鞠志成,金德才*,鄧 曄
土壤中塑料與微生物的相互作用及其生態(tài)效應(yīng)
鞠志成1,2,金德才1,2*,鄧 曄1,2
(1.中國(guó)科學(xué)院生態(tài)環(huán)境研究中心環(huán)境生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100085;2.中國(guó)科學(xué)院大學(xué)資源與環(huán)境學(xué)院,北京 100049)
聚焦于土壤環(huán)境中包括微塑料在內(nèi)的塑料污染,綜述了微生物與土壤塑料相互作用的最新研究成果.主要內(nèi)容包括:(i)土壤塑料的來(lái)源、遷移及其在土壤中長(zhǎng)期貯存的基本特征;(ii)土壤微生物對(duì)塑料的影響;(iii)塑料污染對(duì)土壤微生物群落及酶活性、土壤動(dòng)物、農(nóng)作物生產(chǎn)以及對(duì)全球陸地生態(tài)系統(tǒng)功能的影響.最后,本文展望了未來(lái)相關(guān)研究的重點(diǎn)方向,包括功能微生物、實(shí)驗(yàn)參數(shù)設(shè)置、塑料圈、塑料與土壤微生物的大尺度及長(zhǎng)期研究等,為從微生物角度認(rèn)識(shí)和解決土壤塑料污染問(wèn)題提供參考.
塑料;微塑料;土壤微生物;生態(tài)影響;塑料圈
自20世紀(jì)50年代起,塑料在全球范圍內(nèi)被生產(chǎn)和使用,隨著塑料及衍生物種類(lèi)的增多和應(yīng)用領(lǐng)域的拓展,它在環(huán)境中的持續(xù)積累也引發(fā)了廣泛的擔(dān)憂(yōu).與塑料污染相關(guān)的研究可追溯到20世紀(jì)70年代[1-2], 2004年“微塑料”一詞的提出及其潛在的生態(tài)威脅,使得塑料問(wèn)題再次在全球范圍內(nèi)引起廣泛關(guān)注[3].早期的研究主要集中于海洋等水體環(huán)境中,塑料(特別是微塑料)如何影響土壤等陸地生態(tài)系統(tǒng)上還不明確[4].2012年Rillig[5]呼吁重點(diǎn)關(guān)注土壤環(huán)境中的塑料及微塑料污染并得到廣泛的響應(yīng),與之相關(guān)的研究陸續(xù)開(kāi)展,并在塑料與微生物相互作用、動(dòng)植物毒理性評(píng)估[6]、生態(tài)效應(yīng)[7]等多領(lǐng)域取得一定的進(jìn)展.盡管如此,截至2019年,研究土壤微塑料的論文僅約占相關(guān)論文總數(shù)的5%[8],目前總體而言仍處于起步階段,尤其是包括微塑料在內(nèi)的土壤塑料與微生物群落相互作用的研究仍相對(duì)有限.
土壤生態(tài)系統(tǒng)是微生物群落最為豐富的系統(tǒng)之一,包含巨大的功能和遺傳多樣性潛力.微生物在土壤碳氮等元素循環(huán)、有機(jī)質(zhì)分解和維持土壤肥力等過(guò)程中起著關(guān)鍵作用[9],其組成和活性是土壤質(zhì)量評(píng)估的重要指標(biāo).塑料及其衍生物進(jìn)入土壤會(huì)直接或間接地改變微生物群落豐度、結(jié)構(gòu)、代謝等方面[7,10].而這些變化又與塑料理化性質(zhì)、微生物酶活性、功能基因的表達(dá)和遷移、動(dòng)植物的不良反應(yīng)等生態(tài)效應(yīng)存在密切的關(guān)聯(lián),最新研究表明,土壤塑料與微生物間的相互作用關(guān)系可能遠(yuǎn)比之前所認(rèn)知的復(fù)雜且深遠(yuǎn)得多[11].
揭示土壤塑料與微生物群落的相互作用及生態(tài)學(xué)影響是研究塑料污染問(wèn)題的重點(diǎn)和難點(diǎn),但目前仍需要多層次實(shí)驗(yàn)證據(jù)的支撐和系統(tǒng)性的思考[12].從微生物的角度開(kāi)展研究,將有助于進(jìn)一步闡明土壤塑料及微塑料遷移、轉(zhuǎn)化、降解的過(guò)程和機(jī)理,對(duì)進(jìn)一步揭示土壤環(huán)境變化及生態(tài)毒理性具有重要的意義.本文主要從微生物和生態(tài)學(xué)的角度出發(fā)對(duì)土壤塑料展開(kāi)論述,重點(diǎn)介紹了土壤微生物與微塑料相關(guān)研究的最新進(jìn)展,強(qiáng)調(diào)了微生物與土壤塑料污染間的緊密聯(lián)系和生態(tài)效應(yīng).
土壤塑料主要來(lái)自于農(nóng)業(yè)覆膜[13]、垃圾填埋場(chǎng)[14]以及人為丟棄[15],而土壤中的微塑料除了來(lái)自于較大塑料的直接破碎外,堆肥[16]、污泥[17]、灌溉水[15]、輪胎磨損[18]、大氣沉降[19]等也是微塑料進(jìn)入土壤的重要途徑.
塑料碎片化進(jìn)入土壤后,相對(duì)較大顆粒被截留在土壤表層,在機(jī)械磨損、風(fēng)化、光照、熱解等物理化學(xué)及微生物降解等多因素的共同作用下,它將分解產(chǎn)生微塑料(MP,<5mm)[20],甚至納米塑料(NP,<1mm)[21],并進(jìn)一步深入土壤內(nèi)部以團(tuán)聚體等形式與土壤顆粒結(jié)合,或被土壤動(dòng)物誤食并通過(guò)食物鏈積累轉(zhuǎn)移,甚至進(jìn)入地下水并遷移至其它水體系統(tǒng)[22].以上這些遷移過(guò)程已被逐步認(rèn)知,但從微生物研究的角度而言,塑料進(jìn)入土壤后與微生物群落間的相互作用始終影響著所處的環(huán)境體系.這些微生物不僅指與其直接接觸的微生物(如塑料表面生物膜),還包括在遷移過(guò)程中所處不同微環(huán)境中的微生物,如土壤動(dòng)物腸道或植物根際微生物等.塑料的耐受性使其通常不能長(zhǎng)期穩(wěn)定存在于某一位置而被降解(盡管尺寸在不斷減小),因此塑料在自然環(huán)境中往往只能保持相對(duì)的穩(wěn)定和降解的狀態(tài),并在其整個(gè)“生命周期”中處于不斷破碎和遷移之中.又由于微生物分布的廣泛性,塑料和微生物間相互作用將發(fā)生在其遷移至的任何微環(huán)境中,而目前這些作用過(guò)程及生態(tài)影響尚不明確[23].從宏觀的層面來(lái)看,除土壤環(huán)境外,海洋、淡水等水體系統(tǒng)也可能存在類(lèi)似的、有待深入探索的相互作用.因此,在塑料的遷移過(guò)程中,有必要將其與微生物群落聯(lián)系起來(lái),并以此為基礎(chǔ)來(lái)探討塑料所引起的一系列生態(tài)效應(yīng).
