黃詩純 沈琰 詹明
【摘要】 糖尿病腎?。╠iabetic kidney disease,DKD)是糖尿病的一個主要微血管并發(fā)癥和發(fā)生終末期腎病的主要原因。目前血肌酐和尿微量白蛋白等臨床指標是評估DKD患者腎組織損傷程度和腎功能進展的主要依據(jù),但其仍具有較大的局限性,尤其對于部分早期DKD患者不敏感。因此,亟須尋找擁有較高準確性的診斷及判斷預后的生物標志物。近期系列研究表明一些特異性分子可作為新型生物標志物用于早期診斷DKD、監(jiān)測其進展以及判斷預后,如腎損傷分子-1、半胱氨酸蛋白酶抑制劑C和肌醇加氧酶等。這些分子通過特異性反映腎小管細胞損傷進而揭示早期腎組織結構損傷與功能異常,敏感性甚至優(yōu)于尿微量白蛋白。本文就近年來腎小管損傷的診斷標志物在DKD中的研究新進展同時結合筆者自身的研究工作做如下綜述。
【關鍵詞】 糖尿病腎病 腎小管損傷 生物標志物
Research Progress on the Tubular Injury Diagnostic Biomarkers of Diabetic Kidney Disease/HUANG Shichun, SHEN Yan, ZHAN Ming. //Medical Innovation of China, 2021, 18(10): -177
[Abstract] Diabetic kidney disease (DKD) is one of the complications of microvascular complication in diabetes as well as a leading cause of end-stage renal disease. Now serum creatinine, microalbuminuria and other clinical indicators are regarded as main basis for evaluating the degree of renal tissue damage and renal function progression in patients with DKD, but they still have great limitations, especially insensitive to some patients with early DKD. Thus, it is urgent to find novel biomarkers with higher accuracy for diagnosis and prognosis. Recent studies have shown that some specific molecules can be used as novel biomarkers for early diagnosis of DKD and prediction of disease progress and prognosis, such as kidney injury molecule-1, cystatin C, inositol oxygenase, etc. These molecules reveal early renal tissue damage and functional abnormalities by specifically reflecting renal tubular cell damage, and their sensitivity is even better than that of urinary microalbumin. In this paper, the new research progress of diagnostic markers of renal tubular injury in DKD in recent years is reviewed, at the same time combined with the authors own research work.
[Key words] Diabetic kidney disease Tubular injury Biomarker
