• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of sextuple-mode triple-ring HTS UWB filter using two-round interpolation*

    2021-05-24 02:23:52MingEnTian田明恩ZhiHeLong龍之河YouLan藍(lán)友LeiLeiHe賀磊磊andTianLiangZhang張?zhí)炝?/span>
    Chinese Physics B 2021年5期

    Ming-En Tian(田明恩), Zhi-He Long(龍之河), You Lan(藍(lán)友),Lei-Lei He(賀磊磊), and Tian-Liang Zhang(張?zhí)炝?,?

    1School of Aeronautics and Astronautics,University of Electronic Science and Technology of China,Chengdu 611731,China

    2Department of Mechanical Engineering,City University of Hong Kong,Kowloon,Hong Kong SAR,China

    Keywords: HTS filter,ring resonator,sextuple-mode,two-round interpolation,ultra-wideband(UWB)

    1. Introduction

    The ultra-wideband(UWB)wireless communication system is promising because it can provide fast response speed and high positioning accuracy required by many military and civilian applications. And the UWB bandpass filter, the key building block, in the UWB system has aroused the great interest of researchers. The microstrip ring resonator with many attractive merits,including the low radiation loss,high-Q factor, compact size, split modes, and sharp rejection skirts, is widely employed in the development of the UWB bandpass filters. Ring resonators possess a variety of shapes, such as circles,[1–5]rectangles,[6–9]and triangles,[10]among which the rectangular ones have greater research value due to the easiness of design and processing. The UWB filters based on rectangular single-ring resonators have been extensively studied.However,the in-band return loss or the selectivity of the passband is not better than the counterpart of the high-order UWB filters with a larger size,due to the number of resonant modes excited by these single-stage ring resonators usually being less than six. Furthermore,the upper stopband suppression performance of the ring resonator UWB filters is still worth investigating.

    In this paper, we design a compact triple-ring resonator loaded with three sets of stepped-impedance open stubs to realize a UWB filter with better return loss and upper stopband. This multi-mode resonator can give rise to six modes,and two more resonances can be generated by the interdigitalcoupling line(ICL)structure.[11]The initial dimensions of the designed UWB filter are determined by the proposed practical two-round interpolation method.

    2. Design of UWB filter

    Figure 1 shows the proposed triple-ring sextuple-mode UWB filter working in a range of 3.1 GHz–10.6 GHz, the commercial UWB communication frequency band which is assigned by the Federal Communications Commission(FCC).The three groups of stepped-impedance open stubs are specially designed for miniaturization. Typically, the resonant modes are evenly distributed within the passband, and taking into account the effect of the transition sidebands,we allocate the six resonant modes at 3.4 GHz, 5 GHz, 6.5 GHz, 8 GHz,9.2 GHz, and 10.4 GHz, among which the fundamental odd and even modes fo1(3.4 GHz) and fe1(5 GHz) are particularly important and will be used to determine the filter initial dimensions.

    Since the proposed UWB filter is symmetrical in the vertical and horizontal directions, we apply the even–odd-mode method to simplifying the analysis. When considering the resonant frequencies of odd modes, the perfect electric wall can be introduced into the symmetric plane. Figure 2(a) shows an odd-mode equivalent circuit. For the calculation of evenmode resonances, the plane of symmetry can be regarded as the perfect magnetic wall, and the corresponding even-mode equivalent circuit is depicted in Fig. 2(b). Also, the potential of the upper and lower symmetric nodes are equal, i.e.,the plane of stubs loaded in the central ring can be considered as an open-circuit, and therefore the improved odd- and even-mode equivalent circuits can be obtained as shown in Figs. 2(c) and 2(d). And for the convenience of analysis, the three pairs of stepped-impedance stubs are simplified into the uniform-impedance stubs,which finally will be converted into the stepped-impedance ones again. However, these two circuits in Figs. 2(c) and 2(d) are still rather complex and difficult to analyze. They can be further simplified as shown in Figs.2(e)and 2(f)based on the theoretical analysis of the input voltage and input current as well as the potentials.