塑料是指以高分子量的合成樹(shù)脂為主要組分,摻入適當(dāng)添加劑后加工成型的塑性材料.其多樣性、延展性和耐受性等功能特點(diǎn),卻成為土壤環(huán)境污染中研究和治理的難點(diǎn).塑料良好的延展性使其尺度范圍可擴(kuò)展至納米級(jí)別,這不僅為MP和NP在水氣固三相中的遷移和積累提供便利,更使其與微生物一樣具有“無(wú)處不在”的廣泛分布特征,加之土壤環(huán)境的高度異質(zhì)性,導(dǎo)致了如微塑料定性和定量等相關(guān)研究的復(fù)雜程度增加[24].
除尺寸外,不同來(lái)源的塑料還在種類(lèi)、形狀和組成成分等多方面存在差別.常見(jiàn)的塑料類(lèi)別有聚乙烯(PE)、聚丙烯(PP)、聚酰胺(PA)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚對(duì)苯二甲酸乙二醇酯(PET);根據(jù)形狀可分為纖維、碎片、球狀、泡沫等.如污水處理廠污泥中主要含有纖維狀的PP和PET,而農(nóng)業(yè)土壤中主要是不規(guī)則碎片和薄膜狀的PE.上述差別將直接影響到塑料在土壤中的遷移和長(zhǎng)期貯存特性.而為了便于研究,當(dāng)前實(shí)驗(yàn)往往使用球狀的塑料微珠作為研究對(duì)象[7,25],這可能導(dǎo)致評(píng)估結(jié)果的差異化.
塑料既是污染源又是污染載體.一方面,塑料及其添加劑(如增塑劑、穩(wěn)定劑、抗氧化劑等)可以在塑料破碎和降解等過(guò)程中釋放進(jìn)入土壤[25];另一方面,塑料的疏水性表面使其成為有害物質(zhì)附著的良好載體,其中包括重金屬、持久性有機(jī)污染物(如多氯聯(lián)苯、多環(huán)芳烴等)和病原菌等[16].因此,自然環(huán)境中的土壤塑料污染通常呈現(xiàn)出以塑料為基質(zhì)形成的復(fù)雜污染體系,這可能對(duì)由塑料自身引起的生態(tài)毒理性的檢測(cè)和影響研究產(chǎn)生干擾.
此外,盡管MP作為塑料的衍生物,在組分上與塑料并無(wú)明顯差別,但與大尺寸塑料不同,MP和NP在土壤環(huán)境中呈現(xiàn)出一系列新特性.例如具有多相位和遠(yuǎn)距離遷移能力、改變土壤結(jié)構(gòu)和物質(zhì)循環(huán)、在微尺度上與微生物細(xì)胞相互作用等[26],這些特性不僅相互聯(lián)系,還加深了塑料及其衍生物與微生物相互作用的深度和廣度.
生物膜是附著在介質(zhì)表面或與其界面相聯(lián)系的復(fù)雜微生物群落.它處于高度異質(zhì)的環(huán)境中,具有重要的生態(tài)優(yōu)勢(shì),例如作為營(yíng)養(yǎng)物質(zhì)積累的熱點(diǎn)、協(xié)調(diào)復(fù)雜基質(zhì)的降解、提高生態(tài)穩(wěn)定性等[27].塑料顆粒破碎后其比表面積增大,加之細(xì)菌易于吸附在疏水表面,促進(jìn)了其表面生物膜的形成[28].塑料表面生物膜首次在海水中被發(fā)現(xiàn)可追溯到1972年[29],而直到2011年微塑料研究的興起才再次受到廣泛關(guān)注[30]. Zettler等[30]發(fā)現(xiàn),海洋中微塑料約在1~2周內(nèi)形成生物膜,并構(gòu)成獨(dú)特的微生態(tài)——塑料圈(Plastisphere).塑料圈中的微生物群落在組成、結(jié)構(gòu)以及遺傳上與周?chē)K奈⑸锶郝浯嬖陲@著差異,并具有高度可變和多樣化的優(yōu)勢(shì)功能類(lèi)群,這些類(lèi)群(如黃桿菌屬等)可能對(duì)其生物降解至關(guān)重要[31].與水體環(huán)境類(lèi)似,土壤塑料表面的微生物群落在豐度和結(jié)構(gòu)上與周?chē)寥篮推渌|(zhì)的微生物群落存在顯著區(qū)別,且形成生物膜的微生物種群與非附著生長(zhǎng)的微生物相比具有更高的代謝活性[32-33],這可能是因?yàn)槲⑸飳?duì)特定底物的選擇引起的分類(lèi)學(xué)差異,往往意味著功能性質(zhì)和代謝速率的差異[34-35].Zhang等[32]對(duì)大量可操作分類(lèi)單元(OTU)的統(tǒng)計(jì)分析表明,MP可作為農(nóng)田土壤中細(xì)菌的獨(dú)特棲息地,其中關(guān)鍵物種包括酸桿菌、綠彎菌、芽單胞菌和擬桿菌,且MP表面與土壤中的微生物相互作用同樣復(fù)雜.此外,生物膜還可能會(huì)在塑料表面形成額外的阻力,從而減緩污染物質(zhì)的釋放[36].
