是精品50| 少妇的逼水好多| 三级男女做爰猛烈吃奶摸视频| 人妻夜夜爽99麻豆av| 丁香欧美五月| 亚洲av成人av| 国产精品日韩av在线免费观看| 免费人成视频x8x8入口观看| 亚洲国产色片| 久久草成人影院| 美女被艹到高潮喷水动态| 国产成+人综合+亚洲专区| 身体一侧抽搐| 亚洲欧美日韩无卡精品| 91av网一区二区| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 亚洲aⅴ乱码一区二区在线播放| 啪啪无遮挡十八禁网站| 一本一本综合久久| aaaaa片日本免费| 中出人妻视频一区二区| 免费黄网站久久成人精品 | 精品不卡国产一区二区三区| 国产精品久久久久久亚洲av鲁大| 免费电影在线观看免费观看| 天堂动漫精品| 免费大片18禁| 美女cb高潮喷水在线观看| 久久99热6这里只有精品| 亚洲美女搞黄在线观看 | 高清日韩中文字幕在线| 亚洲av电影在线进入| 一本久久中文字幕| 亚洲美女搞黄在线观看 | 欧美zozozo另类| 亚洲国产色片| 直男gayav资源| 国产精品一区二区免费欧美| 国产熟女xx| 999久久久精品免费观看国产| 久久国产乱子免费精品| 极品教师在线免费播放| 好男人在线观看高清免费视频| 又爽又黄无遮挡网站| 亚洲在线自拍视频| 国产精品99久久久久久久久| 在线观看av片永久免费下载| 免费av毛片视频| 欧美成人性av电影在线观看| 麻豆av噜噜一区二区三区| 精品久久久久久久久久久久久| 少妇熟女aⅴ在线视频| 国产野战对白在线观看| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 精品熟女少妇八av免费久了| 少妇人妻精品综合一区二区 | 少妇熟女aⅴ在线视频| 久久热精品热| 免费av毛片视频| 黄色视频,在线免费观看| 亚洲五月婷婷丁香| 亚洲国产精品久久男人天堂| 91九色精品人成在线观看| 国产三级中文精品| 亚洲18禁久久av| 老鸭窝网址在线观看| 久久草成人影院| 久久久久久久久久成人| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器| 十八禁国产超污无遮挡网站| 午夜两性在线视频| 97超视频在线观看视频| 一区二区三区免费毛片| 国产av一区在线观看免费| 国产白丝娇喘喷水9色精品| 日韩中字成人| 亚洲av熟女| 极品教师在线视频| 18+在线观看网站| 在线观看av片永久免费下载| 免费av毛片视频| 男人的好看免费观看在线视频| 精品久久久久久成人av| 久久人妻av系列| 好看av亚洲va欧美ⅴa在| 国产精品亚洲一级av第二区| 国产主播在线观看一区二区| av在线天堂中文字幕| 欧美日韩福利视频一区二区| 免费人成在线观看视频色| 成人av一区二区三区在线看| 丰满人妻一区二区三区视频av| 十八禁人妻一区二区| 十八禁国产超污无遮挡网站| 欧美日韩黄片免| 天堂√8在线中文| 成人性生交大片免费视频hd| 国产精品野战在线观看| 亚洲精品亚洲一区二区| 久久久久久大精品| 99久久精品国产亚洲精品| 搡老熟女国产l中国老女人| 午夜影院日韩av| 超碰av人人做人人爽久久| 又爽又黄无遮挡网站| 又黄又爽又免费观看的视频| 一区福利在线观看| 嫩草影院入口| 久久人妻av系列| 三级国产精品欧美在线观看| 长腿黑丝高跟| 欧美xxxx性猛交bbbb| netflix在线观看网站| 国产三级在线视频| 免费大片18禁| 免费在线观看成人毛片| 成人精品一区二区免费| av天堂在线播放| 18禁在线播放成人免费| 如何舔出高潮| 免费av不卡在线播放| 亚洲av美国av| 99在线视频只有这里精品首页| a级一级毛片免费在线观看| 亚洲 国产 在线| 偷拍熟女少妇极品色| 久久久国产成人精品二区| 黄色一级大片看看| 男女做爰动态图高潮gif福利片| 一边摸一边抽搐一进一小说| 亚洲在线观看片| 麻豆久久精品国产亚洲av| 有码 亚洲区| 日本撒尿小便嘘嘘汇集6| 搞女人的毛片| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 亚洲成人精品中文字幕电影| 色播亚洲综合网| av黄色大香蕉| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 亚洲人与动物交配视频| 欧美乱色亚洲激情| avwww免费| 亚洲精品久久国产高清桃花| 国产成人a区在线观看| 91字幕亚洲| 日本免费a在线| 欧美日韩亚洲国产一区二区在线观看| 在线观看66精品国产| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 国产不卡一卡二| 嫁个100分男人电影在线观看| 美女被艹到高潮喷水动态| 亚洲精品一区av在线观看| 女人十人毛片免费观看3o分钟| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 中文字幕熟女人妻在线| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| 国产69精品久久久久777片| 免费无遮挡裸体视频| 99热只有精品国产| 中文字幕精品亚洲无线码一区| 