• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate?

    2021-05-24 02:28:04YuanHaoHe何元浩WeiMao毛維MingDu杜鳴ZiLingPeng彭紫玲HaiYongWang王海永XueFengZheng鄭雪峰ChongWang王沖JinChengZhang張進(jìn)成andYueHao郝躍
    Chinese Physics B 2021年5期
    關(guān)鍵詞:雪峰

    Yuan-Hao He(何元浩), Wei Mao(毛維),?, Ming Du(杜鳴), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永),Xue-Feng Zheng(鄭雪峰), Chong Wang(王沖), Jin-Cheng Zhang(張進(jìn)成), and Yue Hao(郝躍)

    Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: InGaN TFET,hetero T-shaped gate,polarization-doped source and drain

    1. Introduction

    As the size of semiconductor devices continues to shrink into the nanoscale, the problems of short channel effects(SCEs)and off-state leakage in traditional MOSFETs are becoming more and more serious. Especially due to thermal emission mechanism,the subthreshold slope(SS)cannot break through the limit of 60 mV/decade,which is not suitable effectively for energy-efficient and low-voltage applications.[1–4]Tunneling field-effect transistors (TFETs) have been considered as a suitable alternative to nanoscale MOSFETs in future low power electronics applications.[1]Based on the quantum band-to-band tunneling(BTBT)mechanism,TFETs could realize steeper average subthreshold swing (SSavg<60 mV/decade), lower off-state leakage current (IOFF), and great immune to short channel effects in comparison with conventional nanoscale MOSFETs.[5–7]

    However, there still exist many problems needed to be solved during the application of TFETs with conventional physical doping, such as the high thermal budget and expensive annealing techniques due to ion-implantation physical doping,and the random dopant fluctuation(RDF),which can deteriorate the device performances.[8–12]Recently, various dopingless TFETs have been proposed based on the chargeplasma concept,[13–16]which demonstrates an effective way to realize TFETs without physical doping. And based on the polarization effect near III-nitride-based heterointerfaces,[17–21]the lateral polarization-induced InN-based TFETs (PI-InNTFET) have been demonstrated by our group.[22]This also opens a new path to the further development of TFETs without physical doping processing. In addition, in order to improve the on-state current, some effective methods, such as gate engineering,energy band engineering,and source-pocket doping[23–30]have been proposed and investigated.

    In this paper, a novel vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero Tshaped gate (InN-Hetero-TG-TFET) is proposed and investigated. This device features a polarization-doped drain and source combined with a hetero T-shaped gate, which is different from the conventional vertical tunnel FET with physical doping. Based on these features, the problems about the random dopant fluctuation and the high thermal annealing techniques could be avoided, and the on-state performance could be improved. Comparative analyses between the InN-Hetero-TG-TFET and the vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with homo Tshaped gate (InN-Homo-TG-TFET) are conducted. And the systematical simulations of the influence of the work-function and position of hetero T-shaped gate on the performance of the InN-Hetero-TG-TFET are carried out by Silvaco-Atlas.These results demonstrate the excellent characteristics of the InN-Hetero-TG-TFET in comparison with the InN-Homo-TG-TFET and our reported lateral polarization-induced InNbased TFET(PI-InN-TFET),which indicates a great potential of the proposed InN-Hetero-TG-TFET in the low power applications.

    2. Device structure and simulation parameters

    Figure 1 shows the schematic cross-section of InNHomo-TG-TFET (Fig. 1(a)) and InN-Hetero-TG-TFET(Fig. 1(b)). The T-shaped gate and dual channel are used in both devices,and both the devices have the same main dimensions. The main parameters of the InN-Homo-TG-TFET and proposed InN-Hetero-TG-TFET are shown in Table 1. Both devices use the vertical InN/InxGa1?xN/InN layer structure to form the drain and source region without physical doping. Furthermore, the source and drain are set to be at both sides of devices, which is compatible with the planar fabrication process of the GaN-based HEMTs. The InN-Hetero-TG-TFET features a hetero T-shaped gate consisting in two metals with different metal work-functions applied to modulate the InxGa1?xN band between hetero gate at different gate bias voltages,which could be used to control the tunneling distance and thus improving the on-state current and reducing the ambipolar leakage current.