塑料的降解是聚合的大分子鏈斷裂的過(guò)程,受到分子量、官能團(tuán)類(lèi)型、疏水性和結(jié)晶度等理化參數(shù)的限制,塑料表面的非生物和生物降解過(guò)程十分緩慢.在自然條件下,光照、氧氣、pH值等環(huán)境因素均能改變塑料的理化性質(zhì),主要包括泛黃變色、含氧官能團(tuán)增加、結(jié)晶度降低和機(jī)械性能變化[37],這對(duì)于塑料的生物可利用性和降解酶的可及性有直接促進(jìn)作用.通常而言,生物因素引起的聚合物降解可分為3個(gè)步驟,首先土壤微生物在聚合物表面定殖形成致密的生物膜,然后通過(guò)分泌的胞外水解酶使高分子的塑料解聚為小分子片段,最后微生物在有氧或厭氧條件下代謝單體和短鏈低聚物產(chǎn)生CO2、CH4等物質(zhì)[38].微生物主導(dǎo)的塑料降解和轉(zhuǎn)化與其理化性質(zhì)的動(dòng)態(tài)變化密不可分,與此同時(shí)也進(jìn)一步影響其吸附和解吸特性.Zhang等[36]發(fā)現(xiàn)老化后的PS表現(xiàn)出較高的比表面積,且對(duì)土霉素的吸附能力提高了一倍.Guo等[39]研究也表明,理化性質(zhì)變化對(duì)疏水性有機(jī)污染物(HOC)的吸附有重要影響,這可能與塑料圈中微生物的選擇作用有關(guān).一項(xiàng)基于水體環(huán)境的研究發(fā)現(xiàn)[40],細(xì)菌多樣性與某些理化特性(如結(jié)晶度、硬度等)之間存在顯著相關(guān),這與獨(dú)特的OTU相對(duì)豐度變化吻合,而目前土壤中仍然缺乏相關(guān)報(bào)道.作為持久性有機(jī)污染物、重金屬、抗生素等污染物的優(yōu)良載體,塑料理化性質(zhì)的動(dòng)態(tài)變化無(wú)疑增加了與微生物相互作用及其生態(tài)毒理評(píng)估的復(fù)雜性.
3.1.1 微生物群落的組成 微生物群落的組成是土壤環(huán)境變化的重要生物學(xué)指標(biāo),對(duì)土壤生態(tài)系統(tǒng)的物質(zhì)循環(huán)和能量交換等核心功能起著至關(guān)重要的作用[41].已有多項(xiàng)研究表明,塑料及衍生物引起土壤環(huán)境條件和資源供應(yīng)的壓力能直接或間接地對(duì)細(xì)菌和真菌群落產(chǎn)生顯著影響[10,42-44].一方面,微生物群落結(jié)構(gòu)和豐度變化與其承載的特定生態(tài)功能密切相關(guān),其中較為典型的是與生物化學(xué)循環(huán)和降解相關(guān)的微生物.Qian等[10]發(fā)現(xiàn)摻入塑料碎片的土壤中OTU平均增加了9.72%,且與對(duì)照土壤中的細(xì)菌群落存在顯著差異.基于Illumina測(cè)序結(jié)果表明,在摻入塑料后一個(gè)月,土壤中優(yōu)勢(shì)菌由變形桿菌門(mén)轉(zhuǎn)變?yōu)榉啪€(xiàn)菌門(mén),這可能是由于某些放線(xiàn)菌具有降解塑料及其衍生物的功能潛力[43].此外,考慮到土壤微生物在生物地球化學(xué)循環(huán)中的關(guān)鍵地位,需要特別關(guān)注其對(duì)碳、氮等元素循環(huán)的影響及驅(qū)動(dòng)機(jī)制.Ren等[43]發(fā)現(xiàn)MP通過(guò)改變與N2O及CH4有關(guān)微生物的豐度來(lái)減少N2O的排放,從而降低了施肥土壤的全球變暖潛能(GWP).基于屬水平的共現(xiàn)網(wǎng)絡(luò)分析表明,MP的添加改變了與反硝化過(guò)程相關(guān)的細(xì)菌和真菌網(wǎng)絡(luò),這暗示著土壤中MP的存在可能會(huì)改變不同功能微生物之間的協(xié)作或競(jìng)爭(zhēng)關(guān)系,從而形成一個(gè)獨(dú)特的營(yíng)養(yǎng)代謝網(wǎng)絡(luò).另一方面,微塑料可以通過(guò)改變土壤的物理特性或營(yíng)養(yǎng)條件等間接影響土壤微生物多樣性和細(xì)菌群落結(jié)構(gòu)[11,45].例如增加孔隙率和改變團(tuán)聚體結(jié)構(gòu)等土壤關(guān)鍵參數(shù),并將進(jìn)一步導(dǎo)致土壤微生物及功能酶活性變化[48],但這可能是多種因素共同作用的結(jié)果,如塑料的濃度[45]、種類(lèi)[11]、尺寸[43]都可能造成評(píng)估結(jié)果的差異化.此外,典型增塑劑鄰苯二甲酸酯(PAE)釋放后可在農(nóng)田土壤中積累,并通過(guò)破壞細(xì)胞膜的流動(dòng)性來(lái)改變微生物群落結(jié)構(gòu)和代謝活性[47-48].總體而言,目前塑料及微塑料引起的土壤微生物的變化研究還較為分散,這些變化的相關(guān)機(jī)理還有待進(jìn)一步研究.隨著宏基因組學(xué)、宏轉(zhuǎn)錄組學(xué)等組學(xué)技術(shù)及相關(guān)生物信息分析的進(jìn)步和廣泛應(yīng)用,使用多組學(xué)方法可能是研究塑料引起的土壤微生物變化的發(fā)展趨勢(shì)[46,49-50].
3.1.2土壤酶活性的變化 微生物群落的結(jié)構(gòu)和豐度的改變可以直接表現(xiàn)在土壤酶活性的變化上.塑料與天然土壤在組分和結(jié)構(gòu)上完全不同,它在陸地生態(tài)系統(tǒng)中的積累將影響土壤原有的基本性質(zhì),先前的研究表明,塑料膜殘留物會(huì)顯著影響土壤中的酶活性和微生物功能多樣性[45,51].同樣地,微生物及酶活性等的變化也將反過(guò)來(lái)加劇土壤理化性質(zhì)變化,進(jìn)而影響土壤重要的生態(tài)學(xué)功能[7,45,52].近年來(lái),研究重點(diǎn)關(guān)注于反映土壤健康和承載特定功能酶的變化(表1),例如,脫氫酶已被用作土壤微生物活性和功能多樣性的重要指標(biāo)[53],熒光素二乙酸酯水解酶(FDAse)作為評(píng)估土壤質(zhì)量短期變化的有效指標(biāo),可以代表整體微生物代謝活性[54],過(guò)氧化氫酶作為好氧微生物指示的酶,與好氧微生物的豐度密切相關(guān)[45].Huang等[49]發(fā)現(xiàn)PE能顯著增加土壤中脲酶和過(guò)氧化氫酶活性,并進(jìn)一步提高了氨基酸代謝途徑和異源生物降解和代謝.PP能刺激土壤中FDAse活性,有利于溶解性有機(jī)碳、氮和磷的積累[45],但也有研究指出[8],與大多農(nóng)業(yè)系統(tǒng)中有機(jī)碳的損失率相比,這種增加水平十分有限,更多的研究強(qiáng)調(diào)了土壤塑料的負(fù)面效應(yīng)[7].如Awet等[44]發(fā)現(xiàn)含有PS納米顆粒的土壤中,脫氫酶活性和參與N循環(huán)(亮氨酸氨基肽酶)、P循環(huán)(堿性磷酸酶)和C循環(huán)(β-葡萄糖苷酶和纖維二糖水解酶)的酶活性在第28d顯著降低,但基礎(chǔ)呼吸速率和代謝熵增加.進(jìn)一步的研究表明,這些酶活性的變化可能與土壤穩(wěn)定性團(tuán)聚體的結(jié)構(gòu)破壞、土壤通氣性和透水性降低、土壤水分的蒸發(fā)速率提高等土壤性質(zhì)的變化有密切的關(guān)聯(lián)[11].