    Fig.1. Proposed sextuple-mode UWB filter layout.

    Fig.2. Odd–even-mode analyses of[(a),(c),and(e)]odd-mode equivalent circuits and[(b),(d),and(f)]even-mode equivalent circuits.

    Table 1. ABCD matrices for basic transmission line models.

    We utilize the ABCD matrices and the proposed tworound interpolation method to obtain the initial values of the filter.The ABCD matrices for the basic transmission line models used in this paper are listed in Table 1. According to the series transmission line models,we can calculate the transmission matrix MIfor the part I in Fig.2,and the ABCD transmission matrix MIIfor the ICL structure can be acquired from Ref.[12].

    The core of the design method is the two-round interpolation.The first round is to determine the value for the most critical parameter by setting special values for trivial parameters to simplify the calculation and then by applying the interpolation approach under the odd- and even-mode resonance conditions. In this design,θ2is a key parameter. To explain why θ2has a greater influence on all modes than other parameters,the mathematical derivations of all modes are given in Table 2.According to the odd–even-mode analysis,the two equivalent circuits of Figs. 2(c) and 2(d) can be further simplified into those in Figs. 3(a)–3(d), respectively, because the two circuit diagrams of Figs.2(c)and 2(d)are still symmetrical about the horizontal axis.The four resonators in Figs.3(a)–3(d)can generate multiple resonant modes. Here, only the seven modes used in this paper are derived. None of those modes that have frequencies higher than 20 GHz but no effect on the filter is considered. It can be seen from Table 2 that only θ2exists in all the equations under the seven resonance conditions,which indicates that θ2is the most important parameter. The second round is to determine the values for some secondary parameters(θ3, θ4, and θ5here)by adjusting some preset values for trivial parameters in the first round and solving the generation conditions of transmission zeros(TZs).

    Fig.3. Further simplified equivalent circuits based on Figs.2(c)and 2(d).

    The specific initial value acquisition process of the firstround interpolation is given below. The ring resonator is a full-wavelength resonator, so θ2is equal to a quarter of the wavelength corresponding to the center frequency, which is 1.59. And Y2is the characteristic admittance corresponding to 0.2 mm, the frequently-used microstrip line width.Y2=0.014 S.For the convenience of description,we suppose Y2=K1Y3=K2Y4=K3Y5,θ2=B1θ3=B2θ4=B3θ5=B4θ1.To facilitate the odd–even-mode analysis,we here in this work let K1=K2=K3=2. Then,according to the preset resonance frequencies, the odd-mode equivalent circuits in Table 2 and their resonance condition equations,B3can be calculated and equal to 1. Similarly, based on the preset resonance frequencies,even-mode equivalent circuits in Table 2,their resonance condition equations,and B3=1,the remaining Bivalues can be computed,namely B1=0.4,B2=0.3,and B4=1. To reduce the deviation,the value of Kiand Biare substituted into the original formulas again,and the resonance frequencies obtained are listed in Table 2. These frequency values obtained by the backward derivation are consistent with the preset frequencies. Therefore,the accuracy of Kiand Biare guaranteed.The length of the filter ports is taken as a constant value of 3 mm for connecting ports to connecters by using the golden wire,and the width of ports is 0.48 mm corresponding to 50 ?.For a strong coupling,the line and slot width of ICL are chosen to be 0.1 mm and 0.03 mm under the limited processing accuracy.

    Table 2. Derivation of used seven resonant modes.

    The TZs generated by the stepped-impedance stubs are related to the frequencies of the resonances. The loaded stepped-impedance stubs can not only generate the resonances through the first round of interpolation but also can adjust the TZ frequency through the second round of interpolation. In other words,the stepped-impedance stubs affect both the resonance frequency and the TZ frequency. When the electrical lengths of the centrally-loaded stubs are a quarter of the wavelength,the center of the resonator can be equivalent to grounding, and therefore a TZ can be generated. And the frequency of the TZ can be derived from

    Table 3. Initial values for proposed UWB filter.