    Devices are simulated with two-dimensional numerical software Silvaco-Atlas. A Poisson’s equation is used to solve self-consistently the carrier current continuity equations. Device models in this paper are mainly based on our early research.[16,22,31]The nonlocal BTBT model is used for the consideration of the spatial variation of the energy band and the more accurate calculation of the tunneling process. The Shockley–Read–Hall and Auger recombination models are adopted to consider the effect of carrier recombination. Besides, band-gap narrowing model, concentration-dependent and field-dependent mobility models are also used. Main material parameters in simulations are given in Table 2.

    Fig.1. Schematic cross-section of(a)InN-Homo-TG-TFET and(b)InN-Hetero-TG-TFET.

    Table 1. Design parameters used in simulations.

    Table 2. Material parameters in simulations.[17,32,33]

    The detailed distributions of the polarization-induced carrier concentration in the InN-Hetero-TG-TFET can be observed in Fig. 2. As shown in the figure, the source region exhibits the P-type doping with the peak hole concentration near the top InN/InGaN junction, while the drain region exhibits the N-type doping with the peak electron concentration near the bottom InGaN/InN junction. Figure 3 displays the vertical distribution diagram of carrier concentration and polarization charge concentration in the source region and drain region corresponding to Fig.2 along the line D–in Fig.1(b).As shown in Fig. 3, there is a great negative polarization charge density peak σtopnear the top InN/InGaN junction because of the spontaneous and piezoelectric polarization effect,which indicates a large number of net negative bound polarization charges are located near the junction. Based on the local neutralization principle,holes are consequently induced to neutralize these negative bound sheet charges, which thus forms the P-type doping of source region. A positive polarization charge density peak σbottomappears near the bottom In-GaN/InN junction,and thus the electrons can be induced near the bottom InGaN/InN junction in the same way,which forms N-type doping of drain region. The results are consistent with experimental results reported previously.[34]

    Fig.2. Distribution of polarization-induced(a)hole concentration(Conc.) and(b)electron concentration in InN-Hetero-TG-TFET.

    Fig.3. Vertical distribution of carrier concentration and polarization charge concentration in source region and drain region along line D–in Fig.1(b).

    3. Results and discussion

    3.1. Device performance of InN-Homo-TG-TFET and proposed InN-Hetero-TG-TFET

    Figure 4 shows the transfer characteristic curves of the InN-Homo-TG-TFET (? = 5.65 eV), InN-Homo-TG-TFET(? = 4.8 eV), and proposed InN-Hetero-TG-TFET (?0=5.65 eV, ?1=4.8 eV). As can be seen, both InN-Homo-TGTFETs exhibit almost the same transfer characteristic curves,which is due to the fact that the change of work-function of the gate in the InN-Homo-TG-TFET can nearly only affect the threshold. Compared with the InN-Homo-TG-TFET,the InNHetero-TG-TFET shows a high IONof 4.45×10?5A/μm at VDS=0.5 V and Voverdrive=0.5 V.And,an IONof more than 10?4A/μm can be achieved in the InN-Hetero-TG-TFET at VDS=0.5 V and Voverdrive=1 V.Besides,the calculated SSavgof the InN-Hetero-TG-TFET is 7.5 mV/dec which is much smaller than that of the InN-Homo-TG-TFET(39.4 mV/dec).As shown in the figure, all the three devices have almost the same good off-state characteristics, which lead to a higher ION/IOFFof 1013in the InN-Hetero-TG-TFET than that in the InN-Homo-TG-TFET (with ION/IOFFof 1011) at Voverdrive=0.5 V.These results demonstrate that the device with a hetero T-shaped gate possesses an excellent turn-on performance.