表1 塑料和微塑料對(duì)土壤微生物酶活性的影響
3.1.3 功能基因的表達(dá)和遷移 早期研究主要關(guān)注于土壤微生物群落及其酶在組成和豐度的變化,而從功能基因角度出發(fā)研究塑料引起的微生物生態(tài)效應(yīng)可能更為深入且有效[56].最新研究表明,塑料對(duì)微生物的組成、結(jié)構(gòu)及其酶活性改變的作用機(jī)制可能與某些重要的功能基因表達(dá)緊密相關(guān)(表2).Jin等[57-58]對(duì)土壤中典型增塑劑鄰苯二甲酸二丁酯(DBP)進(jìn)行了一系列深入研究,發(fā)現(xiàn)DBP能夠顯著誘導(dǎo)降解菌的鄰苯二甲酸酯雙加氧酶基因表達(dá)水平,而鄰苯二甲酸二甲酯(DMP)增加了土壤中有機(jī)質(zhì)的消耗,涉及碳代謝、氮代謝和信號(hào)調(diào)節(jié)途徑的基因表達(dá)水平的提高可能是碳氮代謝加速的重要原因[59].Qian等[10]進(jìn)一步在長(zhǎng)期受地膜污染的原位土壤中檢測(cè)到了與3種碳循環(huán)相關(guān)和與5種氮循環(huán)相關(guān)的基因表達(dá)變化,發(fā)現(xiàn)土壤中的固碳基因()和2個(gè)碳源水解酶編碼基因(-和-)均不同程度地降低,且基因豐度與相關(guān)微生物及酶的活性變化保持一致;與固氮相關(guān)基因的豐度顯著增加,而與反硝化相關(guān)的基因和氨氧化相關(guān)基因豐度降低,和比基因表現(xiàn)更為活躍.總之,這些關(guān)鍵功能基因表達(dá)水平的變化可能直接導(dǎo)致了土壤有機(jī)質(zhì)和總氮含量降低,而氮、碳代謝加速是土壤微生物最具生態(tài)破壞性的后果之一,例如土壤碳代謝速率的上升可導(dǎo)致CO2加速釋放,反之又將改變土壤微生物群落的組成、結(jié)構(gòu)、相互作用及其生態(tài)功能[60].
此外,塑料較少被探索的特性是它們作為水平基因轉(zhuǎn)移(HGT)的“熱點(diǎn)”的潛力.土壤生物,特別是傳代周期較短的微生物,持續(xù)暴露于塑料污染水平不斷增加的環(huán)境中,將不可避免地受到這種新型人為污染源的進(jìn)化壓力[26].HGT驅(qū)動(dòng)的細(xì)菌進(jìn)化和適應(yīng)的核心表現(xiàn)形式是各種移動(dòng)遺傳元件(MGE),例如質(zhì)粒等[61].受到農(nóng)藥施用等農(nóng)業(yè)生產(chǎn)方式的影響,HGT活躍的區(qū)域恰恰是塑料和抗生素所集中的熱點(diǎn)區(qū)域.例如施肥后的土壤可作為熱點(diǎn)并增強(qiáng)質(zhì)粒的活躍性,促進(jìn)HGT頻率的增加[62],如果與抗生素聯(lián)用,這種效果將是協(xié)同的[63],加之土壤中殘留塑料的疊加作用,HGT熱點(diǎn)效應(yīng)預(yù)計(jì)將被進(jìn)一步放大.此外,塑料表面生物膜可表現(xiàn)出較高的營(yíng)養(yǎng)利用率和細(xì)胞密度,允許微生物間強(qiáng)烈的相互作用,并引起基因的水平轉(zhuǎn)移[64-65],因此塑料生物膜也可能作為HGT重要的熱點(diǎn)源.廣泛存在于環(huán)境中的塑料碎片近年來(lái)被證明是抗生素的良好載體,Arias等[66]和Wu等[65]分別在水生生態(tài)系統(tǒng)中證實(shí)MP增加了不同細(xì)菌類(lèi)群間抗生素抗性基因(ARGs)的基因轉(zhuǎn)移水平,并成為生物膜形成和基因交換的新型基質(zhì),這將可能在全球范圍內(nèi)對(duì)細(xì)菌的進(jìn)化和人類(lèi)健康產(chǎn)生深遠(yuǎn)的影響.
表2 塑料和微塑料對(duì)微生物功能基因表達(dá)與遷移的影響
注:-為文獻(xiàn)中未提及.
土壤動(dòng)物是物質(zhì)循環(huán)中的重要消費(fèi)者,并在改善土壤性質(zhì)和提高土壤肥力等方面扮演重要的角色.土壤動(dòng)物對(duì)塑料顆粒的誤食及組織積累可能引起多種不良的連鎖反應(yīng),當(dāng)前主要以蚯蚓、線(xiàn)蟲(chóng)等為模式物種進(jìn)行研究.在毒理特征上,通常表現(xiàn)為引起如生物積累[70],組織損傷[71],生長(zhǎng)代謝抑制[72]、氧化應(yīng)激和免疫反應(yīng)[71]、神經(jīng)毒性[73]、高死亡率[4]等不良反應(yīng);在毒理機(jī)制上,塑料對(duì)土壤動(dòng)物腸道的機(jī)械損傷及對(duì)其功能微生物群落的改變可能是引發(fā)一系列病癥的重要原因[68].Zhu等[72]研究了小鼠肝、腎和腸道內(nèi)的塑料蓄積,發(fā)現(xiàn)腸道的生物蓄積因子最高,而腸道微生物與個(gè)體健康之間具有緊密關(guān)聯(lián).此外,有研究表明塑料能顯著影響腸道微生物群落結(jié)構(gòu)造成菌群失調(diào),這與執(zhí)行主要代謝途徑的腸道菌群中某些功能基因密切相關(guān),例如與腸道粘蛋白分泌及離子轉(zhuǎn)運(yùn)相關(guān)的2和等基因的轉(zhuǎn)錄水平顯著降低[68].Lei等[69]還發(fā)現(xiàn)多種類(lèi)型的塑料能直接降低線(xiàn)蟲(chóng)腸道內(nèi)鈣離子水平及氧化應(yīng)激基因-4的表達(dá),引起腸道組織的氧化損傷.總之,從微生物功能基因?qū)用骊U釋土壤動(dòng)物的相關(guān)病理反應(yīng)對(duì)于深入了解其生態(tài)毒理機(jī)制可能十分重要,此外,鑒于已有研究證實(shí)塑料可通過(guò)家禽等途徑進(jìn)入食物鏈并可轉(zhuǎn)移至各級(jí)營(yíng)養(yǎng)水平[6],有必要關(guān)注塑料在不同土壤動(dòng)物中的生物蓄積性及對(duì)人體健康的潛在威脅.
