• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modelling of Commercial Grid-Connected PV Inverters Based on Transient Analysis and System Identification

    2021-05-27 14:29:38WengGongyuMaoMeiqinZhangLiuchenNikosHatziargyriou
    電工技術(shù)學報 2021年10期
    關(guān)鍵詞:方法模型系統(tǒng)

    Weng Gongyu Mao Meiqin Zhang Liuchen,2 Nikos Hatziargyriou

    Modelling of Commercial Grid-Connected PV Inverters Based on Transient Analysis and System Identification

    111,23

    (1. Research Center for Photovoltaic System Engineering MOE Hefei University of Technology Hefei 230009 China 2. School of Electrical and Computer Engineering University of New Brunswick Fredericton E3B5A3 Canada 3. School of Electrical and Computer Engineering National Technical University of Athens Athens 15780 Greece)

    The modelling of grid-connected photovoltaic (PV) generation systems is the basis for studying their interaction with the grid. The transients of PV systems are determined by weather and grid conditions, as well as the characteristics of commercial inverters, whose topology and control algorithm are usually unknown. This hinders the analysis of the impacts that PV systems might have on the grid. For this purpose, a generic process for modelling PV systems based on transient analysis and system identification is presented. By viewing a PV system as a black-box without knowledge of its internal components, structure or control algorithm, the model was established through measured input-output data and system identification. Transfer functions were taken as the model structure based on classic control theories. A power hardware-in-the-loop system was used to verify the process by collecting instantaneous input-output data from the terminals of a commercial 3kW PV inverter. The results show that the developed model reproduces accurately the transients of the inverter under various disturbances, demonstrating the effectiveness of this generic modelling process.

    PV inverter modelling, system identification, transfer function, power-hardware-in- the-loop (PHIL)

    0 Introduction

    Photovoltaic generation systems have become widely installed around the world in recent years. As the penetration of grid-connected PV generation systems increases, the volatility of their power production pose challenges to the stable operation of the grid[1-2]. Power system planners, utility engineers, and PV system developers often need to model and simulate distribution systems to investigate the behaviours of PV systems and their potential impacts on the grid[3-4]. Therefore, it is necessary to establish reliable and accurate models of grid-connected PV systems to investigate the operational characteristics of the PV and the grid.

    The output of the PV systems is mainly controlled through their interfacing inverters. In practical operations, the operating conditions constantly change due to variation of irradiance, temperatures, and grid conditions. In most cases, the behaviour of inverters is primarily considered in a steady state with slowly changing working con- ditions[5]. However, in many cases, conditions change abruptly, for example, sudden changes of irradiation by passing clouds, load changes in the grid caused by nearby grid failures. Under these circumstances, PV inverters operate in a transient state and will probably bring challenges to the stable operation of the system[6-7]. Thus, the transient conditions of a PV system are mainly investigated in this paper.

    The modelling of power electronic system is usually divided into three levels according to the analysis purposes, i.e. the component level, converter level and system level[5]. Component level models are developed to simulate detailed circuits at the level of power diodes, inductors, and capacitors. For converter level modelling, models are developed to represent the average behaviour and the switching characteri- stics of the converters[8-10]. While these models are reliable and accurate, large amount of computational time is needed when analysing large power electronic systems. At the same time, due to confidentiality reasons, system integrators are usually unable to get details about the converters. Besides, there are various control algorithms developed to tackle with different scenarios[11-13], which also limits the usage of these kinds of models. System-level models, however, based on input and output measurements, have gained attention recently[14-19]. For system-level modelling, power converters are considered as black-boxes without knowledge of their physical structure. Take the black-box-parameter model proposed in the 1980s as an example[14-18]. The model is composed of several virtual dynamic systems, whose parameters were identified through either AC-sweep in the frequency domain[14]or transient analysis in the time domain[15-18]. Since details of commercial PV inverters are proprietary and mostly very limited, a system-level model is further investigated in this paper.

    While the-parameter model only focuses on the converters itself, the output of the grid-connected PV system depends also on the external weather and the grid conditions. Thus, a black-box model for the whole integrated PV system is required to study the overall features.

    In summary, a new generalized modelling process based on system identification for system- level analysis of grid-connected PV systems is presented in this paper. The inputs of the model were selected by analysing the factors influencing the output power of the system. After that, different amplitude disturbances were conducted at each input of the model. The transient responses were measured and the system transfer functions from the inputs to the output were identified through system identification. Such a model is useful to simulate the transient interactions between PV systems and the grid. It enables utility planners to conduct the necessary studies before connecting PV units to the grid. The features of this modelling process are summarized as follows:

    (1) This is a unified, general modelling process because no explicit knowledge of the PV inverter composition or its control methods is required.

    (2) The model reflects accurately the output electrical characteristics of the inverter within the range of 10%~100% of rated power.

    (3) The modelling process is carried out offline. The parameters of the model are identified by transient data to accurately represent the behaviours of the PV system under different transients.

    Power hardware-in-the-loop (PHIL) testing[20-21]on PV systems with the same functionalities provides a valuable tool to measure the transient responses of such systems. Transient experiments were designed and carried out.