欧美乱色亚洲激情| 久久99热这里只有精品18| 在现免费观看毛片| 99久久99久久久精品蜜桃| 欧美bdsm另类| 18禁裸乳无遮挡免费网站照片| 成人精品一区二区免费| 最新中文字幕久久久久| 日韩高清综合在线| 成人精品一区二区免费| 中文字幕人成人乱码亚洲影| 美女cb高潮喷水在线观看| 久久久久久久久中文| 久久精品国产自在天天线| 久久九九热精品免费| 国产熟女xx| 免费av毛片视频| 亚洲人与动物交配视频| 欧美日韩瑟瑟在线播放| 亚洲av美国av| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 亚洲av五月六月丁香网| 一二三四社区在线视频社区8| 亚洲欧美激情综合另类| 亚洲,欧美,日韩| 日本免费一区二区三区高清不卡| 午夜a级毛片| 亚洲最大成人av| 亚洲成av人片免费观看| 91麻豆av在线| 免费一级毛片在线播放高清视频| 网址你懂的国产日韩在线| 99国产极品粉嫩在线观看| 深夜精品福利| 欧美黑人巨大hd| 久久99热6这里只有精品| 怎么达到女性高潮| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 少妇裸体淫交视频免费看高清| 成人性生交大片免费视频hd| 精品人妻一区二区三区麻豆 | 此物有八面人人有两片| 国产精品免费一区二区三区在线| 老司机深夜福利视频在线观看| 精品一区二区免费观看| 精品一区二区三区视频在线| 一本综合久久免费| 国产成年人精品一区二区| 国产精品亚洲av一区麻豆| 欧美区成人在线视频| 亚洲最大成人av| 精品久久久久久久久久久久久| 此物有八面人人有两片| 国模一区二区三区四区视频| 国产亚洲精品综合一区在线观看| 丰满的人妻完整版| 狂野欧美白嫩少妇大欣赏| 国语自产精品视频在线第100页| 变态另类丝袜制服| 精品久久久久久成人av| 国产乱人视频| 性插视频无遮挡在线免费观看| 午夜免费男女啪啪视频观看 | 高潮久久久久久久久久久不卡| 久久国产乱子伦精品免费另类| 亚洲五月婷婷丁香| 内射极品少妇av片p| 欧美黑人欧美精品刺激| 精品日产1卡2卡| 99久久久亚洲精品蜜臀av| а√天堂www在线а√下载| 亚洲欧美日韩高清在线视频| eeuss影院久久| 日韩有码中文字幕| 精品福利观看| 国产精品自产拍在线观看55亚洲| 国产 一区 欧美 日韩| 精品人妻视频免费看| av女优亚洲男人天堂| 99久久九九国产精品国产免费| 国产一区二区在线av高清观看| 免费黄网站久久成人精品 | 一级黄片播放器| 亚洲人成网站在线播放欧美日韩| 国产精品精品国产色婷婷| 十八禁国产超污无遮挡网站| 少妇被粗大猛烈的视频| 国产精品美女特级片免费视频播放器| 变态另类成人亚洲欧美熟女| 亚洲最大成人av| av在线老鸭窝| 欧美成人一区二区免费高清观看| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女| 一级毛片久久久久久久久女| 99热这里只有是精品50| 国产不卡一卡二| aaaaa片日本免费| 动漫黄色视频在线观看| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 男人舔女人下体高潮全视频| 99热6这里只有精品| 国产老妇女一区| 搡老妇女老女人老熟妇| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 午夜免费鲁丝| 又黄又爽又刺激的免费视频.| 国产黄频视频在线观看| 一级毛片我不卡| 十八禁网站网址无遮挡 | 人妻 亚洲 视频| 国产一区二区在线观看日韩| 97精品久久久久久久久久精品| 亚洲经典国产精华液单| 欧美另类一区| 真实男女啪啪啪动态图| 免费观看a级毛片全部| 51国产日韩欧美| 免费观看av网站的网址| 亚洲国产精品成人综合色| 日韩成人伦理影院| 国产黄a三级三级三级人| av黄色大香蕉| 欧美bdsm另类| 干丝袜人妻中文字幕| 国内少妇人妻偷人精品xxx网站| 插阴视频在线观看视频| 色综合色国产| 欧美一区二区亚洲| 一级毛片aaaaaa免费看小| 亚洲国产精品专区欧美| 熟妇人妻不卡中文字幕| 婷婷色综合大香蕉| 最近的中文字幕免费完整| 日本黄大片高清| 国产精品久久久久久av不卡| 91精品一卡2卡3卡4卡| 欧美精品国产亚洲| 亚洲图色成人| 亚洲精品成人久久久久久| 免费在线观看成人毛片| 亚洲精品aⅴ在线观看| 久久久久九九精品影院| 99久久九九国产精品国产免费| 一级二级三级毛片免费看| 联通29元200g的流量卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线亚洲专区| 丰满乱子伦码专区| 男人添女人高潮全过程视频| 高清日韩中文字幕在线| 亚洲国产精品国产精品| 97人妻精品一区二区三区麻豆| 国产视频内射| 中文字幕av成人在线电影| 毛片女人毛片| 久久久久久久久久久免费av| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 亚洲av男天堂| 亚洲图色成人| 少妇人妻 视频| 欧美 日韩 精品 国产| 2021天堂中文幕一二区在线观| 