    Fig. 4. Transfer characteristic curves of InN-Homo-TG-TFET (? =5.65 eV), InN-Homo-TG-TFET (? =4.8 eV), and proposed InN-Hetero-TG-TFET(?0=5.65 eV,?1=4.8 eV).

    In order to reveal the tunneling mechanism of the proposed InN-Hetero-TG-TFET, figure 5 gives the contour of the nonlocal BTBT e-tunneling rate in the right half part of the InN-Homo-TG-TFET and proposed InN-Hetero-TGTFET. As shown in Fig. 5, comparing with the InN-Homo-TG-TFET, a wide tunneling region along the line E–in Fig.1(b)can be realized in the InN-Hetero-TG-TFET,which results in a wider one-dimensional tunneling rate profile in Fig.6.And from Fig.6 it is seen that the tunneling rate peak in the InN-Hetero-TG-TFET is much larger than that in the InNHomo-TG-TFETs near the interface of InN/InGaN. Besides,the introduction of gate 1 can play an effective role in improving the tunneling rate near the bottom of gate trench in the InN-Hetero-TG-TFET.Because the integral of the area under each tunneling rate curve can represent the value of the tunneling current,the greater area under the tunneling rate curve in the InN-Hetero-TG-TFET indicates a greater tunneling current than in the InN-Homo-TG-TFET.

    Fig. 5. Contours of nonlocal BTBT e-tunneling rate of half part of (a) InN-Homo-TG-TFET and (b) proposed InN-Hetero-TG-TFET when Voverdrive=0.5 V and VDS=0.5 V.

    Fig. 6. One-dimensional distribution of nonlocal BTBT tunneling rate extracted from InN-Homo-TG-TFET (? =5.65 eV), InN-Homo-TG-TFET (? = 4.8 eV), and proposed InN-Hetero-TG-TFET (?0 =5.56 eV,?1 =4.8 eV)when Voverdrive =0.5 V and VDS =0.5 V along the line E–in Fig.1(b).

    In Fig. 5(b), there exist three typical types of tunneling paths in the InN-Hetero-TG-TFET.For the convenience of the analysis afterwards,the three typical types of tunneling paths are marked in Figs. 5(b) and 6, namely, along the line A–(type 1),line B–(type 2),and line C–(type 3)corresponding to Fig.1(b). The type 1 and type 2 describe the tunneling from InN to InGaN under the control of gate 0 and gate 1,respectively. And the type 3 describes the tunneling path in InGaN under the control of gate 1.

    Further explanation about the modulation mechanism of the hetero T-shaped gate is shown by Fig. 7. The arrowed lines represent the tunneling paths and tunneling distances in devices at on-state. Almost the same energy band of the InNHomo-TG-TFETs with ? =5.56 eV or ? =4.8 eV can be seen,indicating the slight effect of the metal work-function on the performance. This is consistent with the result in Fig.4.

    In Fig.7,in all devices,the tunneling distances of type 2 are all less than 5 nm which are obviously smaller than those of types 1 and 3. It indicates a dominant effect of type 2 on the tunneling current. Because of the effective modulation effect of the hetero T-shaped gate,the tunneling distance of type 2 in the InN-Hetero-TG-TFET is shorter than that in the InN-Homo-TG-TFET,resulting in a greater tunneling rate and thus a larger tunneling current as well as a smaller average subthreshold swing in the InN-Hetero-TG-TFET.This accords well with the results in Figs.4 and 6. Besides,nearly no tunneling can be seen for type 3 in InN-Homo-TG-TFETs,while there still exits a certain tunneling for type 3 in the InN-Hetero-TG-TFET,which further demonstrates an effective modulation effect of the bottom of gate trench in InN-Hetero-TG-TFET on the energy band. In Fig.7(d),nearly no tunneling can be seen in all devices at off-state,which indicates a significantly small off-state leakage current. These results demonstrate excellent characteristics of the InN-Hetero-TG-TFET.