    1 Model Structure

    A simplified diagram of a PV system is shown in Fig.1[22]. The main features of this system are:

    (1) The output power of the PV panels is determined by weather conditions such as irradiation, temperature, and by the power reference of the inverter control system. Note that when the value of the active power reference is higher than the maximum power point (MPP) of the PV panel, the system cannot follow the reference power but produce the MPP powermpp, which is determined by irradiation and temperature. While when the value of the active power reference is lower than the MPP power, the system will produce according to the power reference. Thus, a comparison between the value of MPP power and power reference should be made before calculating the output power of the model.

    Fig.1 Simplified diagram of a PV system

    (2) When the voltage of the grid fluctuates, the output power of the inverter will fluctuate as well.

    (3) As the PV system operates as a current source, its output voltage is set and maintained by the grid. The transients of the PV system are reflected in the current fed into the grid. Thus, the output current of the system is mainly studied. Once the current is known, the active and reactive power of the system can be readily obtained.

    Based on these considerations, the black-box model of the single-phase PV system proposed in this paper is shown in Fig.2. The inputs of the system are the solar irradiation, the active power reference*, the temperatureand the instant value of the grid voltageg. The AC side currentof the inverter is taken as the output. Besides, a comparison block takes in the irradiation, power reference and temperature and output the result to the PV system block.

    Fig.2 Black-box model of the PV system

    Fig.3 Simplified one-line diagram of a general single-phase current-controlled PV inverter

    Fig.4 Block diagram of the inverter grid current control loop

    From Fig.4, the closed-loop response of the current control loop can be derived as

    wherecli() andoi() are the current reference to output transfer function and closed-loop output admittance, respectively.c() is the open-loop gain of the current control loop, which is given by

    wherec() is the PR current controller.iandoare the transfer functions of the LCL-filter plant as shown in

    whereZf(),Zg() andZf()denote the impedances of the LCL-filter inductors and capacitor, respectively.o() is also the open-loop output admittance.

    Fig.5 Block diagram of the black-box PV system

    Note that the influence of the temperature on the output of the system is little. Besides, the temperature is not likely to change abruptly, thus, the transfer- function-effect of the temperature on the output is neglected in the model. While the temperature does influence the output power, It is kept as one of the independent variables when calculatingmpp, as its contribution to the output of the system.

    Tab.1 The results of Pmpp and h

    2 Modelling Process of The PV System

    A disturbance-observation process was conducted to identify the transfer functions in equation (7). Disturbances were conducted and the corresponding output currentwas measured in the laboratory set-up shown in Fig.6, corresponding to the three targetss,p*andoi, respectively.

    The disturbance upon each input and the corresponding currentwere used to identifying the transfer functions. More specifically:

    (3)先內(nèi)業(yè)后外業(yè)的采集模式。立體采集分為先內(nèi)后外、先外后內(nèi)、內(nèi)外采編一體化三種方式,不動產(chǎn)線劃圖采用先內(nèi)業(yè)定位、外業(yè)定性的采集模式,需要保證內(nèi)業(yè)定位精準無誤,盡可能較少外業(yè)工作量;同時外業(yè)定性核查內(nèi)業(yè)采集數(shù)據(jù),為內(nèi)業(yè)提供準確的屬性信息。

    (3) When identifying each transfer function, different magnitudes of step disturbances were conducted. The data obtained in each magnitude disturbance is used to train the model corresponding to this magnitude disturbance. While the model developed should be validated by the other magnitudes data.

    (4) The details of the transfer functions to be identified in equation (7) are shown from equation (8) to equation (10). The identification is more of a trial-and-error process where one estimates the parameters of various model orders and compares the results against the measured data.

    For an example, take the parameters ofs() shown in

    whereandare the orders of denominator and numerator of the transfer function, respectively.b,b1, …,0are the polynomial coefficients of the transfer function numerator.a1,a2, …,0are the polynomial coefficients of the denominator. These are the parameters to be identified. As the ordersandwere integers, they were not identified but were set manually at different values, after which the coefficients of the transfer function were identified and the results of the model were obtained, based on which the optimal orders were compared and determined.

    (5) The initialization and identification of the parameters were carried out using the system identification toolbox in Matlab. More specifically, one of the following three different initial conditions were selected during estimation, etc., all initial conditions are taken as zero, the necessary initial conditions are treated as estimation parameters, the necessary initial conditions are estimated by a backward filtering process. After that, different algorithms were used to initialize the values of the numerator and denominator. These algorithms include the instrument variable approach, state variable filters approach, generalized Poisson moment functions approach, et al, which are all widely used in this field[24-25]. A comparison of the results of these initial conditions and algorithms was made and the method that yields the least prediction error norm was selected.The Levenberg-Marquardt (LM) algorithm was then adopted for the parameters iterative estimation. This algorithm has become a standard technique for least-squares problems and can be thought of as a combination of the gradient-descent and the Gauss-Newton (GN) method[26]. The LM method acts more like a gradient-descent method when the parameters are far from their optimal value and more like the GN method when the parameters are closer[27]. As there are two possible options at each iteration, the LM is faster to converge than either the gradient descent or the GN on its own. Another advantage is that the algorithm can find a solution, even when the initial guess is far from the optimal point[28]. These features make the LM algorithm efficient to update the parameters of the transfer function. The flow chart of the Levenberg-Marquardt algorithm is shown in Fig.7[29].