    Here,the TZs generated by the stepped-impedance stubs are computed to be 13.5 GHz, 17.13 GHz, and 20 GHz, respectively. Note that the parasitic effect of the microstrip line and the mutual coupling of the filter structure itself cannot be ignored due to the high stopband frequency.

    Finally, the uniform-impedance stubs are converted into the stepped-impedance ones,where a high-impedance ratio is employed for miniaturization.The low-impedance line parameters are given according to Eq.(17),with the high-impedance line parameters fixed. All the initial values of the proposed UWB filter are listed in Table 3, where the electrical lengths are all based on the center frequency. It should be noted that B1, B2, and B3have infinite solutions, and only one set of solutions is given here. The two-round interpolation method used here can be applied to other odd–even-mode filter designs where the conditions of odd- and even-mode resonances and TZs generation are required to be analyzed.This approach can effectively improve the design efficiency by reducing complex calculations while ensuring relatively high accuracy.

    Fig.4. (a)Changing trends of even and odd modes and TZs with L5,and(b)S-parameter varying with frequency for three values of L5 on the high-order mode fo4.

    The proposed filter has the characteristic of a wide upper rejection band,and the parameter L5is especially important in suppressing the out-of-band spurious perturbation. The value of L5can be obtained by converting the uniform-impedance stub into the stepped-impedance one. The input admittance of the uniform-impedance stub is Y3and that of the steppedimpedance one is Yb. Y3=0.014 S, and the electrical length θ3=0.64. To facilitate the design and processing, the physical dimensions of the stepped-impedance stub are set to be W6=0.2 mm,W7=0.6 mm,and L6=0.5 mm. By converting these dimensions into the electrical lengths, which are subsequently substituted into Eqs.(20)–(23),we obtain θ31=0.31,and then we convert θ31(L5) into a physical size of 0.7 mm again.

    Through the above analysis and calculations,all the initial values are obtained.To further verify the reliability of the tworound interpolation approach, verification through simulation is conducted. The important parameter L5is selected here to perform the verification. Let L5take multiple values, so that the changing trends of resonance modes and TZs are more intuitive as shown in Fig. 4(a). When L5is equal to around 0.68 mm, f04and fTZ3coincide, which means that f04is rejected by fTZ3. This high-mode suppression effect can also be observed in Fig.4(b). And according to the above calculation,L5is 0.7 mm,indicating the good agreement between simulation and theoretical calculation,which confirms the reliability of the two-round interpolation method.

    3. Fabrication and measurements

    The proposed UWB filter is designed and optimized by full-wave electromagnetic simulation software IE3D, and the finally obtained optimal dimensions are listed in the caption of Fig. 6. According to the filter pattern on the mask, the corresponding circuit is etched on the 0.5-mmthick YBCO/MgO/YBCO high-temperature superconducting thin film with a size of 25.10 mm × 13.63 mm and a dielectric constant of 9.8 by the photolithography technology. Figure 5 shows the fabricated filter consisting of a superconducting thin-film circuit, metal shielding box, and SMA connectors. To ensure a good electrical connection between the circuit and the pins of the connectors, the gold covered on the 50-? microstrip line is reserved.

    Fig.5. Fabricated HTS UWB filter.

    Figure 6 shows the test and simulation responses of the filter. The transmission poles in the passband are changed from six to eight due to the utilization of ICL.[6]The measured results are well consistent with the simulated ones. The passband covers 3.1 GHz–10.6 GHz; the maximum insertion loss within the passband is only 0.42 dB, and the reflection is better than ?15.6 dB.The upper stopband with attenuation greater than 25 dB extends to 19 GHz,and most of the upper stopband is inhibited to approximately ?40 dB. Besides, the in-band group delay is less than 2 ns.