塑料覆膜在提高作物產(chǎn)量、品質(zhì)及用水效率等方面的突出優(yōu)勢(shì),使其在全球農(nóng)業(yè)生產(chǎn)中得以廣泛應(yīng)用并成為土壤塑料污染的主要來(lái)源之一.中國(guó)是目前農(nóng)用塑料使用最多的國(guó)家,并呈快速增長(zhǎng)趨勢(shì),1991~2017年,農(nóng)業(yè)生產(chǎn)中使用的塑料薄膜數(shù)量增長(zhǎng)了近4倍[75].盡管長(zhǎng)期以來(lái)農(nóng)田土壤覆膜被認(rèn)為是廉價(jià)且有益的農(nóng)業(yè)生產(chǎn)技術(shù),但考慮到其低回收率導(dǎo)致塑料碎片的積累,加之近年來(lái)對(duì)MP及其衍生物危害認(rèn)識(shí)的不斷深入,許多研究者也對(duì)于地膜的使用轉(zhuǎn)向批判的態(tài)度[76-77],Steinmetz等[78]認(rèn)為農(nóng)業(yè)覆膜帶來(lái)的短期農(nóng)業(yè)收益是以長(zhǎng)期土壤退化為代價(jià).低密度聚乙烯(LDPE)是最常用的農(nóng)用薄膜,其殘留物的不當(dāng)管理會(huì)對(duì)土壤理化特性、土壤動(dòng)物、微生物群落等多層次上造成顯著影響,進(jìn)而對(duì)農(nóng)作物發(fā)病率、產(chǎn)量、質(zhì)量等產(chǎn)生一系列負(fù)面效應(yīng)[79-80].Zhang等[46]對(duì)蔬菜種植區(qū)土壤樣品中LDPE豐度和分布進(jìn)行調(diào)查,塑料濃度范圍為7100~42960個(gè)/kg ,其中92%呈纖維狀,且MP濃度遠(yuǎn)高于大尺寸塑料,這暗示著農(nóng)田土壤中高濃度塑料對(duì)作物生長(zhǎng)的潛在威脅.Qi等[77]在添加1%LDPE的土壤中觀察到作物根際微生物的群落結(jié)構(gòu)和活性的改變,小麥種子及幼苗的生長(zhǎng)受到顯著抑制.然而,考慮到塑料密度遠(yuǎn)低于土壤顆粒,這將導(dǎo)致土壤容重降低并可能有利于根系的生長(zhǎng),Machado等[80]進(jìn)一步研究了6種不同的MP對(duì)土壤質(zhì)量和蔥生長(zhǎng)的影響,發(fā)現(xiàn)植物組織、生物量、根周及根際共生微生物活性均發(fā)生顯著變化,其中PE通過(guò)提高叢枝菌根真菌豐度及其養(yǎng)分利用率,從而增加了作物的生物量.需要注意的是,不同實(shí)驗(yàn)往往在塑料種類(lèi)、濃度以及農(nóng)作物的選擇上不一致,這導(dǎo)致不同研究中對(duì)作物生長(zhǎng)影響的判斷可能存在一定差異.一項(xiàng)基于中國(guó)農(nóng)田土壤塑料調(diào)查的綜述表明[75],塑料殘留物在0~240kg/hm2之間時(shí),玉米、小麥、馬鈴薯、棉花等常見(jiàn)作物的產(chǎn)量無(wú)明顯影響,但隨著時(shí)間的推移,作物產(chǎn)量會(huì)隨塑料殘留物濃度的增加而降低;當(dāng)其含量大于240kg/ hm2時(shí),農(nóng)作物產(chǎn)量明顯下降.最新研究還表明,生菜和小麥等農(nóng)作物可從根部吸收PS微粒并向其他組織轉(zhuǎn)移[81];MP能在群落水平上顯著影響植物生產(chǎn)力、結(jié)構(gòu)和優(yōu)勢(shì)地位,有必要進(jìn)一步研究其級(jí)聯(lián)效應(yīng)對(duì)生態(tài)系統(tǒng)功能的影響[82].
此外,增塑劑在農(nóng)業(yè)土壤中的廣泛存在也威脅著土壤質(zhì)量和生產(chǎn)力,PAE及其典型化合物DBP是覆膜常用添加劑并具有三致效應(yīng)和內(nèi)分泌干擾等危害[83],近年來(lái)備受?chē)?guó)內(nèi)外研究者關(guān)注.Kong等[42]研究了DBP對(duì)土壤-蔬菜系統(tǒng)的影響,結(jié)果表明DBP可以在蔬菜組織中積累并具有增強(qiáng)效應(yīng),同時(shí)也會(huì)使土壤細(xì)菌的多樣性顯著降低.Ramos等[84]對(duì)PE、土壤和農(nóng)藥之間的相互作用展開(kāi)調(diào)查,發(fā)現(xiàn)PE不僅能充當(dāng)農(nóng)藥富集的載體,保護(hù)其免于降解,還可由此遷移到其他環(huán)境介質(zhì)中.此外,農(nóng)藥和肥料的施用可能導(dǎo)致抗生素、ARGs和MP等的混合污染[85],這使得ARGs在土壤中的傳播成為一個(gè)新的挑戰(zhàn),且這些復(fù)合污染物與土壤微生物之間的相互作用機(jī)制目前還有待進(jìn)一步研究.