    Fig.7 Flow chart of the Levenberg-Marquardt algorithm

    The fitting rate of the identification results of the transfer function is defined byfitas shown in

    whereis the measured output of the inverter,is the input of the model,is the amount of the data used. Transfer functions with a fitting rate higher than 85% are considered able to reproduce the transient accurately.

    The model development and validation[30]process are shown in Fig.8.

    Fig.8 Model development and validation process

    3 Results and Validation of the Model

    3.1 Experiment Platform Configuration

    The power hardware-in-the-loop PV system shown in Fig.9 was used for modelling and validating the system. The PV inverter under test was an SMA Sunny Boy SB 3000TL-21 with a DC side MPP voltage range from 175V to 500V. The output of the PV simulator was set at 400V, at a maximum power point of 2kW, corresponding to solar irradiation of 1 000W/m2. Thus, the PV simulator can be connected directly to the inverter without the need for a step-up converter. A resistive load of 2kW absorbs the active power of the 2kV·A PV. The AC voltage supply set by the RTDS was at 230V, 50Hz (as this experiment was conducted in Greece). The available disturbance ranges of each input are shown in Tab.2.

    Fig.9 The Power hardware-in-the-loop experiment system

    Tab.2 The available disturbance ranges of each variables

    3.2 Model Results Analysis

    Fig.10 Example training data of and current response when irradiation steps

    Corresponding to each of these disturbance processes, transfer functions were identified through trial-and-error until the best was found. After that, this transfer function was validated by the data of the other magnitude of disturbances. It will be taken as thesif it represents these processes accurately as well.

    The transfer function identified corresponds to the disturbance of “800W/m2to 1 000W/m2” is with the best fitness. The results against the irradiation disturbance processes are shown in Fig.11. The average fitting rate reaches more than 85%. Thus, it was taken as the transfer functions, as shown in equation (14).

    Fig.11 The fitness of Gs against different irradiation disturbance processes

    Similarly, transfer functions with high accuracy corresponding to the active power disturbance from “300W to 2 000W” and the grid voltage disturbance from “215V to 235V” were found, respectively. The fitness of these transfer functions is shown in Fig.12 and Fig.13. The average accuracy also reaches more than 85%. Thus, they were taken as the transfer function ofp*andoi, as shown in equation (15) and equation (16). Equation (14) to equation (16) are regarded as the general model of the PV system.

    Fig.12 The fitness of Gp* against different active power reference disturbance processes

    Fig.13 The fitness of Yoi against different grid voltage disturbance processes

    3.3 Validation of the Model

    To validate these identified transfer functions, the current responses when applying the same disturbance to the identified model and the inverter were compared. Take one of the results in each case shown as follows. In Fig.14, the current increases along with solar irradiation steps up from “800W/m2to 1 000W/m2”. In Fig.15, the current increases as the active power reference steps up from “1 800W to 2 000W”. In Fig.16, the current decreases along with the voltage step up from “230V to 240V” as the PV inverter trying to maintain the output active power. As we can see, the model fits the data well in these situations, proving the effectiveness of the presented modelling process.

    Fig.14 Output current comparison of the inverter and the identified model when solar irradiation steps

    Fig.15 Output current comparison of the inverter and the identified model when active power reference steps

    Fig.16 Output current comparison of the inverter and the identified model when grid voltage steps

    4 Conclusion

    A single-phase grid-connected PV inverter was modelled through transient analysis and system identi- fication. Solar irradiation, active power reference and grid voltage were taken as the inputs of the model, the AC side current of the inverter was taken as the output. Three experiment cases corresponding to each of the input were carried out. Transfer functions with high fitness were identified correspondingly, which can accurately reproduce the transients of the disturbances processes within the operating range of the inverter. This good agreement between the model output and the inverter response validates both the black-box model theory and the system identification method.

    Acknowledgment:The authors gratefully acknow- ledge the SmartRUE research team of the National Technical University of Athens in Greece for their help and support of the PHIL experiment system. The authors also would like to appreciate the China Scholarship Council for the funding with the grant number of 201706690020 and the grant supported by the 111 Project.

    [1] Tobnaghi D. A review on impacts of grid-connected PV system on distribution networks[J]. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2016, 10(1): 137- 142.

    [2] Eftekharnejad S, Vittal V, Heydt G T, et al. Impact of increased penetration of photovoltaic generation on power systems[J]. IEEE Transactions on Power System, 2013, 28(2): 893-901.

    [3] Ellis A, Behnke M, Elliott R. Generic solar photo- voltaic system dynamic simulation model specifi- cation[R]. Sandia Report, Sandia National Laborato- ries, Albuquerque, New Mexico, 2013: 8-10.

    [4] Ramasubramanian D, Yu Z, Ayyanar R, et al. Converter model for representing converter interfaced generation in large scale grid simulations[J]. IEEE Transactions on Power System, 2017, 32(1): 765-773.