    Table 4 presents the comparison of the filter proposed in this work with the single-stage multi-mode UWB filters in other references. Our filter shows superiority in the insertion loss,return loss,and upper stopband rejection characteristics.

    Fig. 6. Simulated and measured results. The finally obtained dimensions are as follows: W1 =0.48,W2 =0.11,W3 =0.07,W4 =0.12,W5 =3.96,W6 =0.17, W7 =0.58, W8 =0.10, W9 =0.48, W10 =0.20, W11 =1.27,L1 =3.00, L2 =5.12, L3 =4.74, L4 =8.13, L5 =0.68, L6 =0.50, L7 =2.02, L8 =3.06, L9 =0.47, L10 =0.50, h1 =0.47, h2 =0.55, h3 =0.31,h4=1.09,and S1=0.03(all in units of mm).

    Table 4. Comparison of our proposed filter with the reported UWB filters.

    4. Conclusions

    Based on the ring resonator and stepped-impedance open stubs,a sextuple-mode ring resonator is proposed and used in a single-stage UWB filter design. The good in-band return loss,right band-edge selectivity,and upper stopband rejection are achieved because of the efficacy of this resonator and ICL structure. The proposed two-round interpolation method exhibits the practicability in the odd–even-mode filter designs.

    免费日韩欧美在线观看| 亚洲怡红院男人天堂| 日本午夜av视频| 2018国产大陆天天弄谢| 午夜激情av网站| 丝袜喷水一区| 欧美+日韩+精品| 五月开心婷婷网| 制服丝袜香蕉在线| 国产亚洲av片在线观看秒播厂| 亚洲人成网站在线播| 亚洲人成网站在线播| 丝袜喷水一区| 午夜福利,免费看| www.av在线官网国产| 成人亚洲欧美一区二区av| 成人毛片a级毛片在线播放| 18在线观看网站| 亚洲欧美成人综合另类久久久| 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 国产综合精华液| 九色亚洲精品在线播放| 国产色婷婷99| 天堂中文最新版在线下载| 少妇人妻久久综合中文| 大香蕉97超碰在线| 天天影视国产精品| 精品国产露脸久久av麻豆| 少妇人妻 视频| av国产精品久久久久影院| 国产精品一二三区在线看| av视频免费观看在线观看| 久久99一区二区三区| 99久久中文字幕三级久久日本| 91精品伊人久久大香线蕉| 飞空精品影院首页| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 久久精品国产亚洲av涩爱| 中文欧美无线码| 9色porny在线观看| 丰满饥渴人妻一区二区三| 少妇被粗大的猛进出69影院 | 精品一品国产午夜福利视频| 男女边摸边吃奶| 午夜久久久在线观看| 下体分泌物呈黄色| 国产成人午夜福利电影在线观看| 午夜av观看不卡| 观看美女的网站| 日本黄色片子视频| 黄色一级大片看看| 久久久久久伊人网av| 人妻人人澡人人爽人人| 精品视频人人做人人爽| 交换朋友夫妻互换小说| 国产日韩一区二区三区精品不卡 | 免费观看av网站的网址| 国产国拍精品亚洲av在线观看| 在线 av 中文字幕| 