    3.2. Influence of hetero T-shaped gate1 work-function ?1 on InN-Hetero-TG-TFET

    Figure 8 shows the influence of hetero gate1 workfunction ?1on transfer characteristics in InN-Hetero-TGTFET. As shown in the figure, the transfer curves shift towards the negative voltage direction when ?1decreases. And with the help of hetero gate, the SSavgand IONcan be improved efficiently. The variation extracted from Fig. 8(a) is shown in Fig. 8(b) and the corresponding energy band diagrams are also depicted in Fig.9. It could be seen in Fig.8(b)that IONcontinuously increases while SSavgdecreases with ?1decreasing. The results can be illustrated by the energy band diagrams in Fig.9. As it is shown,the tunneling distance decreases with ?1decreasing and reaches a minimum value at ?1=4.70 eV,which results in a highest ION. And,due to the improved modulation ability of the gate with ?1decreasing,the SSavgkeeps on falling. In order to achieve the enhancement mode device,?1=4.8 eV is chosen as the optimal value in the following.

    Fig. 8. Influence of hetero gate-1 work-function ?1 on InN-Hetero-TG-TFET performance,showing(a)transfer characteristics and(b)extracted ION and SSavg.

    Fig. 9. Influence of hetero gate-1 work-function ?1 on energy band of InN-Hetero-TG-TFET along line B–in Fig. 1(b) when VDS =0.5 V and Voverdrive=0.5 V.

    3.3. Influence of hetero T-shaped gate-0 work-function ?0 on InN-Hetero-TG-TFET

    Fig. 10. Influence of hetero gate-0 work-function ?0 on InN-Hetero-TG-TFET performance: (a) transfer characteristics and (b) extracted ION and SSavg.

    Figure 10 shows the influence of hetero gate-0 workfunction ?0on transfer characteristics in the InN-Hetero-TG-TFET. As it is shown, the transfer curves shift towards the negative voltage direction and the subthreshold characteristics are degraded gradually as ?0decreases. The variation extracted from Fig.10(a)is shown in Fig.10(b),and the corresponding energy band diagrams are also depicted in Fig.11.It could be seen in Fig. 10(b) that IONdecreases and SSavgincreases with ?0decreasing, which is attributed to the increase in tunneling distance as shown in Fig. 11. Therefore,?0=5.56 eV is adopted in the following investigation.

    Fig. 11. Influence of hetero gate-0 work-function ?0 on energy band of InN-Hetero-TG-TFET along line B–in Fig. 1(b) when VDS =0.5 V and Voverdrive=0.5 V.

    3.4. Influence of hetero T-shaped gate position Tg1 on InNHetero-TG-TFET

    The influence of hetero gate-1 thickness Tg1on the performance of InN-Hetero-TG-TFET is shown in Fig. 12 and the corresponding energy band diagrams are shown in Fig.13.As shown in Fig.12,the transfer curves shift towards the negative voltage direction when Tg1is raised. And IONincreases continuously with Tg1increasing. Based on the energy band in Fig. 13, the energy band on gate side will shift down with Tg1increasing, which can shorten the tunneling distance and increase the tunneling rate,resulting in the variation of ION. It can be observed that SSavgfirst decreases and then increases but reaches a minimum value at Tg1=23 nm. This is due to the changing of modulation ability of the hetero gate around Tg1=23 nm. With Tg1increasing, the modulation ability of the whole hetero gate(gate 0 and gate 1)converts from that of the high metal work-function homo gate to that of hetero gate,then to that of the low metal work-function homo gate,which results in the trend of SSavg. Based on these analyses,it is important to find the balance point of Tg1, and Tg1is chosen to be 23 nm for the proposed device in this paper. The characteristics of the proposed device in comparison with those of our previous reported lateral PI-InN-TFET and the state-of-the-art III-nitride-based TFETs are given in Table 3, which demonstrates the excellent performance of InN-Hetero-TG-TFET.

    Fig.12. Influence of hetero gate-1 thickness Tg1 on InN-Hetero-TG-TFET performance for total gate trench thickness Tgate of 30 nm,showing(a)transfer characteristics and(b)extracted ION and SSavg.