    [5] Abbood H, Benigni A. Data-driven modeling of a commercial photovoltaic microinverter[J]. Modelling and Simulation in Engineering, 2018: 5280681.

    [6] Patsalides M, Efthymiou V, Stavrou A, et al. A generic transient PV system model for power quality studies[J]. Renewable Energy, 2016, 89(1): 526-542.

    [7] Pourbeik P, Sanchez-Gasca J, Senthil J, et al. Generic dynamic models for modelling wind power plants and other renewable technologies in large-scale power system studies[J]. IEEE Transactions on Energy Conversion, 2017, 32(3): 1108-1116.

    [8] Liu Wenjun, Zhou Long, Chen Jian, et al. Control method for grid-connected inverter with LCL filter by employing dual current closed-loops[J]. Power System Protection and Control, 2016, 44(17): 52-57.

    [9] Zhang Xiao, Tan Li, Xian Jiaheng, et al. Predictive current control algorithm for grid-connected inverter with LCL filter[J]. Transactions of China Electro- technical Society, 2019, 34(S1): 189-201.

    [10] Su Xiaofang, Yuan Jiaxin, Xue Gang, et al. An immune-algorithm-based dead-time elimination hybrid space vector PWM control strategy in a three-phase inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 135-144.

    [11] Zhou Leming, Luo An, Chen Yandong, et al. A single-phase grid-connected power control and active damping optimization strategy with LCL filter[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 144-154.

    [12] Ren Zipan, Lu Baochun, Zhao Yalong, et al. Research on modeling and simulation of photovoltaic virtual synchronous generator[J]. Power System Protection and Control, 2019, 47(13): 92-99.

    [13] Dong Runnan, Liu Shi, Liang Geng, et al. Research on control method of special inverter in micro-grid based on model predictive control[J]. Power System Protection and Control, 2019, 47(21): 11-20.

    [14] Cvetkovic I, Boroyevich D, Mattavelli P, et al. Unterminated small-signal behavioral model of DC-DC converters[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1870-1879.

    [15] Raga C, Barrado A, Lázaro A, et al. Black-box model, identification technique and frequency analysis for pem fuel cell with overshooted transient response[J]. IEEE Transactions on Power Electronics, 2014, 29(10): 5334-5346.

    [16] Valdivia V, Lazaro A, Barrado A, et al. Black-box modeling of three-phase voltage source inverters for system-level analysis[J]. IEEE Transactions on Industrial Electronics, 2012, 59(9): 3648-3662.

    [17] Valdivia V, Barrado A, Lázaro A, et al. Black-box behavioral modeling and identification of DC-DC converters with input current control for fuel cell power conditioning[J]. IEEE Transactions on Indu- strial Electronics, 2013, 61(4): 1891-1903.

    [18] Valdivia V, Todd R, Bryan F J, et al. Behavioral modeling of a switched reluctance generator for aircraft power systems[J]. IEEE Transactions on Industrial Electronics, 2013, 61(6): 2690-2699.

    [19] Alqahtani A, Alsaffar M, El-Sayed M, et al. Data- driven photovoltaic system modeling based on nonlinear system identification[J]. International Journal of Photoenergy, 2016: 2923731.

    [20] Kotsampopoulos P C, Lehfuss F, Lauss G F, et al. The limitations of digital simulation and the advantages of PHIL testing in studying distributed generation provision of ancillary services[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5502-5515.

    [21] Maniatopoulos M, Lagos D, Kotsampopoulos P, et al. Combined control and power hardware in-the-loop simulation for testing smart grid control algorithms[J]. IET Generation, Transmission & Distribution, 2017, 11(12): 3009-3018.

    [22] Kouro S, Leon J I, Vinnikov D, et al. Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology[J]. IEEE Industrial Electronics Magazine, 2015, 9(1): 47-61.

    [23] Wang X, Blaabjerg F, Wu W. Modeling and analysis of harmonic stability in an AC power-electronics- based power system[J]. IEEE Transactions on Power Electronics, 2014, 29(12): 6421-6432.

    [24] Ljung L. Experiments with identification of conti- nuous time models[J]. IFAC Proceedings Volumes, 2009, 42(10): 1175-1180.

    [25] Garnier H, Mensler M, Richard A. Continuous-time model identification from sampled data: implementa- tion issues and performance evaluation[J]. Inter- national Journal of Control, 2003, 76(13): 1337- 1357.

    [26] Lourakis M. A brief description of the Levenberg- Marquardt algorithm implemented by levmar[J]. Foundation of Research and Technology, 2005, 4(1): 1-6.

    [27] Gavin H. The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems[C]// Department of Civil and Environmental Engineering, Duke University, 2011: 1-15.

    [28] Nelles O. Nonlinear system identification: from classical approaches to neural networks and fuzzy models[M]. Berlin: Springer Science & Business Media, 2013.

    [29] Yu H, Wilamowski B M. Levenberg-Marquardt training[J]. Industrial Electronics Handbook, 2011, 5(12): 8-13.

    [30] Pourbeik P. Model user guide for generic renewable energy system models[J]. Electric Power Research Institute, 2015: 3002006525.