97超碰精品成人国产| a级毛片在线看网站| 国产精品三级大全| av福利片在线| 男女啪啪激烈高潮av片| 又大又黄又爽视频免费| 黑人猛操日本美女一级片| 黄色毛片三级朝国网站| 日韩亚洲欧美综合| 三上悠亚av全集在线观看| 国产av一区二区精品久久| 国产白丝娇喘喷水9色精品| 午夜福利网站1000一区二区三区| 国产一区二区在线观看日韩| 亚洲综合色网址| 美女福利国产在线| 在线观看www视频免费| 成年女人在线观看亚洲视频| 国产白丝娇喘喷水9色精品| 日本与韩国留学比较| 一边亲一边摸免费视频| 久久午夜福利片| 999精品在线视频| 一区二区日韩欧美中文字幕 | 人人妻人人澡人人爽人人夜夜| 搡女人真爽免费视频火全软件| 91精品伊人久久大香线蕉| 伊人久久国产一区二区| 99国产综合亚洲精品| 我的女老师完整版在线观看| 在现免费观看毛片| 秋霞伦理黄片| 日本av免费视频播放| 日本av手机在线免费观看| 如何舔出高潮| 国产免费福利视频在线观看| 少妇的逼好多水| 九色亚洲精品在线播放| 人妻一区二区av| 成人黄色视频免费在线看| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 最近中文字幕2019免费版| 一本色道久久久久久精品综合| 五月天丁香电影| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 久久久久久久精品精品| 纯流量卡能插随身wifi吗| 国产免费现黄频在线看| 久久久久久久久大av| 国内精品宾馆在线| 青春草视频在线免费观看| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| av.在线天堂| 国产精品免费大片| 97精品久久久久久久久久精品| 人妻一区二区av| 最新中文字幕久久久久| 一级毛片我不卡| 夜夜爽夜夜爽视频| 成人亚洲欧美一区二区av| av福利片在线| 免费播放大片免费观看视频在线观看| 七月丁香在线播放| 亚洲欧洲日产国产| 一区二区三区免费毛片| 亚洲av综合色区一区| 秋霞伦理黄片| 国产成人精品久久久久久| 国产一区二区在线观看av| 亚洲精品久久午夜乱码| 国产乱来视频区| 久久婷婷青草| 99视频精品全部免费 在线| 一区在线观看完整版| 免费av中文字幕在线| 大香蕉97超碰在线| 亚洲国产精品国产精品| 国产一区二区三区综合在线观看 | 日韩伦理黄色片| 免费大片18禁| 黄色视频在线播放观看不卡| 亚洲无线观看免费| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 国产精品99久久久久久久久| 一本—道久久a久久精品蜜桃钙片| 国产成人aa在线观看| 亚洲性久久影院| 99热国产这里只有精品6| 插阴视频在线观看视频| 男人添女人高潮全过程视频| 少妇被粗大猛烈的视频| 午夜91福利影院| 欧美97在线视频| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 精品亚洲成a人片在线观看| 交换朋友夫妻互换小说| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲av在线观看美女高潮| 国产精品一区二区在线观看99| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| 久久久精品94久久精品| 久久久久久久国产电影| 满18在线观看网站| 99九九线精品视频在线观看视频| 精品亚洲乱码少妇综合久久| 国产黄频视频在线观看| 亚洲婷婷狠狠爱综合网| 午夜免费观看性视频| 日韩中字成人| 国产亚洲精品久久久com| 97超碰精品成人国产| 搡女人真爽免费视频火全软件| 久久久久网色| 欧美最新免费一区二区三区| 亚洲av电影在线观看一区二区三区| 老熟女久久久| 日本与韩国留学比较| 午夜91福利影院| 亚洲人成网站在线观看播放| 中国三级夫妇交换| 国产精品一二三区在线看| 最近中文字幕2019免费版| 国产亚洲最大av| 成年av动漫网址| 丰满乱子伦码专区| 妹子高潮喷水视频| 亚洲成人av在线免费| 男女高潮啪啪啪动态图| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 天堂8中文在线网| 97在线人人人人妻| 男的添女的下面高潮视频| 亚洲精品久久午夜乱码| 欧美一级a爱片免费观看看| 成人黄色视频免费在线看| 丰满少妇做爰视频| 亚洲精华国产精华液的使用体验| 国产精品国产三级国产av玫瑰| 建设人人有责人人尽责人人享有的| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看| 天堂8中文在线网| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 国产精品.