    Fig.13. Influence of hetero gate-1 thickness Tg1 on energy band along line B–in Fig.1(b)when VDS=0.5 V and VGS=0.5 V.

    Table 3. Comparison of characteristic between proposed device and state-of the-art nitride TFETs.

    4. Conclusions

    In this paper, we present a new vertical polarizationinduced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate (InN-Hetero-TG-TFET). The proposed device can realize the drain and source region doping by means of polarization effect without the conventional physical doping processing, which can avoid the random dopant fluctuation (RDF) and the problems related to the high thermal annealing techniques in the conventional physical doping tunnel FETs. In addition, the improvement of the IONand SSavgcan be achieved,benefitting from the utilization of the hetero T-shaped gate with different metal work-functions. The device electrical characteristics and the physical mechanisms are studied systematically. Simulation results demonstrate the excellent performance of InN-Hetero-TG-TFET in comparison with those of the InN-Homo-TG-TFET and our previously reported lateral polarization-induced InN-based TFET(PI-InNTFET), which could provide an effective method for the further development of TFETs.

    猜你喜歡
    雪峰
    珠穆朗瑪不只有雪峰
    奧秘(2023年3期)2023-05-30 04:58:26
    57Fe M¨ossbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE–Fe–B permanent magnets*
    命途多舛的數(shù)學(xué)家:安德烈·韋依
    少兒科技(2021年10期)2021-01-20 23:19:26
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    白描作品《花卉寫(xiě)生》
    西部論叢(2017年8期)2017-12-01 01:10:14
    看山是山?看山非山?
    雪峰下的草場(chǎng)
    解析幾何中一類定點(diǎn)問(wèn)題及其證法
    王雪峰國(guó)畫(huà)
    歌海(2016年1期)2016-03-28 10:08:55
    韓雪峰的“臺(tái)賬”