    基于暫態(tài)分析和系統(tǒng)辨識的光伏并網(wǎng)逆變器建模

    翁公羽1茆美琴1張榴晨1,2Nikos Hatziargyriou3

    (1. 合肥工業(yè)大學教育部光伏系統(tǒng)工程研究中心 合肥 230009 2. 加拿大新布倫瑞克大學 弗雷德里克頓 E3B5A3 3. 希臘雅典國立理工大學電氣與計算機工程學院 雅典 15780)

    建立并網(wǎng)光伏發(fā)電系統(tǒng)的模型是研究其與電網(wǎng)交互過程的基礎(chǔ)。光伏系統(tǒng)的暫態(tài)特性不僅受天氣情況、電網(wǎng)工況等環(huán)境因素的影響,還取決于商用逆變器的內(nèi)部結(jié)構(gòu)以及控制策略,然而它們并不對外公開,這給系統(tǒng)的分析帶來了困難。為了解決這個問題,該文提出一種基于暫態(tài)分析和系統(tǒng)辨識的光伏并網(wǎng)逆變器通用建模方法。將光伏逆變器視作內(nèi)部結(jié)構(gòu)以及控制算法未知的黑箱,通過先后施加擾動和測取響應并結(jié)合系統(tǒng)辨識的方法來建立其模型。以一個3kW的商用光伏逆變器為研究對象,搭建硬件在環(huán)實驗系統(tǒng)來研究并驗證這一建模方法。結(jié)果顯示,在多種擾動對應的暫態(tài)過程中,模型的輸出均準確地擬合了逆變器的實際輸出,證明了這一建模方法的有效性。

    光伏逆變器建模 系統(tǒng)辨識 傳遞函數(shù) 功率硬件在環(huán)

    TM464

    10.19595/j.cnki.1000-6753.tces.200276

    This work is partially supported by the Natural Science Foundation of China (51677050) and the China Scholarship Council.

    March 19, 2020;

    May 25, 2020.

    Weng Gongyu male, born in 1992, master degree candidate. Major interests include modelling and testing of photovoltaic generation system, system identification.E-mail: wgongyu92@163.com

    Mao Meiqin female, born in 1961, associate professor, M.S. advisor. Major interests include precision and super-precision measurement, modeling and control for electromechanical system.E-mail: mmqmail@163.com (Corresponding author)

    (編輯 陳 誠)