塑料污染是全球范圍內(nèi)最廣泛、最持久的人為壓力源之一.盡管陸地只占地球面積約三分之一,但所包含的生物多樣性總和卻比海洋大5倍,據(jù)估計(jì)每年向全球陸地釋放的塑料總量是海洋的4~23倍[16].研究發(fā)現(xiàn),塑料可作為土壤碳源進(jìn)入并賦存于陸地生態(tài)系統(tǒng),并引起土壤物理特性和生物群系的變化,對(duì)陸地生態(tài)系統(tǒng)的物質(zhì)循環(huán)和能量流動(dòng)產(chǎn)生廣泛而深遠(yuǎn)的影響[80,86],具體而言,主要表現(xiàn)在土壤生物物理環(huán)境、地球化學(xué)循環(huán)和生態(tài)毒理學(xué)等方面,而土壤微生物群落在其中扮演著重要的角色.從較短的時(shí)間尺度上看,塑料污染在全球陸地生態(tài)系統(tǒng)中積累擴(kuò)散,通過(guò)改變環(huán)境條件和資源供應(yīng),進(jìn)而影響土壤微生物群落所介導(dǎo)的多種生態(tài)系統(tǒng)服務(wù)和功能水平,包括對(duì)影響陸地生態(tài)系統(tǒng)的物質(zhì)循環(huán)、加速CO2和CH4等溫室氣體的排放、土壤肥力和生產(chǎn)力的下降[7,10,43].從更長(zhǎng)的時(shí)間尺度上看,評(píng)估其導(dǎo)致陸地生態(tài)系統(tǒng)中微生物多樣性的喪失和潛在進(jìn)化也可能十分重要.土壤團(tuán)聚體是相對(duì)穩(wěn)定的實(shí)體,可作為微生物進(jìn)化的孵化器.MP的暴露、攝入和轉(zhuǎn)化可能引起細(xì)胞毒性,此外,塑料引起土壤團(tuán)聚體及孔隙分布的變化還會(huì)對(duì)土壤生物區(qū)系施加一定的選擇壓力,并產(chǎn)生多種進(jìn)化后果,例如導(dǎo)致種群內(nèi)的功能基因型發(fā)生變化,甚至某些土壤生物群的滅絕[26].MP作為多種污染物質(zhì)的載體,加之其微尺度、跨地域的遷移和分散為病原體或微生物及其移動(dòng)遺傳元件提供了理想條件,可以充當(dāng)HGT和微生物進(jìn)化的“熱點(diǎn)”,非致病性的微生物可以潛在地獲取并迅速傳播抗生素抗藥性基因,這類(lèi)具有全球性的潛在生態(tài)風(fēng)險(xiǎn)和人體健康危害也需要引起足夠的重視[87].總而言之,塑料污染是全球陸地生態(tài)系統(tǒng)的新興威脅,是全球陸地生態(tài)系統(tǒng)變化的驅(qū)動(dòng)力之一.
綜上,長(zhǎng)期以來(lái),塑料污染深入且持久地威脅著全球陸地生態(tài)系統(tǒng),并與微生物發(fā)生廣泛而緊密的相互作用,引起一系列復(fù)雜的生態(tài)學(xué)效應(yīng),特別是近年來(lái)與微塑料相關(guān)的研究推動(dòng)著對(duì)該問(wèn)題的進(jìn)一步思考和探索.未來(lái)仍需大量研究對(duì)土壤塑料與微生物群落間相互作用及生態(tài)影響進(jìn)行整體性的認(rèn)識(shí)和評(píng)估,此外,需要通過(guò)進(jìn)一步地認(rèn)識(shí)和利用與塑料降解和轉(zhuǎn)化密切相關(guān)的微生物資源,以更好地服務(wù)于土壤塑料污染的治理.
4.1 目前已觀察到微生物群落及其相關(guān)酶對(duì)塑料及其衍生物的生態(tài)響應(yīng),還需要重點(diǎn)研究這些變化與功能基因之間的關(guān)系,以揭示土壤性質(zhì)改變和生態(tài)功能相關(guān)的變化和調(diào)節(jié)機(jī)制.
4.2 研究中涉及的微生物和酶類(lèi)群在不同實(shí)驗(yàn)條件下存在較大差異,其結(jié)論有時(shí)也表現(xiàn)出不一致甚至相反的特點(diǎn).有必要對(duì)更多塑料參數(shù)(類(lèi)型、濃度、尺寸等)、動(dòng)植物類(lèi)型和環(huán)境條件等進(jìn)行綜合考量,以準(zhǔn)確而全面地評(píng)估塑料引起的生態(tài)效應(yīng).
4.3 早年塑料生物膜研究仍主要集中于水生環(huán)境,且僅將較少的微生物的動(dòng)態(tài)變化與其生態(tài)功能和影響關(guān)聯(lián)起來(lái),有必要加強(qiáng)對(duì)塑料生物膜中微生物之間和微生物與基質(zhì)之間相互作用的研究.此外,應(yīng)將多組學(xué)工具與形態(tài)學(xué)鑒定工具、生態(tài)學(xué)理論與生化分析結(jié)合起來(lái),從而對(duì)土壤環(huán)境中塑料生物膜形成及其動(dòng)態(tài)變化、功能和生態(tài)作用提供全面的概述,以便全面加深對(duì)塑料圈的理解.
4.4 當(dāng)前研究大多基于實(shí)驗(yàn)室條件和短期評(píng)估下開(kāi)展,塑料污染對(duì)全球陸地生態(tài)系統(tǒng)的長(zhǎng)期影響仍不明確,因此需要進(jìn)行整體的、跨地域的、長(zhǎng)期可持續(xù)的監(jiān)測(cè)和評(píng)估研究,特別需要關(guān)注微塑料引起的土壤碳、氮等元素循環(huán)對(duì)陸地生態(tài)系統(tǒng)和微生物進(jìn)化的影響.
[1] Carpente E J, Anderson S J, Miklas H P, et al. Polystyrene spherules in coastal waters [J]. Science, 1972,178(4062):749-750.
[2] Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases [J]. Nature, 1977,270(5632):76-78.
[3] Wright S L, Kelly F J. Plastic and human health: A micro issue? [J]. Environmental Science & Technology, 2017,51(12):6634-6647.
[4] Huerta Lwanga E, Gertsen H, Gooren H, et al. Microplastics in the terrestrial ecosystem: Implications for lumbricus terrestris (Oligochaeta, Lumbricidae) [J]. Environmental Science & Technology, 2016,50(5):2685-2691.
[5] Rillig M C. Microplastic in terrestrial ecosystems and the soil? [J]. Environmental Science & Technology, 2012,46(12):6453-6454.
[6] Huerta Lwanga E, Mendoza Vega J, Ku Quej V, et al. Field evidence for transfer of plastic debris along a terrestrial food chain [J]. Scientific Reports, 2017,7(1):14071.
[7] Abel D, Kloas W, Zarfl C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018,24(4):1405- 1416.
[8] Qi R, Jones D L, Li Z, et al. Behavior of microplastics and plastic film residues in the soil environment: A critical review [J]. Science of the Total Environment, 2020,703:134722.
[9] Delgado-Baquerizo M, Grinyer J, Reich P B, et al. Relative importance of soil properties and microbial community for soil functionality: insights from a microbial swap experiment [J]. Functional Ecology, 2016,30(11):1862-1873.