    美女中出高潮动态图| 欧美另类一区| 国产成人精品久久久久久| 国产一区二区激情短视频 | 女人高潮潮喷娇喘18禁视频| 国产片特级美女逼逼视频| 男男h啪啪无遮挡| 亚洲国产中文字幕在线视频| 日韩中文字幕视频在线看片| 久久免费观看电影| 欧美老熟妇乱子伦牲交| 亚洲精品国产区一区二| 亚洲欧美清纯卡通| 精品一区在线观看国产| 亚洲熟女精品中文字幕| 99精国产麻豆久久婷婷| 午夜福利一区二区在线看| 999久久久国产精品视频| 久久精品亚洲熟妇少妇任你| 黑人猛操日本美女一级片| av福利片在线| 国产成人精品无人区| 男女床上黄色一级片免费看| av在线app专区| 亚洲欧美日韩另类电影网站| av国产精品久久久久影院| 久久久久视频综合| 香蕉国产在线看| 免费观看av网站的网址| 亚洲第一青青草原| 国产一区有黄有色的免费视频| 下体分泌物呈黄色| 亚洲美女视频黄频| 捣出白浆h1v1| 丰满饥渴人妻一区二区三| 国精品久久久久久国模美| 国产一区亚洲一区在线观看| 久久精品亚洲av国产电影网| 亚洲成人av在线免费| 午夜免费男女啪啪视频观看| 乱人伦中国视频| 一边摸一边做爽爽视频免费| 99久久综合免费| 久久久精品94久久精品| 看非洲黑人一级黄片| 国产成人精品久久二区二区91 | 黄频高清免费视频| 亚洲,欧美精品.| 丝袜喷水一区| 国产无遮挡羞羞视频在线观看| 最近手机中文字幕大全| 精品少妇久久久久久888优播| 色综合欧美亚洲国产小说| 日韩精品有码人妻一区| 亚洲人成电影观看| 亚洲欧美精品自产自拍| 亚洲,欧美,日韩| 男女午夜视频在线观看| 亚洲三区欧美一区| 超碰成人久久| 精品少妇久久久久久888优播| 国产男人的电影天堂91| 看非洲黑人一级黄片| 午夜日本视频在线| 丝袜美腿诱惑在线| 91精品三级在线观看| 久久狼人影院| 韩国精品一区二区三区| 国产精品一二三区在线看| 欧美人与性动交α欧美软件| 校园人妻丝袜中文字幕| 一边亲一边摸免费视频| 人妻人人澡人人爽人人| 高清不卡的av网站| 99久久99久久久精品蜜桃| 丰满迷人的少妇在线观看| 国产成人91sexporn| 日韩不卡一区二区三区视频在线| 少妇被粗大猛烈的视频| 欧美久久黑人一区二区| 一本久久精品| 国产无遮挡羞羞视频在线观看| 亚洲精品国产区一区二| 啦啦啦啦在线视频资源| 999精品在线视频| 久久人人爽人人片av| 老司机影院成人| 色播在线永久视频| 精品卡一卡二卡四卡免费| 嫩草影院入口| 国产在视频线精品| 精品少妇内射三级| 最近中文字幕高清免费大全6| 久久人人爽av亚洲精品天堂| 亚洲欧洲日产国产| 午夜久久久在线观看| 国产片内射在线| 日韩不卡一区二区三区视频在线| av免费观看日本| 99热国产这里只有精品6| 一级,二级,三级黄色视频| 交换朋友夫妻互换小说| 欧美最新免费一区二区三区| 九草在线视频观看| 久久久精品免费免费高清| 久久精品国产a三级三级三级| 老司机靠b影院| 另类精品久久| 亚洲欧美日韩另类电影网站| 亚洲四区av| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线不卡| 精品欧美一区二区三区在线| 国产麻豆69| 欧美人与性动交α欧美精品济南到| 国产精品久久视频播放| 色播亚洲综合网| 欧美激情高清一区二区三区| 91精品三级在线观看| 亚洲熟妇熟女久久| 亚洲熟妇中文字幕五十中出| 欧美激情 高清一区二区三区| 在线观看免费视频网站a站| 99re在线观看精品视频| 美女大奶头视频| 精品久久久久久,| 欧美日本亚洲视频在线播放| 亚洲专区中文字幕在线| 亚洲成人久久性| 国产午夜福利久久久久久| 亚洲熟女毛片儿| 黄色成人免费大全| 老熟妇乱子伦视频在线观看| 搞女人的毛片| 亚洲色图av天堂| 成人特级黄色片久久久久久久| 九色亚洲精品在线播放| av免费在线观看网站| 女同久久另类99精品国产91| 国产精品亚洲一级av第二区| 变态另类成人亚洲欧美熟女 | 久久婷婷人人爽人人干人人爱 | 非洲黑人性xxxx精品又粗又长| 精品一区二区三区四区五区乱码| 一区在线观看完整版| 国产欧美日韩综合在线一区二区| 美女 人体艺术 gogo| 性少妇av在线| 精品午夜福利视频在线观看一区| 91麻豆av在线| 日韩欧美国产在线观看| 亚洲欧美日韩高清在线视频| 久久青草综合色| 亚洲av片天天在线观看| 丁香六月欧美| 老司机深夜福利视频在线观看| 欧美激情久久久久久爽电影 | 久久久久久大精品| 国产亚洲精品久久久久5区| 19禁男女啪啪无遮挡网站| 极品教师在线免费播放| 久久久久久久久久久久大奶| 国产欧美日韩综合在线一区二区| 