First-authors address: Ningbo University School of Medical, Ningbo 315000, China
doi:10.3969/j.issn.1674-4985.2021.10.041
糖尿病腎病(diabetic kidney disease,DKD)是糖尿病最常見的微血管并發(fā)癥之一[1]。隨著肥胖和2型糖尿病發(fā)病率的上升,DKD在中國已然超過腎小球腎炎,成為終末期腎臟?。╡nd-stage renal disease,ESRD)的主要原因[2]。近期系列研究表明DKD中除腎小球的損傷之外,腎小管的結構和功能改變同樣是DKD發(fā)生和發(fā)展的一個關鍵因素,且尿白蛋白具有相對較低的陽性預測值,部分DKD患者尿微量白蛋白呈陰性但腎功能不斷下降,表明僅檢測白蛋白尿不足以預測DKD的發(fā)生和進展[3]。研究表明以腎小管為基礎尋找生物標志物可較早地揭示糖尿病患者腎臟結構和功能障礙,且較好地監(jiān)測DKD的進展和判斷預后,如腎損傷分子-1、中性粒細胞明膠酶相關載脂蛋白、胱抑素C等[4]。筆者既往對糖尿病腎病的臨床生物標志物進行了系統(tǒng)綜述[5]。本文將進一步聚焦腎小管,就糖尿病腎病腎小管損傷診斷性標志物的最新研究進展做如下綜述。
1 糖尿病腎病腎小管損傷機制
Bolignano等[6]認為約五分之一的DKD患者在出現(xiàn)蛋白尿之前就已經(jīng)存在腎功能下降,這部分患者腎功能的下降可能與線粒體功能異常所致的腎小管損傷密切相關[7]。傳統(tǒng)的糖尿病腎病病理觀點強調(diào)腎小球是高血糖誘導下腎臟損傷的首要部位,而腎小管間質(zhì)損傷演變是DKD進展過程中繼發(fā)性或后期才發(fā)生[7]。在過去的十年中,腎小管損傷是DKD早期腎損傷的關鍵組成部分已被越來越多的研究者認識到。線粒體是動態(tài)細胞器,是活性氧產(chǎn)生的主要來源,而線粒體動力學改變是DKD患者腎小管細胞損傷的病理特征之一[7]。大量體內(nèi)外研究表明糖尿病狀態(tài)下線粒體損傷和線粒體源性氧化應激可激活不同的分子病理信號通路,如誘導糖基化終末產(chǎn)物形成增加,蛋白激酶C激活,多元醇通路活性增高和己糖胺途徑等,進一步引起腎小管細胞的凋亡和壞死[8]。筆者既往已經(jīng)系統(tǒng)闡述了糖尿病環(huán)境下腎小管細胞線粒體的動力學結構和功能損傷進一步促進線粒體超氧化物聚集,線粒體片段化和活性氧的產(chǎn)生相互影響,從而形成一個惡性循環(huán),誘導腎小管上皮細胞氧化應激,細胞凋亡、腎小管間質(zhì)萎縮及纖維化,繼而導致腎功能不斷惡化[7-8]。
2 傳統(tǒng)糖尿病腎病的生物標記物
既往研究認為DKD患者早期先出現(xiàn)腎小球損傷,臨床上也主要以蛋白尿、尿白蛋白與肌酐比值、血清肌酐、估計的腎小球濾過率(estimate glomerular filtration rate,eGFR)等評估糖尿病腎病的進展[7]。然而這些生物標志物并不能直接反映腎組織損傷程度,且對腎功能的微小變化相對不敏感。臨床上有多達三分之一的DKD患者尿微量白蛋白呈陰性但腎功能損傷不斷進展,表明僅檢測白蛋白尿不足以預測DKD的發(fā)生和進展[9]。研究表明腎小管損傷或早于腎小球病變[7]。因此,尋找具有高準確性、敏感度和特異度的新型腎小管診斷及預后生物標志物,將對糖尿病腎病的診治具有更廣泛的應用價值。
3 新型糖尿病腎病腎小管生物標志物
隨著人類基因組計劃的啟動,轉錄組學,蛋白質(zhì)組學以及代謝組學等技術相繼出現(xiàn),為篩選疾病早期診斷及預后的生物標志物提供新的途徑。最近,一些最初應用于急性腎損傷的生物標志物也相繼被報道對評估慢性腎臟?。╟hronic kidney disease,CKD)患者中具有價值。例如腎損傷分子-1、中性粒細胞明膠酶相關載脂蛋白、胱抑素C和肌醇加氧酶等。
3.1 腎損傷分子-1 腎損傷分子-1(kidney injury molecule-1,KIM-1),也被稱為甲型肝炎病毒細胞受體1或T細胞免疫球蛋白粘蛋白1,是腎臟近端小管上皮細胞的一種跨膜糖蛋白[10]。當腎臟結構或功能正常時,無法檢測到此分子,但其可隨著腎小管的損傷而顯著上調(diào)[11]。因此,KIM-1可作為近端小管損傷的潛在生物標志物。Coca等[11]發(fā)現(xiàn)DKD患者血漿中KIM-1水平與疾病的進展呈正相關,即使納入尿白蛋白與肌酐比值、糖化血紅蛋白和eGFR等常見協(xié)變量,KIM-1仍可作為預測糖尿病患者進展性腎病的生物標志物。