久久久| 少妇的逼好多水| 狠狠精品人妻久久久久久综合| 成人毛片a级毛片在线播放| 久久 成人 亚洲| 久久久久久久亚洲中文字幕| 一区二区av电影网| 少妇人妻精品综合一区二区| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 天天影视国产精品| 免费观看a级毛片全部| 99久久精品国产国产毛片| 高清视频免费观看一区二区| 国产精品免费大片| 久久精品国产a三级三级三级| 国产永久视频网站| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| av免费在线看不卡| 久久久精品区二区三区| 高清黄色对白视频在线免费看| 久久 成人 亚洲| 少妇的逼水好多| 99热网站在线观看| 在线观看www视频免费| 亚洲国产精品一区二区三区在线| 久久午夜福利片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美成人精品一区二区| av又黄又爽大尺度在线免费看| 91精品国产九色| 亚洲av日韩在线播放| 久久97久久精品| 国产午夜精品一二区理论片| 最近最新中文字幕免费大全7| 欧美丝袜亚洲另类| 三级国产精品欧美在线观看| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 国产精品国产三级国产av玫瑰| 欧美日韩亚洲高清精品| 男女边摸边吃奶| 一本大道久久a久久精品| 免费大片黄手机在线观看| 国产视频首页在线观看| 日本91视频免费播放| 一区在线观看完整版| 亚洲人与动物交配视频| 亚洲成人av在线免费| 视频中文字幕在线观看| 精品视频人人做人人爽| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频| av在线老鸭窝| 女性生殖器流出的白浆| 国产精品成人在线| 亚洲国产精品一区三区| 亚洲国产欧美日韩在线播放| 免费大片黄手机在线观看| 中国三级夫妇交换| 午夜av观看不卡| 午夜91福利影院| 日韩欧美一区视频在线观看| 91aial.com中文字幕在线观看| 免费观看无遮挡的男女| 精品亚洲成a人片在线观看| 狠狠婷婷综合久久久久久88av| 久久久亚洲精品成人影院| 狂野欧美激情性xxxx在线观看| 人妻人人澡人人爽人人| 亚洲少妇的诱惑av| 中文天堂在线官网| xxxhd国产人妻xxx| 新久久久久国产一级毛片| 亚洲国产精品一区二区三区在线| 青春草亚洲视频在线观看| 在线亚洲精品国产二区图片欧美 | 国产成人a∨麻豆精品| 亚洲人成网站在线观看播放| 国产精品免费大片| 国产高清三级在线| 精品久久久久久电影网| 91精品国产九色| 国产极品天堂在线| 国产精品久久久久久精品电影小说| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 欧美激情极品国产一区二区三区 | 在线 av 中文字幕| 亚洲国产毛片av蜜桃av| 国产免费一级a男人的天堂| 久久午夜综合久久蜜桃| 亚洲av综合色区一区| 亚洲,欧美,日韩| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| tube8黄色片| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 国产精品 国内视频| 精品少妇久久久久久888优播| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 精品国产国语对白av| av在线老鸭窝| 亚洲精品,欧美精品| 国产精品久久久久久av不卡| 一区二区日韩欧美中文字幕 | 午夜福利在线观看免费完整高清在| 久久影院123| 精品人妻一区二区三区麻豆| 国产精品 国内视频| 久久 成人 亚洲| 国产午夜精品一二区理论片| 亚洲国产av新网站| 久久精品夜色国产| 91精品三级在线观看| 美女国产视频在线观看| 