[10] Qian H, Zhang M, Liu G, et al. Effects of soil residual plastic film on soil microbial community structure and fertility [J]. Water Air & Soil Pollution, 2018,229(8):261.
[11] de Souza Machado A A, Lau C W, Till J, et al. Impacts of microplastics on the soil biophysical environment [J]. Environmental Science & Technology, 2018,52(17):9656-9665.
[12] 朱永官,朱 冬,許 通,等.(微)塑料污染對(duì)土壤生態(tài)系統(tǒng)的影響:進(jìn)展與思考 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2019,38(11):1-6. Zhu Y G, Zhu D, Xu T, et al. Impacts of (micro) plastics on soil ecosystem: Progress and perspective [J]. Journal of Agro-Environment Science, 2019,38(1):1-6.
[13] Kasirajan S, Ngouajio M. Polyethylene and biodegradable mulches for agricultural applications: a review [J]. Agronomy for Sustainable Development, 2013,33(2):443-443.
[14] Nizzetto L, Bussi G, Futter M N, et al. A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments [J]. Environmental Science-Processes & Impacts, 2016,18(8):1050-1059.
[15] Blaesing M, Amelung W. Plastics in soil: Analytical methods and possible sources [J]. Science of the Total Environment, 2018,612: 422-435.
[16] Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017,586:127-141.
[17] Mintenig S M, Int-Veen I, Loeder M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging [J]. Water Research, 2017,108:365-372.
[18] Foitzik M J, Unrau H J, Gauterin F, et al. Investigation of ultra fine particulate matter emission of rubber tires [J]. Wear, 2018,394:87-95.
[19] Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016,104(1/2):290-293.
[20] Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004,304(5672):838-838.
[21] Gigault J, Ter Halle A, Baudrimont M, et al. Current opinion: What is a nanoplastic? [J]. Environmental Pollution, 2018,235:1030-1034.
[22] Gaylor M O, Harvey E, Hale R C. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and penta-BDE- amended soils [J]. Environmental Science & Technology, 2013, 47(23):13831-13839.
[23] Rillig M C, Bonkowski M. Microplastic and soil protists: A call for research [J]. Environmental Pollution, 2018,241:1128-1131.
[24] Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida [J]. Environmental Pollution, 2019, 247:890-897.
[25] Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms [J]. Sci Rep, 2017,7(1):1362.
[26] Rillig M C, De Souza Machado A A, Lehmann A, et al. Evolutionary implications of microplastics for soil biota [J]. Environ Chem, 2019,16(1):3-7.
[27] Wimpenny J, Manz W, Szewzyk U. Heterogenety in biofilms [J]. Fems Microbiology Reviews, 2001,24(5):661-671.
[28] Potera C. Microbes occupy, may be degrading plastic debris in oceans [J]. Microbe, 2013,8(11):438-439.
[29] Harrison J P, Sapp M, Schratzberger M, et al. Interactions between microorganisms and marine microplastics: a call for research [J]. Marine Technology Society Journal, 2011,45(2):12-20.
[30] Zettler E R, Mincer T J, Amaral-Zettler L A. Life in the 'plastisphere': microbial communities on plastic marine debris [J]. Environmental Science & Technology, 2013,47(13):7137-7146.
[31] Amaral-Zettler L A, Zettler E R, Slikas B, et al. The biogeography of the Plastisphere: implications for policy [J]. Frontiers in Ecology and the Environment, 2015,13(10):541-546.
[32] Zhang M, Zhao Y, Qin X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil [J]. Science of the Total Environment, 2019,688:470-478.
[33] Burger M, Woods R G, Mccarthy C, et al. Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator [J]. Microbiology-Sgm, 2000, 146:3149-3155.
[34] Philippot L, Andersson S G E, Battin T J, et al. The ecological coherence of high bacterial taxonomic ranks [J]. Nature Reviews Microbiology, 2010,8(7):523-529.
[35] Wright R J, Langille M G I, Walker TR. Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere [J]. The ISME Journal, 2020,15(3):789-806.
[36] Zhang H, Wang J, Zhou B, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018,243:1550-1557.
[37] Andrady A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011,62(8):1596-1605.
[38] Shah A A, Hasan F, Hameed A, et al. Biological degradation of plastics: a comprehensive review [J]. Biotechnology Advances, 2008,26(3): 246-265.
[39] Guo X, Wang X, Zhou X, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition [J]. Environmental Science & Technology, 2012,46(13):7252-7259.
[40] Mcgivney E, Cederholm L, Barth A, et al. Rapid physicochemical changes in microplastic induced by biofilm formation [J]. Frontiers in Bioengineering and Biotechnology, 2020,8:205.
[41] Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome [J]. Nature Reviews Microbiology, 2017,15(10): 579-590.
[42] Kong X, Jin D, Jin S, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem [J]. Journal of Hazardous Materials, 2018,353:142-150.
[43] Ren X, Tang J, Liu X, et al. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil [J]. Environmental Pollution, 2020,256:113347.
[44] Awet T T, Kohl Y, Meier F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil [J]. Environmental Ences Europe, 2018,30(1):11.
[45] Liu H, Yang X, Liu G, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil [J]. Chemosphere, 2017,185:907-917.
[46] Zhang G S, Liu Y F. The distribution of microplastics in soil aggregate fractions in southwestern China [J]. Science of the Total Environment, 2018,642:12-20.
[47] Xie H J, Shi Y J, Zhang J, et al. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity [J]. Journal of Chemical Technology & Biotechnology, 2010,85(8):1108-1116.
[48] Kong X, Jin D, Tai X, et al. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil [J]. Science of the Total Environment, 2019,667:691-700.
[49] Huang Y, Zhao Y, Wang J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil [J]. Environmental Pollution, 2019,254:112983.
[50] 魏子艷,金德才,鄧 曄.環(huán)境微生物宏基因組學(xué)研究中的生物信息學(xué)方法 [J]. 微生物學(xué)通報(bào), 2015,42(5):890-901. Wei Z, Jin D, Deng Y. Bioinformatics tools and applications in the study of environmental microbial metagenomics [J]. Microbiology China, 2015,42(5):890-901.
[51] Wang J, Lv S, Zhang M, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils [J]. Chemosphere, 2016,151:171-177.
[52] Lehmann A, Zheng W, Rillig M C. Soil biota contributions to soil aggregation [J]. Nature Ecology & Evolution, 2017,1(12):1828.
[53] Sebiomo A, Ogundero V W, Bankole S A. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity [J]. African Journal of Biotechnology, 2010,10(31):770-778.