下体分泌物呈黄色| 天堂中文最新版在线下载 | av在线app专区| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 街头女战士在线观看网站| 亚洲欧美一区二区三区国产| 欧美日韩一区二区视频在线观看视频在线 | 精品国产一区二区三区久久久樱花 | 边亲边吃奶的免费视频| 99久国产av精品国产电影| 你懂的网址亚洲精品在线观看| 亚洲内射少妇av| 成人高潮视频无遮挡免费网站| 欧美一区二区亚洲| 91精品一卡2卡3卡4卡| 久久精品综合一区二区三区| 午夜免费观看性视频| 国产av不卡久久| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91 | 久久99热这里只有精品18| 内地一区二区视频在线| 又大又黄又爽视频免费| 久久精品国产亚洲av天美| 日韩精品有码人妻一区| 成人亚洲精品av一区二区| 黄片wwwwww| 蜜桃久久精品国产亚洲av| 搡女人真爽免费视频火全软件| 亚洲美女搞黄在线观看| 精品久久久久久久久亚洲| 如何舔出高潮| 国产黄色免费在线视频| 男人爽女人下面视频在线观看| 少妇高潮的动态图| 黄色怎么调成土黄色| 国产毛片在线视频| 久久久久久久午夜电影| 成人一区二区视频在线观看| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 少妇人妻 视频| 久久精品国产a三级三级三级| 少妇人妻久久综合中文| 精品亚洲乱码少妇综合久久| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 各种免费的搞黄视频| 在线观看一区二区三区激情| 久久人人爽人人爽人人片va| 国产探花在线观看一区二区| 亚洲自偷自拍三级| 国产 一区 欧美 日韩| 亚洲av男天堂| 国产综合懂色| 亚洲成人中文字幕在线播放| 日本黄色片子视频| 男人舔奶头视频| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| 18禁在线无遮挡免费观看视频| 搞女人的毛片| 国产视频首页在线观看| 国产色爽女视频免费观看| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站 | 国产国拍精品亚洲av在线观看| 国产精品久久久久久精品古装| 欧美精品一区二区大全| 日本一二三区视频观看| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 午夜福利视频精品| 亚洲最大成人中文| 视频区图区小说| 在线 av 中文字幕| h日本视频在线播放| 国产男人的电影天堂91| 极品教师在线视频| av在线观看视频网站免费| 男人爽女人下面视频在线观看| 九九在线视频观看精品| 91精品伊人久久大香线蕉| 国产欧美亚洲国产| 亚洲精品久久午夜乱码| 国产毛片在线视频| 欧美日韩视频高清一区二区三区二| 久久久欧美国产精品| 国产一区二区亚洲精品在线观看| 精品视频人人做人人爽| 大片电影免费在线观看免费| 又黄又爽又刺激的免费视频.| 高清日韩中文字幕在线| 又黄又爽又刺激的免费视频.| 中文精品一卡2卡3卡4更新| 成人欧美大片| 在线观看国产h片| 亚洲,欧美,日韩| 欧美成人a在线观看| 欧美三级亚洲精品| 少妇 在线观看| 黄片wwwwww| 在线观看一区二区三区激情| 久久久精品94久久精品| 日日摸夜夜添夜夜添av毛片| 嫩草影院新地址| 色综合色国产| 亚洲最大成人手机在线| 日韩人妻高清精品专区| 成年免费大片在线观看| 亚洲天堂av无毛| 久久精品国产亚洲av天美| 亚洲av福利一区| 熟女av电影| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 简卡轻食公司| 亚洲精品久久久久久婷婷小说| 免费看av在线观看网站| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 国产亚洲91精品色在线| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 国产欧美亚洲国产| 亚洲va在线va天堂va国产| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区| 免费观看a级毛片全部| 老女人水多毛片| 九色成人免费人妻av| 尤物成人国产欧美一区二区三区| 97超视频在线观看视频| 免费av观看视频| 少妇猛男粗大的猛烈进出视频 | 国产高清有码在线观看视频| 国产男女超爽视频在线观看| 国产精品嫩草影院av在线观看| 精品熟女少妇av免费看| 国产伦在线观看视频一区| 91狼人影院| av在线观看视频网站免费| 久久人人爽人人爽人人片va| 插阴视频在线观看视频| 小蜜桃在线观看免费完整版高清| 免费高清在线观看视频在线观看| 在线观看一区二区三区| 高清欧美精品videossex| 少妇高潮的动态图| 激情 狠狠 欧美| 国产高清三级在线| 亚洲熟女精品中文字幕| 一级毛片我不卡| av在线老鸭窝| 亚洲伊人久久精品综合| 青春草国产在线视频| 欧美激情国产日韩精品一区| 大片电影免费在线观看免费|