3.2 中性粒細胞明膠酶相關載脂蛋白 中性粒細胞明膠酶相關載脂蛋白(neutrophil gelatinase-associated lipocalin,NGAL)是一種分子量為25 kDa的小分子分泌性蛋白,其主要在腎小管上皮細胞中表達[12-13]。既往研究表明NGAL被認為可能是早期腎臟損傷的可靠的生物標志物之一[14-15]。Satirapoj等[13]研究發(fā)現(xiàn)2型糖尿病患者,腎臟快速進展組相較于非快速進展組尿中NGAL水平顯著升高,意味著NGAL可能成為預測DKD進展的生物標志物之一。研究發(fā)現(xiàn)在1型糖尿病患者中血清NGAL和eGFR呈負相關,表明其與腎功能下降程度呈正相關。但并未發(fā)現(xiàn)尿NGAL與eGFR之間存在顯著的相關性[16],這一發(fā)現(xiàn)與其他相關報道不一致,故NGAL是否能成為診斷糖尿病腎病的潛在標志物尚需更多的臨床試驗來論證。
3.3 胱抑素C 胱抑素C又稱半胱氨酸蛋白酶抑制劑C(cystatin C,cys C),是一分子量約為 13 kDa的內(nèi)源性小分子蛋白質(zhì),由體內(nèi)有核細胞恒定產(chǎn)生[13]。生理情況下,其可自由通過腎小球濾過膜,絕大部分在近端腎小管被重吸收分解并代謝,且不受感染、飲食、肝病和炎癥等相關因素的影響[17]。因其可早期反映腎小球濾過率以及腎小管重吸收功能的變化,故可作為腎小球和腎小管損傷的標志物[17-18]。研究表明尿胱抑素C水平被認為可能是腎小管功能障礙的標志[4,13],而血清胱抑素C水平則被作為可能是腎小球損傷的潛在生物標志物之一[15]。Satirapoj等[4]通過多元回歸分析模型表明,在2型糖尿病患者中尿胱抑素C水平與腎功能下降顯著相關,且其準確性與尿白蛋白相似。
3.4 視黃醇結合蛋白 視黃醇結合蛋白(retinol binding protein,RBP4)是一種在循環(huán)中唯一的相對分子量為21 kDa的視黃醇特異性轉運蛋白,負責維持視黃醇的正常水平,其主要在肝細胞表達[19-20]。RBP4可被腎小球自由濾過,隨后在近端小管幾乎完全被重吸收,故正常情況下尿中RBP4排出量較少[21]。但當腎小管損傷時,尿中RBP4的排出量隨之增加,表明尿中RBP4可能成為小管損傷的有用標志物[22]。Park等[23]通過多元回歸分析模型表明,在糖尿病患者中尿RBP4對尿白蛋白排泄有很強的預測作用,甚至在腎臟疾病的早期,即在出現(xiàn)大量白蛋白尿和eGFR水平降低之前。而血清中RBP4水平則與糖尿病的發(fā)病及腎小球的濾過率相關[20,24],因此其也被認為可能是腎小球損傷的潛在生物標志物之一。
3.5 肝型脂肪酸結合蛋白 肝型脂肪酸結合蛋白(liver-type fatty acid-binding protein,L-FABP)是一種15 kDa的細胞內(nèi)載脂蛋白,參與長鏈脂肪酸的代謝。它主要在肝臟以及腎臟近端腎小管上皮細胞的胞漿中表達。在大量蛋白尿、高血糖、高血壓、缺血、毒素等多種因素誘導下,均可引起腎小管間質(zhì)損害,L-FABP基因表達上調(diào),從而尿中L-FABP排泄增加[25]。多項研究表明糖尿病腎病患者尿中L-FABP水平明顯高于健康人群,與尿白蛋白、尿白蛋白與肌酐比值呈正相關,與eGFR呈負相關,提示其可能作為診斷DKD的潛在標志物之一[21]。Panduru等[25]通過前瞻性研究表明在1型糖尿病患者中尿L-FABP與腎功能下降呈正相關,但與尿白蛋白排泄率以及eGFR相比沒有額外的預測優(yōu)勢。Chou等[26]通過采用L-FABP代替尿白蛋白排泄率預測病情發(fā)展,對基本模型進行ROC曲線分析調(diào)整后,發(fā)現(xiàn)L-FABP的準確率(0.735)小于尿白蛋白排泄率(0.778),提示尿L-FABP可能不是2型糖尿病患者腎功能下降的理想預測指標。故目前尿L-FABP作為早期DKD進展的臨床診斷標志物尚有待大量的臨床觀察驗證。