[54] Muscolo A, Settineri G, Attina E. Early warning indicators of changes in soil ecosystem functioning [J]. Ecological Indicators, 2015,48:542- 549.
[55] Yang X, Bento C P M, Chen H, et al. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil [J]. Environmental Pollution, 2018,242:338-347.
[56] He Z, Deng Y, Van Nostrand J D, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity [J]. The ISME Journal, 2010,4(9): 1167-1179.
[57] Jin D, Bai Z, Chang D, et al. Biodegradation of di-n-butyl phthalate by an isolated Gordonia sp. strain QH-11: Genetic identification and degradation kinetics [J]. Journal of Hazardous Materials, 2012,221- 222:80-85.
[58] Jin D, Kong X, Cui B, et al. Biodegradation of di-n-butyl phthalate by a newly isolated halotolerant Sphingobium sp [J]. International Journal of Molecular Sciences, 2013,14(12):24046-24054.
[59] Wang Z G, You Y M, Xu W H, et al. Dimethyl phthalate altered the microbial metabolic pathways in a Mollisol [J]. European Journal of Soil Science, 2018,69(3):439-449.
[60] Deng Y, He Z, Xiong J, et al. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities [J]. Global Change Biology, 2016,22(2):957-964.
[61] Van Elsas J D, Bailey M J. The ecology of transfer of mobile genetic elements [J]. Fems Microbiology Ecology, 2002,42(2):187-197.
[62] Heuer H, Kopmann C, Binh C T T, et al. Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G plus C content [J]. Environmental Microbiology, 2009,11(4):937-949.
[63] Heuer H, Smalla K. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months [J]. Environmental Microbiology, 2007,9(3):657-666.
[64] Aminov RI. Horizontal gene exchange in environmental microbiota [J]. Frontiers in Microbiology, 2011,2:158.
[65] Wu X, Pan J, Li M, et al. Selective enrichment of bacterial pathogens by microplastic biofilm [J]. Water Research, 2019,165:114979.
[66] Arias Andres M, Kluemper U, Rojas Jimenez K, et al. Microplastic pollution increases gene exchange in aquatic ecosystems [J]. Environmental Pollution, 2018,237:253-261.
[67] Wang Z, Wang C, You Y, et al. Response of Pseudomonas fluorescens to dimethyl phthalate [J]. Ecotoxicology and Environmental Safety, 2019,167:36-43.
[68] Jin Y, Lu L, Tu W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice [J]. Science of the Total Environment, 2019,649:308-317.
[69] Lei L, Wu S, Lu S, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans [J]. Science of the Total Environment, 2018, 619-620:1-8.
[70] Wang J, Coffin S, Sun C, et al. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil [J]. Environmental Pollution, 2019,249:776-784.
[71] Rodriguez Seijo A, Lourenco J, Rocha Santos TaP, et al. Histopathological and molecular effects of microplastics in Eisenia andrei Bouche [J]. Environmental Pollution, 2017,220:495-503.
[72] Zhu D, Chen Q, An X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition [J]. Soil Biology & Biochemistry, 2018,116:302-310.
[73] Lili L, Mengting L, Yang S, et al. Polystyrene (nano) microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans [J]. Environmental Science Nano, 2018,10:1039.
[74] Zhu B, Fang Y, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus [J]. Environmental Pollution, 2018,239:408-415.
[75] Gao H, Yan C, Liu Q, et al. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis [J]. Science of the Total Environment, 2018,651:484-492.
[76] Ding L, Zhang S, Wang X, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China [J]. Science of the Total Environment, 2020,720:137525.
[77] Qi Y, Yang X, Mejia Pelaez A, et al. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth [J]. Science of the Total Environment, 2018,645:1048-1056.
[78] Steinmetz Z, Wollmann C, Schaefer M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? [J]. Science of the Total Environment, 2016,550:690- 705.
[79] Sander M. Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions [J]. Environmental Science & Technology. 2019,53(5):2304-2315.
[80] Machado A, Lau C W, Kloas W, et al. Microplastics can change soil properties and affect plant performance [J]. Environmental Science & Technology, 2019,53(10):6044-6052.
[81] Li L, Luo Y, Li R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode [J]. Nature Sustainability, 2020,3: 929–937.
[82] Lozano Y M, Rillig M C. Effects of microplastic fibers and drought on plant communities [J]. Environmental Science & Technology. 2020,54(10):6166-6173.
[83] Zota A R, Calafat A M, Woodruff T J. Temporal trends in phthalate exposures: findings from the national health and nutrition examination survey, 2001-2010 [J]. Environmental Health Perspectives, 2014, 122(3):235-241.
[84] Ramos L, Berenstein G, Hughes E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina [J]. Science of the Total Environment, 2015,523: 74-81.
[85] Sun M, Ye M, Jiao W, et al. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid [J]. Journal of Hazardous Materials, 2018,345:131-139.
[86] Rillig M C. Microplastic disguising as soil carbon storage [J]. Environmental Science & Technology, 2018,52(11):6079.
[87] Kramm J, Voelker C, Wagner M. Superficial or substantial: why care about microplastics in the anthropocene? [J]. Environmental Science & Technology, 2018,52(6):3336-3337.
The interaction between plastics and microorganisms in soil and their ecological effects.
JU Zhi-cheng1,2, JIN De-cai1,2*, DENG Ye1,2
(1.Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;2.School of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)., 2021,41(5):2352~2361
The pollution of plastics and microplastics in the soil environment attracted lots of attentions in recent years. This paper reviewed the latest research progresses on the interaction between microorganisms and soil plastics. The main contents included, (i) the source and migration of soil plastics and their basic characteristics of long-term storage forms in the soil; (ii) the impacts of soil microorganism on plastics; (iii) the impacts of plastic pollution on soil microbiota, enzyme activities, animals and crop production, and the potential impact on the function of global terrestrial ecosystems. Finally, the future research directions on plastics and microplastics pollution were discussed, topics range from functional microorganisms, experimental design, plastisphere, large-scale and long-term studies on plastics and soil microorganisms. This review provided valuable references for understanding and solving plastic pollution in soil from a microbiological perspective.
plastics;microplastics;soil microorganisms;ecological impact;plastisphere
X53
A
1000-6923(2021)05-2352-10
鞠志成(1997-),男,江西豐城人,中國(guó)科學(xué)院生態(tài)環(huán)境研究中心碩士研究生,主要研究方向?yàn)榄h(huán)境微生物宏基因組學(xué).
2020-10-12
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0800102);國(guó)家自然科學(xué)基金資助項(xiàng)目(41977122);江蘇省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題項(xiàng)目(028074911709)
* 責(zé)任作者, 副研究員, dcjin@rcees.ac.cn