精品熟女少妇八av免费久了| 性少妇av在线| 国产人伦9x9x在线观看| 久久精品国产综合久久久| 欧美日本视频| 亚洲人成电影观看| 久久精品成人免费网站| 亚洲五月婷婷丁香| 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 精品国产亚洲在线| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠躁躁| 女人高潮潮喷娇喘18禁视频| 丁香欧美五月| 一区二区日韩欧美中文字幕| 国产精品免费一区二区三区在线| 长腿黑丝高跟| 亚洲性夜色夜夜综合| 欧美成人性av电影在线观看| 两个人视频免费观看高清| 日韩高清综合在线| 精品熟女少妇八av免费久了| 99久久精品国产亚洲精品| 国产97色在线日韩免费| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美在线二视频| 免费在线观看日本一区| 91精品国产国语对白视频| 亚洲国产欧美网| 日韩精品中文字幕看吧| 女同久久另类99精品国产91| 悠悠久久av| 国产亚洲精品第一综合不卡| 男女下面进入的视频免费午夜 | 国产99久久九九免费精品| 又黄又爽又免费观看的视频| 12—13女人毛片做爰片一| 美女大奶头视频| 18禁国产床啪视频网站| or卡值多少钱| 久久久久久久精品吃奶| 成人手机av| 久99久视频精品免费| 亚洲欧美精品综合久久99| 成人18禁高潮啪啪吃奶动态图| 中文字幕久久专区| 欧美性长视频在线观看| 一区二区三区激情视频| 亚洲精品一区av在线观看| 日韩精品免费视频一区二区三区| 国产一区二区三区综合在线观看| 一夜夜www| 在线观看日韩欧美| e午夜精品久久久久久久| 熟女少妇亚洲综合色aaa.| 50天的宝宝边吃奶边哭怎么回事| 欧美 亚洲 国产 日韩一| 人人妻人人澡欧美一区二区 | 精品欧美国产一区二区三| 一进一出抽搐动态| 午夜久久久久精精品| 色综合婷婷激情| 亚洲国产欧美日韩在线播放| 日韩精品免费视频一区二区三区| 久久中文字幕一级| 日本vs欧美在线观看视频| 淫妇啪啪啪对白视频| 亚洲国产精品合色在线| 999久久久国产精品视频| 精品国产美女av久久久久小说| 国产亚洲精品久久久久5区| 久99久视频精品免费| 最新美女视频免费是黄的| www日本在线高清视频| 老司机深夜福利视频在线观看| 亚洲一区二区三区不卡视频| 精品国产国语对白av| 岛国在线观看网站| www.自偷自拍.com| 亚洲成人国产一区在线观看| 露出奶头的视频| 国产精品久久视频播放| 国内精品久久久久久久电影| √禁漫天堂资源中文www| 中文字幕高清在线视频| 午夜激情av网站| 此物有八面人人有两片| 亚洲精品久久成人aⅴ小说| 国产午夜精品久久久久久| 母亲3免费完整高清在线观看| 可以在线观看的亚洲视频| 国产激情久久老熟女| 热re99久久国产66热| 97人妻天天添夜夜摸| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产看品久久| 亚洲av成人av| 亚洲av第一区精品v没综合| 波多野结衣一区麻豆| 人妻久久中文字幕网| 久久国产亚洲av麻豆专区| 国产精品免费视频内射| 精品人妻1区二区| 亚洲av美国av| 久久精品国产亚洲av高清一级| 欧美人与性动交α欧美精品济南到| 欧美一级毛片孕妇| 久久 成人 亚洲| 中文亚洲av片在线观看爽| 97人妻精品一区二区三区麻豆 | 熟妇人妻久久中文字幕3abv| 每晚都被弄得嗷嗷叫到高潮| 国产在线观看jvid| 一区福利在线观看| 女性生殖器流出的白浆| 麻豆av在线久日| 色av中文字幕| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| 制服丝袜大香蕉在线| 午夜精品久久久久久毛片777| 午夜久久久在线观看| 9191精品国产免费久久| 夜夜看夜夜爽夜夜摸| 在线观看免费视频网站a站| 国产av精品麻豆| 欧美日韩一级在线毛片| 午夜成年电影在线免费观看| 男男h啪啪无遮挡| 亚洲电影在线观看av| av欧美777| 免费看美女性在线毛片视频| 久久久国产成人免费| 国产精品 欧美亚洲| 女人爽到高潮嗷嗷叫在线视频| 欧美成人午夜精品| 