    猜你喜歡
    方法模型系統(tǒng)
    一半模型
    Smartflower POP 一體式光伏系統(tǒng)
    WJ-700無人機系統(tǒng)
    ZC系列無人機遙感系統(tǒng)
    北京測繪(2020年12期)2020-12-29 01:33:58
    重要模型『一線三等角』
    重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
    連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
    可能是方法不對
    3D打印中的模型分割與打包
    用對方法才能瘦
    Coco薇(2016年2期)2016-03-22 02:42:52
    九草在线视频观看| 日韩,欧美,国产一区二区三区| 久久久欧美国产精品| 大陆偷拍与自拍| 街头女战士在线观看网站| 亚洲综合色网址| 99久久综合免费| 亚洲成人一二三区av| 免费黄频网站在线观看国产| 国产在线免费精品| 成人国产麻豆网| 18禁在线播放成人免费| 另类精品久久| 91精品三级在线观看| 美女大奶头黄色视频| 日韩中文字幕视频在线看片| 五月天丁香电影| 亚洲少妇的诱惑av| 免费观看在线日韩| 各种免费的搞黄视频| 国产高清有码在线观看视频| 欧美 日韩 精品 国产| 尾随美女入室| 精品久久久久久久久亚洲| 久久久久人妻精品一区果冻| 欧美丝袜亚洲另类| 看免费成人av毛片| 国产伦精品一区二区三区视频9| xxxhd国产人妻xxx| 三上悠亚av全集在线观看| 亚洲精品一二三| 国产精品 国内视频| 日韩大片免费观看网站| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 欧美xxⅹ黑人| a级毛片免费高清观看在线播放| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 精品熟女少妇av免费看| 国产欧美另类精品又又久久亚洲欧美| 美女国产高潮福利片在线看| 久久狼人影院| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| av免费观看日本| 精品少妇久久久久久888优播| 亚洲精品中文字幕在线视频| 亚洲经典国产精华液单| 国产一区亚洲一区在线观看| 曰老女人黄片| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 久久久精品94久久精品| 另类精品久久| 色网站视频免费| 亚洲综合色惰| 2021少妇久久久久久久久久久| 精品亚洲成a人片在线观看| .国产精品久久| 亚洲国产av新网站| 在现免费观看毛片| 欧美老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 久久国产亚洲av麻豆专区| 纯流量卡能插随身wifi吗| 九草在线视频观看| 亚州av有码| 男人爽女人下面视频在线观看| 大又大粗又爽又黄少妇毛片口| 午夜福利网站1000一区二区三区| 国产极品粉嫩免费观看在线 | 亚洲精品国产色婷婷电影| 久久99精品国语久久久| 国产精品一国产av| 国产午夜精品久久久久久一区二区三区| 日韩av在线免费看完整版不卡| 国产国语露脸激情在线看| 2018国产大陆天天弄谢| 久久青草综合色| 精品人妻熟女av久视频| 国产精品蜜桃在线观看| 男人添女人高潮全过程视频| 黄色配什么色好看| 欧美精品一区二区大全| 久久精品国产自在天天线| 精品久久久久久久久av| 高清不卡的av网站| 青春草国产在线视频| 亚洲三级黄色毛片| 亚洲成人av在线免费| 国产精品成人在线| 亚洲内射少妇av| 视频中文字幕在线观看| 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 九色成人免费人妻av| 免费大片18禁| 性色avwww在线观看| 国产精品熟女久久久久浪| 免费大片18禁| 一级毛片黄色毛片免费观看视频| 久久久久久久久久久久大奶| 少妇丰满av| 国产高清国产精品国产三级| 精品少妇内射三级| 一本一本综合久久| 一级爰片在线观看| 在线天堂最新版资源| 国产精品无大码| 国产精品欧美亚洲77777| 午夜91福利影院| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 欧美精品高潮呻吟av久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美国产精品一级二级三级| 制服人妻中文乱码| 十分钟在线观看高清视频www| 五月玫瑰六月丁香| 久久人人爽人人爽人人片va| 亚洲伊人久久精品综合| 国产国语露脸激情在线看| 激情五月婷婷亚洲| 欧美日韩av久久| 亚洲国产毛片av蜜桃av| 欧美日韩综合久久久久久| 91国产中文字幕| 久久人人爽人人爽人人片va| 久久人人爽av亚洲精品天堂| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说| 中文字幕免费在线视频6| 亚洲精华国产精华液的使用体验| 全区人妻精品视频| 69精品国产乱码久久久| 91久久精品国产一区二区三区| 亚洲精品国产av成人精品| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 成年美女黄网站色视频大全免费 | 三级国产精品片| 十八禁高潮呻吟视频| 欧美变态另类bdsm刘玥| 精品一品国产午夜福利视频| 国产不卡av网站在线观看| 黄色配什么色好看| 制服诱惑二区| 一级片'在线观看视频| 一级毛片我不卡| 99热全是精品| 中文字幕制服av| 亚洲无线观看免费| 在线看a的网站| 天堂中文最新版在线下载| 欧美日韩成人在线一区二区| 精品久久国产蜜桃| 欧美日韩国产mv在线观看视频| 亚洲av综合色区一区| av视频免费观看在线观看| 国产有黄有色有爽视频| 精品国产乱码久久久久久小说| 中文字幕最新亚洲高清| 热re99久久国产66热| 一边摸一边做爽爽视频免费| 精品一品国产午夜福利视频| 满18在线观看网站| 97超视频在线观看视频| 热re99久久国产66热| videos熟女内射| 国产免费现黄频在线看| 国产成人91sexporn| a级毛片黄视频| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 满18在线观看网站| 18禁在线无遮挡免费观看视频| 日韩精品免费视频一区二区三区 | 日韩伦理黄色片| 热99国产精品久久久久久7| a级片在线免费高清观看视频| 又大又黄又爽视频免费| 