99热这里只有精品一区| 午夜日本视频在线| 久久午夜福利片| 国产免费现黄频在线看| xxxhd国产人妻xxx| 高清视频免费观看一区二区| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 亚洲,一卡二卡三卡| 日韩成人伦理影院| 国国产精品蜜臀av免费| 亚洲av不卡在线观看| 男人操女人黄网站| 亚洲精品456在线播放app| 如日韩欧美国产精品一区二区三区 | 免费看av在线观看网站| 日韩一本色道免费dvd| 成年人午夜在线观看视频| 99国产综合亚洲精品| 美女内射精品一级片tv| 性高湖久久久久久久久免费观看| 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 99九九在线精品视频| 日韩熟女老妇一区二区性免费视频| 人人澡人人妻人| 国产成人午夜福利电影在线观看| 国产高清国产精品国产三级| 亚洲丝袜综合中文字幕| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 午夜影院在线不卡| 又粗又硬又长又爽又黄的视频| 欧美精品高潮呻吟av久久| 亚洲精品色激情综合| 精品久久久噜噜| 大片电影免费在线观看免费| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久| 亚洲人成网站在线观看播放| 国产综合精华液| 伊人久久精品亚洲午夜| 日日爽夜夜爽网站| 国产免费现黄频在线看| 国模一区二区三区四区视频| 全区人妻精品视频| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| av女优亚洲男人天堂| av.在线天堂| 女性被躁到高潮视频| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| 男女啪啪激烈高潮av片| 国产视频内射| 99热国产这里只有精品6| 老熟女久久久| 国产精品人妻久久久影院| 精品视频人人做人人爽| av一本久久久久| 中国美白少妇内射xxxbb| 99九九线精品视频在线观看视频| www.av在线官网国产| 热re99久久国产66热| 久久久久久久久久人人人人人人| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 久久久久精品性色| 日韩人妻高清精品专区| 三级国产精品片| 如日韩欧美国产精品一区二区三区 | a级片在线免费高清观看视频| 制服人妻中文乱码| 日本黄色日本黄色录像| 美女内射精品一级片tv| 免费观看在线日韩| 免费日韩欧美在线观看| 日韩一本色道免费dvd| 国产乱来视频区| 免费观看a级毛片全部| 亚洲美女搞黄在线观看| 免费不卡的大黄色大毛片视频在线观看| 欧美一级a爱片免费观看看| 国国产精品蜜臀av免费| 国产成人一区二区在线| 国产av国产精品国产| 国产男女超爽视频在线观看| a级毛片黄视频| 这个男人来自地球电影免费观看 | 亚洲国产精品专区欧美| 欧美一级a爱片免费观看看| 欧美另类一区| 精品少妇黑人巨大在线播放| 午夜91福利影院| 我的老师免费观看完整版| 亚洲欧美清纯卡通| 成人亚洲欧美一区二区av| 国国产精品蜜臀av免费| 男女国产视频网站| av黄色大香蕉| 国产极品粉嫩免费观看在线 | 欧美一级a爱片免费观看看| 日本vs欧美在线观看视频| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 欧美日韩av久久| 三级国产精品欧美在线观看| av电影中文网址| 大陆偷拍与自拍| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 嫩草影院入口| 高清黄色对白视频在线免费看| 少妇熟女欧美另类| 亚洲欧美成人综合另类久久久| 亚洲欧美色中文字幕在线| 男女高潮啪啪啪动态图| 岛国毛片在线播放| 精品久久久精品久久久| 日韩一本色道免费dvd| 91精品国产九色| 七月丁香在线播放| 国产精品国产av在线观看| 久久精品久久精品一区二区三区| 国产有黄有色有爽视频| 久久久久国产精品人妻一区二区| 日本色播在线视频| 国产亚洲av片在线观看秒播厂| √禁漫天堂资源中文www| 久久这里有精品视频免费| 国产国拍精品亚洲av在线观看| 亚洲av综合色区一区| 国产高清三级在线| av播播在线观看一区| 成年人午夜在线观看视频| 