3.6 腫瘤壞死因子受體1和腫瘤壞死因子受體2 腫瘤壞死因子(tumor necrosis factor,TNF)是一種多效的細胞因子,主要由免疫細胞如巨噬細胞、樹突狀細胞和T淋巴細胞產(chǎn)生[27]。TNF及其受體在金屬蛋白酶裂解后從細胞表面脫落并以17 kDa多肽的形式釋放。在血漿中,TNF表現(xiàn)為游離的或與循環(huán)中TNF受體1(tumor necrosis factor receptor 1,TNFR1)(p55或CD120a)和TNF受體2(tumor necrosis factor receptor 2,TNFR2)(p75或CD120b)結合,統(tǒng)稱TNF通路標志物[27]。TNFR1主要存在于腎小球和內(nèi)皮細胞中,而TNFR2只表達于T淋巴細胞和其他細胞,且僅在各種腎臟疾病的腎細胞中轉錄及表達[27-28]。Coca等[11]通過病例對照研究及前瞻性隊列研究表明血漿中TNFR1和TNFR2的濃度均與各期DKD患者eGFR呈負相關性。同樣,Murakoshi等[29]研究表明無論在1型還是2型糖尿病患者中,血清TNFR水平與蛋白尿呈正相關,與eGFR水平呈負相關。此外,循環(huán)TNFR水平對全因死亡率和eGFR下降獨立相關,即使調(diào)整了相關危險因素后,如eGFR、蛋白尿和糖化血紅蛋白。因此可將其作為診斷早期糖尿病腎病的生物標志物。
3.7 銜接蛋白P66Shc P66Shc是屬于ShcA蛋白質(zhì)家族中的一種銜接蛋白[7]。筆者及國內(nèi)外的多項研究發(fā)現(xiàn)銜接蛋白P66Shc是一種氧化還原酶,其主要與線粒體活性氧的產(chǎn)生、氧化應激和誘導凋亡有關[7,30-32]。而線粒體是腎小管細胞中的主要亞細胞器,糖尿病腎病的腎小管病變與線粒體損傷密切相關[8]。前期筆者團隊通過體外細胞培養(yǎng)實驗表明,P66Shc介導高血糖誘導的線粒體分裂和促凋亡信號通路,從而導致腎小管細胞氧化應激和凋亡[7]。Xu等[33]研究發(fā)現(xiàn)在DKD患者的外周血和腎臟組織中均發(fā)現(xiàn)P66Shc表達增加,且其與腎小管損傷呈正相關,這意味著P66Shc不僅可能是導致糖尿病腎病腎小管損傷的主要損傷因子之一,同時也有望成為監(jiān)測DKD腎功能進展的潛在生物標志物之一。
3.8 肌醇加氧酶 肌醇加氧酶(myoinositol oxygenase,MIOX)是一種分子量約為33 kDa的含非血紅素鐵的單加氧酶,它在腎臟中將肌醇分解為D-糖醛酸,是一種特異性氧化還原蛋白。MIOX高特異性地表達于近端小管細胞,并發(fā)現(xiàn)其在糖尿病小鼠的腎臟中表達上調(diào)[34]。近期文獻[35]研究表明MIOX不僅可調(diào)節(jié)肌醇的新陳代謝也可以通過非肌醇代謝途徑來參與DKD小管損傷的病理機制。此外Gao等[22]研究發(fā)現(xiàn)2型糖尿病腎病患者腎活檢組織中MIOX表達上調(diào),且血清和尿MIOX水平可在出現(xiàn)微量蛋白尿之前即顯著升高,提示其可作為診斷早期糖尿病腎病的生物標志物。
4 展望
目前臨床上糖尿病腎病的診斷仍依賴于白蛋白尿、尿白蛋白排泄、肌酐等指標。隨著新技術的發(fā)展,越來越多的腎小管生物標志物被探索,為糖尿病腎病早期診斷提供了新的方式。然而盡管現(xiàn)有的研究中一些分子被認為有望成為糖尿病腎病腎小管損傷潛在生物標志物,但其仍然未被應用于臨床診斷。這些生物分子在診斷糖尿病腎病中的準確性、靈敏性和特異度需要在更大規(guī)模的臨床隊列研究中被驗證,尤其對于無白蛋白尿的糖尿病腎病人群,需進一步確認它們是否能夠?qū)崿F(xiàn)轉化。此外,要通過加強對糖尿病腎病的早期篩查,并實施有效的預防措施,更早、更精確地預測以及延緩DKD的進展。
參考文獻
[1] Hernandez-Diaz I,Pan J,Ricciardi C A,et al.Overexpression of Circulating Soluble Nogo-B Improves Diabetic Kidney Disease by Protecting the Vasculature[J].Diabetes,2019,68(9):1841-1852.