午夜激情福利司机影院| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看| av在线老鸭窝| 看非洲黑人一级黄片| 女性被躁到高潮视频| 亚洲国产精品999| 国产成人免费观看mmmm| 欧美3d第一页| 男的添女的下面高潮视频| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看| 纵有疾风起免费观看全集完整版| 美女视频免费永久观看网站| 男女无遮挡免费网站观看| 天天操日日干夜夜撸| 精品一区在线观看国产| 性色av一级| 黄色一级大片看看| 九九久久精品国产亚洲av麻豆| 日韩免费高清中文字幕av| av在线老鸭窝| 天天躁夜夜躁狠狠久久av| 黑人高潮一二区| 在线 av 中文字幕| 一级毛片aaaaaa免费看小| 久久久亚洲精品成人影院| 亚洲综合色网址| 精品人妻熟女av久视频| 人妻 亚洲 视频| 久久久久久久久久人人人人人人| 亚洲第一区二区三区不卡| 国产成人91sexporn| av电影中文网址| 亚洲av成人精品一区久久| 国产成人精品无人区| 大片电影免费在线观看免费| 男人爽女人下面视频在线观看| 精品一品国产午夜福利视频| 日韩av不卡免费在线播放| 黑人猛操日本美女一级片| 久久人人爽人人片av| 日韩成人伦理影院| 欧美精品一区二区免费开放| 人人妻人人添人人爽欧美一区卜| 婷婷成人精品国产| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 9色porny在线观看| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 国内精品宾馆在线| 欧美激情极品国产一区二区三区 | 国产高清有码在线观看视频| 久久av网站| 日韩中文字幕视频在线看片| 极品少妇高潮喷水抽搐| 少妇人妻 视频| 亚洲精品第二区| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 久久久欧美国产精品| av免费在线看不卡| 三上悠亚av全集在线观看| 亚洲激情五月婷婷啪啪| 精品一区二区三区视频在线| 天堂中文最新版在线下载| 啦啦啦视频在线资源免费观看| 秋霞伦理黄片| 久久久久久伊人网av| 亚洲欧美一区二区三区国产| 两个人的视频大全免费| 日韩免费高清中文字幕av| 久久鲁丝午夜福利片| 有码 亚洲区| av黄色大香蕉| 视频区图区小说| 韩国av在线不卡| 国产免费福利视频在线观看| 亚洲欧美清纯卡通| 国产白丝娇喘喷水9色精品| 在线观看国产h片| 午夜影院在线不卡| 国产成人免费观看mmmm| 亚洲图色成人| 视频区图区小说| 国产69精品久久久久777片| 中文天堂在线官网| a级毛片黄视频| 大陆偷拍与自拍| av国产精品久久久久影院| 蜜桃在线观看..| 777米奇影视久久| 九九爱精品视频在线观看| 大香蕉久久成人网| 久久精品夜色国产| 伊人亚洲综合成人网| 最近手机中文字幕大全| 亚洲中文av在线| 国产综合精华液| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 赤兔流量卡办理| 久久人人爽人人爽人人片va| 黄色欧美视频在线观看| 亚洲av福利一区| 国产日韩欧美亚洲二区| 九九久久精品国产亚洲av麻豆| 婷婷成人精品国产| 男人操女人黄网站| 热re99久久精品国产66热6| 母亲3免费完整高清在线观看 | 一本色道久久久久久精品综合| 内地一区二区视频在线| 少妇丰满av| 国产无遮挡羞羞视频在线观看| 日韩av不卡免费在线播放| 一本一本综合久久| 大话2 男鬼变身卡| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 色婷婷久久久亚洲欧美| 久久99一区二区三区| 精品国产国语对白av| 国产在线免费精品| 国产高清有码在线观看视频| 亚洲国产精品999| 最近最新中文字幕免费大全7| videossex国产| 欧美少妇被猛烈插入视频| 黄色视频在线播放观看不卡| 99久久精品一区二区三区| 亚洲一区二区三区欧美精品| 亚洲av电影在线观看一区二区三区| 成人二区视频| 精品酒店卫生间| 国产一区亚洲一区在线观看| 青春草国产在线视频| 亚洲人成77777在线视频| 97超视频在线观看视频| 麻豆精品久久久久久蜜桃| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 国产无遮挡羞羞视频在线观看| 亚洲成人av在线免费| 男女国产视频网站| 乱人伦中国视频| 亚洲激情五月婷婷啪啪| 一区二区三区免费毛片| 黄色欧美视频在线观看| 在线观看免费日韩欧美大片 | 80岁老熟妇乱子伦牲交| 日韩大片免费观看网站| 日本欧美视频一区| 777米奇影视久久| 久久久久久久亚洲中文字幕| 精品久久蜜臀av无| 国产免费又黄又爽又色| 色哟哟·www| av专区在线播放| 一级a做视频免费观看| 成年女人在线观看亚洲视频| 欧美另类一区| 欧美老熟妇乱子伦牲交| 天美传媒精品一区二区| av有码第一页| 99九九在线精品视频| videosex国产| 插阴视频在线观看视频| 男女免费视频国产| 九色亚洲精品在线播放| 最新的欧美精品一区二区| 亚洲精品成人av观看孕妇| 男女边摸边吃奶| 最近2019中文字幕mv第一页| 久久99精品国语久久久| 香蕉精品网在线| 国产熟女午夜一区二区三区 | 亚洲欧洲国产日韩| av黄色大香蕉| 亚洲av福利一区| 久久狼人影院| 成人影院久久| 欧美+日韩+精品| 亚洲情色 制服丝袜| 日日摸夜夜添夜夜添av毛片| 久久综合国产亚洲精品| 岛国毛片在线播放| 亚洲国产最新在线播放| 亚洲国产精品一区二区三区在线| 午夜激情av网站| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 制服诱惑二区| 丝瓜视频免费看黄片| 极品人妻少妇av视频| 国产亚洲精品第一综合不卡 | 夜夜骑夜夜射夜夜干| 全区人妻精品视频| 曰老女人黄片| av在线观看视频网站免费| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| av黄色大香蕉| 国产一区二区在线观看日韩| 亚洲欧美中文字幕日韩二区| 91精品三级在线观看| 99热国产这里只有精品6| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 我的女老师完整版在线观看| 麻豆乱淫一区二区| 中文字幕人妻丝袜制服| av在线播放精品| 亚洲精品久久成人aⅴ小说 | 