精品国产露脸久久av麻豆| 毛片一级片免费看久久久久| 久久久久久久久久人人人人人人| 熟女人妻精品中文字幕| 日韩中字成人| 中文字幕制服av| 街头女战士在线观看网站| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| 大话2 男鬼变身卡| 精品少妇内射三级| 伦精品一区二区三区| 国产精品免费大片| 精品久久久噜噜| 中国三级夫妇交换| 国产在线一区二区三区精| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 国产熟女午夜一区二区三区 | 99国产综合亚洲精品| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| 好男人视频免费观看在线| 久久久久久久久久久免费av| 美女福利国产在线| 国产男女超爽视频在线观看| 一区二区三区免费毛片| 亚洲人成77777在线视频| 少妇猛男粗大的猛烈进出视频| 久久精品人人爽人人爽视色| 在线观看免费高清a一片| 久久女婷五月综合色啪小说| 丰满少妇做爰视频| 国产熟女欧美一区二区| 免费观看的影片在线观看| 精品熟女少妇av免费看| 久久国内精品自在自线图片| 欧美xxⅹ黑人| 精品一区二区三区视频在线| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 伊人亚洲综合成人网| 特大巨黑吊av在线直播| 国产国拍精品亚洲av在线观看| 我的老师免费观看完整版| 欧美3d第一页| av又黄又爽大尺度在线免费看| 国产午夜精品一二区理论片| 少妇猛男粗大的猛烈进出视频| 伊人亚洲综合成人网| 99热这里只有精品一区| 一级毛片电影观看| 波野结衣二区三区在线| 免费黄色在线免费观看| 久久久久久伊人网av| 欧美老熟妇乱子伦牲交| 99九九在线精品视频| 汤姆久久久久久久影院中文字幕| 亚洲国产成人一精品久久久| 日韩三级伦理在线观看| 欧美日本中文国产一区发布| 亚洲国产精品成人久久小说| 国产国语露脸激情在线看| 成人午夜精彩视频在线观看| 王馨瑶露胸无遮挡在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品一区蜜桃| 亚洲国产精品一区三区| 久久久久久久久久人人人人人人| 狂野欧美白嫩少妇大欣赏| 亚洲国产av影院在线观看| 国产不卡av网站在线观看| 卡戴珊不雅视频在线播放| 男的添女的下面高潮视频| 蜜桃久久精品国产亚洲av| 黑人猛操日本美女一级片| .国产精品久久| 麻豆精品久久久久久蜜桃| 十分钟在线观看高清视频www| 18+在线观看网站| 国产高清有码在线观看视频| 亚洲中文av在线| 欧美性感艳星| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| 看十八女毛片水多多多| 午夜福利影视在线免费观看| 久久久亚洲精品成人影院| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 久久人人爽人人片av| 国产精品一国产av| 国产淫语在线视频| 美女内射精品一级片tv| 国产精品偷伦视频观看了| 黄色欧美视频在线观看| 国产av国产精品国产| 91午夜精品亚洲一区二区三区| 国产日韩欧美亚洲二区| 免费大片18禁| 午夜福利网站1000一区二区三区| 高清毛片免费看| 亚洲国产精品一区三区| 满18在线观看网站| 亚洲精品乱码久久久v下载方式| 久久午夜综合久久蜜桃| 永久网站在线| 亚洲国产成人一精品久久久| 亚洲精品国产色婷婷电影| av.在线天堂| 纯流量卡能插随身wifi吗| 日韩强制内射视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久久久免| 免费av中文字幕在线| 一级毛片黄色毛片免费观看视频| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 国产av码专区亚洲av| 飞空精品影院首页| 精品一区在线观看国产| 天堂中文最新版在线下载| 熟妇人妻不卡中文字幕| 成人18禁高潮啪啪吃奶动态图 | 日韩av免费高清视频| 成人亚洲欧美一区二区av| 亚洲精品中文字幕在线视频| 夫妻午夜视频| 国产精品久久久久久久电影| 久久久久久久国产电影| 亚洲av电影在线观看一区二区三区| 国产成人精品无人区| av黄色大香蕉|