[2] Yang C,Wang H,Zhao X,et al.CKD in China:Evolving Spectrum and Public Health Implications[J].Am J Kidney Dis,2020,76(2):258-264.
[3] Gewin L,Zent R,Pozzi A.Progression of chronic kidney disease:too much cellular talk causes damage[J].Kidney Int,2017,91(3):552-560.
[4] Satirapoj B,Pooluea P,Nata N,et al.Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy:A prospective cohort study[J].J Diabetes Complications,2019,33(9):675-681.
[5]宋盼愛,詹明,Kanwar Y S,等.生物標志物在糖尿病腎病臨床研究中的進展[J].中華腎臟病雜志,2012,28(2):155-158.
[6] Bolignano D,Zoccali C.Non-proteinuric rather than proteinuric renal diseases are the leading cause of end-stage kidney disease[J].Nephrol Dial Transplant,2017,32(suppl 2):194-199.
[7] Zhan M,Usman I,Yu J,et al.Perturbations in mitochondrial dynamics by p66Shc lead to renal tubular oxidative injury in human diabetic nephropathy[J].Clin Sci(Lond),2018,132(12):1297-1314.
[8]詹明,董政,孫林.線粒體損傷與糖尿病腎病[J].中華腎臟病雜志,2011,27(6):460-463.
[9] Robles N R,Villa J,Gallego R H.Non-Proteinuric Diabetic Nephropathy[J].J Clin Med,2015,4(9):1761-1773.
[10] Colombo M,Valo E,McGurnaghan S J,et al.Biomarker panels associated with progression of renal disease in type 1 diabetes[J].Diabetologia,2019,62(9):1616-1627.
[11] Coca S G,Nadkarni G N,Huang Y,et al.Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease[J].J Am Soc Nephrol,2017,28(9):2786-2793.
[12] Schrezenmeier E V,Barasch J,Budde K,et al.Biomarkers in acute kidney injury-pathophysiological basis and clinical performance[J].Acta Physiol(Oxf),2017,219(3):554-572.
[13] Satirapoj B,Aramsaowapak K,Tangwonglert T,et al.Novel Tubular Biomarkers Predict Renal Progression in Type 2 Diabetes Mellitus:A Prospective Cohort Study[J].J Diabetes Res,2016,2016:3102962.
[14] Bjornstad P,Singh S K,Snell-Bergeon J K,et al.The relationships between markers of tubular injury and intrarenal haemodynamic function in adults with and without type 1 diabetes:Results from the Canadian Study of Longevity in Type 1 Diabetes[J].Diabetes Obes Metab,2019,21(3):575-583.
[15] Zylka A,Dumnicka P,Kusnierz-Cabala B,et al.Markers of Glomerular and Tubular Damage in the Early Stage of Kidney Disease in Type 2 Diabetic Patients[J].Mediators Inflamm,2018,2018:7659243.
[16] Papadopoulou-Marketou N,Margeli A,Papassotiriou I,et al.
NGAL as an Early Predictive Marker of Diabetic Nephropathy in Children and Young Adults with Type 1 Diabetes Mellitus[J].
J Diabetes Res,2017,2017:7526919.
[17] Garg V,Kumar M,Mahapatra H S,et al.Novel urinary biomarkers in pre-diabetic nephropathy[J].Clin Exp Nephrol 2015,19(5):895-900.
[18] Lees J S,Welsh C E,Celis-Morales C A,et al.Glomerular filtration rate by differing measures,albuminuria and prediction of cardiovascular disease,mortality and end-stage kidney disease[J].Nat Med,2019,25(11):1753-1760.