美女福利国产在线| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 99热这里只有精品一区| 汤姆久久久久久久影院中文字幕| 中文字幕精品免费在线观看视频 | 草草在线视频免费看| 99热6这里只有精品| 三级国产精品欧美在线观看| 国产成人免费无遮挡视频| 伦精品一区二区三区| 91在线精品国自产拍蜜月| 五月开心婷婷网| 午夜老司机福利剧场| 成年美女黄网站色视频大全免费 | 3wmmmm亚洲av在线观看| 极品少妇高潮喷水抽搐| 国产国拍精品亚洲av在线观看| 久久婷婷青草| 视频中文字幕在线观看| 老司机影院毛片| 春色校园在线视频观看| 美女大奶头黄色视频| 三级国产精品片| 如日韩欧美国产精品一区二区三区 | 免费黄频网站在线观看国产| 夫妻午夜视频| 国产在线视频一区二区| 一级毛片我不卡| 国产免费一级a男人的天堂| 精品人妻熟女av久视频| 亚洲精品日韩av片在线观看| 精品人妻一区二区三区麻豆| 一级a做视频免费观看| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 亚洲四区av| 色网站视频免费| 国产免费一区二区三区四区乱码| 亚洲第一区二区三区不卡| 国模一区二区三区四区视频| 波野结衣二区三区在线| 成人无遮挡网站| 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 亚洲色图 男人天堂 中文字幕 | 免费少妇av软件| 夫妻午夜视频| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 国产高清不卡午夜福利| 精品一区二区三卡| 国产亚洲午夜精品一区二区久久| 精品少妇黑人巨大在线播放| 一区二区三区免费毛片| 久久热精品热| 999精品在线视频| 精品久久久久久电影网| 一区二区日韩欧美中文字幕 | 精品久久久精品久久久| 日韩av不卡免费在线播放| 91精品国产九色| 桃花免费在线播放| 少妇被粗大的猛进出69影院 | 免费日韩欧美在线观看| 亚洲精品,欧美精品| 亚洲精品乱码久久久v下载方式| 97超视频在线观看视频| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| 满18在线观看网站| 国产精品久久久久久精品古装| www.色视频.com| 大又大粗又爽又黄少妇毛片口| 国产精品女同一区二区软件| 波野结衣二区三区在线| 日韩 亚洲 欧美在线| 69精品国产乱码久久久| 国产日韩欧美在线精品| 在线观看美女被高潮喷水网站| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 久久国产精品男人的天堂亚洲 | 韩国高清视频一区二区三区| 亚洲综合色惰| 亚洲精华国产精华液的使用体验| 嫩草影院入口| 男女啪啪激烈高潮av片| 九九爱精品视频在线观看| 国产国拍精品亚洲av在线观看| 在线精品无人区一区二区三| 一级毛片我不卡| 视频在线观看一区二区三区| 亚洲图色成人| 男女国产视频网站| 久久女婷五月综合色啪小说| 51国产日韩欧美| 久久久久精品久久久久真实原创| 精品视频人人做人人爽| 高清不卡的av网站| 交换朋友夫妻互换小说| 在线亚洲精品国产二区图片欧美 | 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜| 免费看光身美女| 国精品久久久久久国模美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美色中文字幕在线| www.色视频.com| 97在线人人人人妻| 亚洲综合色惰| 女的被弄到高潮叫床怎么办| 大香蕉久久成人网| 亚洲欧美日韩另类电影网站| 久久热精品热| 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 国产精品久久久久成人av| 免费观看在线日韩| 国产 精品1| 22中文网久久字幕| 亚洲精品成人av观看孕妇| 国产精品无大码| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| av线在线观看网站| 色吧在线观看| 亚洲av成人精品一区久久| 有码 亚洲区| 91精品一卡2卡3卡4卡| 精品少妇久久久久久888优播| 五月开心婷婷网| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 卡戴珊不雅视频在线播放| av国产精品久久久久影院| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 国产男女内射视频| a级片在线免费高清观看视频| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 夜夜骑夜夜射夜夜干| 91久久精品电影网| 九色亚洲精品在线播放| 中文字幕人妻丝袜制服| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 国产片特级美女逼逼视频| 美女大奶头黄色视频| 色婷婷久久久亚洲欧美| 日韩av不卡免费在线播放| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 春色校园在线视频观看| 亚洲成人av在线免费| 美女福利国产在线| 亚洲av二区三区四区| 老司机影院成人| 久久久国产精品麻豆| 91精品伊人久久大香线蕉| 在线看a的网站| 韩国高清视频一区二区三区| 婷婷色综合大香蕉| av黄色大香蕉| 一级毛片电影观看| www.av在线官网国产| 国内精品宾馆在线| 亚洲精品日韩在线中文字幕| 欧美丝袜亚洲另类| 亚洲伊人久久精品综合| 亚洲三级黄色毛片| xxxhd国产人妻xxx| 夜夜看夜夜爽夜夜摸| 久久人人爽人人片av| 国产国语露脸激情在线看| 久久狼人影院| 一级二级三级毛片免费看| 熟女av电影| 能在线免费看毛片的网站| 亚洲精品日韩在线中文字幕| 欧美3d第一页| 日韩不卡一区二区三区视频在线| 亚洲欧美色中文字幕在线| 狂野欧美激情性xxxx在线观看| 亚洲av二区三区四区| 午夜激情av网站| 亚洲色图 男人天堂 中文字幕 | 亚洲怡红院男人天堂| 成人午夜精彩视频在线观看| 卡戴珊不雅视频在线播放| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 一边亲一边摸免费视频| 黄色配什么色好看| av不卡在线播放| 22中文网久久字幕| 91精品国产九色| 免费不卡的大黄色大毛片视频在线观看| 日韩精品免费视频一区二区三区 | 久久综合国产亚洲精品| 伦理电影大哥的女人| 女性被躁到高潮视频|