[19] Mahfouz M H,Assiri A M,Mukhtar M H.Assessment of Neutrophil Gelatinase-Associated Lipocalin(NGAL)and Retinol-Binding Protein 4(RBP4)in Type 2 Diabetic Patients with Nephropathy[J].Biomark Insights,2016,11:31-40.
[20] Fan J,Yin S,Lin D,et al.Association of Serum Retinol-Binding Protein 4 Levels and the Risk of Incident Type 2 Diabetes in Subjects With Prediabetes[J].Diabetes Care,2019,42(8):1574-1581.
[21] Fiseha T,Tamir Z.Urinary Markers of Tubular Injury in Early Diabetic Nephropathy[J].Int J Nephrol,2016,2016:4647685.
[22] Gao P,Xu B,Song P,et al.The Kidney Specific Protein myo-Inositol Oxygenase,a Potential Biomarker for Diabetic Nephropathy[J].Kidney Blood Press Res,2018,43(6):1772-1785.
[23] Park S E,Lee N S,Park J W,et al.Association of urinary RBP4 with insulin resistance,inflammation,and microalbuminuria[J].Eur J Endocrinol,2014,171(4):443-449.
[24] Klisic A,Kavaric N,Ninic A.Retinol-binding protein 4 versus albuminuria as predictors of estimated glomerular filtration rate decline in patients with type 2 diabetes[J].J Res Med Sci,2018,23:44.
[25] Panduru N M,F(xiàn)orsblom C,Saraheimo M,et al.Urinary liver-type fatty acid binding protein is an independent predictor of stroke and mortality in individuals with type 1 diabetes[J].Diabetologia,2017,60(9):1782-1790.
[26] Chou K M,Lee C C,Chen C H,et al.Clinical value of NGAL,L-FABP and albuminuria in predicting GFR decline in type 2 diabetes mellitus patients[J].PLoS One,2013,8(1):e54863.
[27] Al-Lamki R S,Mayadas T N.TNF receptors:signaling pathways and contribution to renal dysfunction[J].Kidney Int,2015,87(2):281-296.
[28] Yang S,Xie C,Chen Y,et al.Differential roles of TNFalpha-TNFR1 and TNFalpha-TNFR2 in the differentiation and function of CD4(+)Foxp3(+)induced Treg cells in vitro and in vivo periphery in autoimmune diseases[J].Cell Death Dis,2019,10(1):27.
[29] Murakoshi M,Gohda T,Suzuki Y.Circulating Tumor Necrosis Factor Receptors:A Potential Biomarker for the Progression of Diabetic Kidney Disease[J].Int J Mol Sci,2020,21(6):1957.
[30] Albiero M,Ciciliot S,Tedesco S,et al.Diabetes-Associated Myelopoiesis Drives Stem Cell Mobilopathy Through an OSM-p66Shc Signaling Pathway[J].Diabetes,2019,68(6):1303-1314.
[31] Sun L,Xiao L,Nie J,et al.p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway[J].Am J Physiol Renal Physiol,2010,299(5):1014-1025.
[32] Mishra M,Duraisamy A J,Bhattacharjee S,et al.Adaptor Protein p66Shc:A Link Between Cytosolic and Mitochondrial Dysfunction in the Development of Diabetic Retinopathy[J].Antioxid Redox Signal,2019,30(13):1621-1634.
[33] Xu X,Zhu X,Ma M,et al.p66Shc:A novel biomarker of tubular oxidative injury in patients with diabetic nephropathy[J].Sci Rep,2016,6:29302.
[34] Dutta R K,Kondeti V K,Sharma I,et al.Beneficial Effects of Myo-Inositol Oxygenase Deficiency in Cisplatin-Induced AKI[J].J Am Soc Nephrol,2017,28(5):1421-1436.
[35] Zhan M,Usman I M,Sun L,et al.Disruption of renal tubular mitochondrial quality control by Myo-inositol oxygenase in diabetic kidney disease[J].J Am Soc Nephrol,2015,26(6):1304-1321.
(收稿日期:2020-07-22) (本文編輯:田婧)