日韩成人在线观看一区二区三区| 在线天堂中文资源库| 国产成人精品久久二区二区91| 无人区码免费观看不卡| 人妻丰满熟妇av一区二区三区| 精品福利观看| 亚洲国产毛片av蜜桃av| 亚洲精品国产精品久久久不卡| av视频在线观看入口| e午夜精品久久久久久久| 啦啦啦韩国在线观看视频| 一级黄色大片毛片| 啦啦啦免费观看视频1| 亚洲狠狠婷婷综合久久图片| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 国产精品一区二区精品视频观看| 最好的美女福利视频网| 视频区欧美日本亚洲| 男人操女人黄网站| 免费久久久久久久精品成人欧美视频| 好看av亚洲va欧美ⅴa在| 国产99白浆流出| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 久久久久久亚洲精品国产蜜桃av| 波多野结衣巨乳人妻| 精品一区二区三区视频在线观看免费| 午夜a级毛片| 亚洲精品中文字幕一二三四区| 日本vs欧美在线观看视频| 一级毛片精品| 亚洲精品中文字幕在线视频| 国产一卡二卡三卡精品| av超薄肉色丝袜交足视频| 老司机福利观看| 国产精品亚洲美女久久久| 自线自在国产av| 久久香蕉国产精品| 两性夫妻黄色片| 正在播放国产对白刺激| 欧美精品亚洲一区二区| 97人妻精品一区二区三区麻豆 | 九色亚洲精品在线播放| 国产又色又爽无遮挡免费看| 久久人妻熟女aⅴ| 成人国语在线视频| 亚洲国产日韩欧美精品在线观看 | 香蕉国产在线看| 久久人人爽av亚洲精品天堂| 国产视频一区二区在线看| 两个人免费观看高清视频| 啪啪无遮挡十八禁网站| 校园春色视频在线观看| 美女国产高潮福利片在线看| 美女免费视频网站| 男女下面插进去视频免费观看| 亚洲成a人片在线一区二区| 欧美乱码精品一区二区三区| 午夜影院日韩av| 亚洲狠狠婷婷综合久久图片| 99久久国产精品久久久| 日日爽夜夜爽网站| 男人舔女人的私密视频| 国产精品爽爽va在线观看网站 | 美女高潮喷水抽搐中文字幕| 一区二区三区精品91| 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 宅男免费午夜| 成年人黄色毛片网站| 免费观看精品视频网站| 久久婷婷成人综合色麻豆| 午夜福利免费观看在线| 日本撒尿小便嘘嘘汇集6| 中文字幕精品免费在线观看视频| 丁香欧美五月| 日韩av在线大香蕉| 欧美大码av| 欧美日韩黄片免| 黄色视频不卡| 老司机午夜十八禁免费视频| 男男h啪啪无遮挡| 亚洲自拍偷在线| 啪啪无遮挡十八禁网站| www.熟女人妻精品国产| 麻豆成人av在线观看| 国产精品一区二区三区四区久久 | 亚洲视频免费观看视频| 午夜福利视频1000在线观看 | 男女做爰动态图高潮gif福利片 | 亚洲国产精品久久男人天堂| 久久国产精品影院| 宅男免费午夜| 麻豆国产av国片精品| 久久久久九九精品影院| 一卡2卡三卡四卡精品乱码亚洲| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 午夜精品在线福利| 国产精品国产高清国产av| 他把我摸到了高潮在线观看| 69精品国产乱码久久久| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 高清黄色对白视频在线免费看| 久9热在线精品视频| 黄色a级毛片大全视频| 午夜激情av网站| 国产男靠女视频免费网站| 亚洲精品中文字幕一二三四区| 欧美中文综合在线视频| 激情视频va一区二区三区| 欧美激情极品国产一区二区三区| 精品一区二区三区四区五区乱码| 一本综合久久免费| 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看| av天堂久久9| 免费在线观看影片大全网站| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影 | 精品一区二区三区四区五区乱码| av电影中文网址| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 国产成人精品久久二区二区免费| 人人妻人人澡欧美一区二区 | 国产av一区在线观看免费| 国产午夜福利久久久久久| av在线天堂中文字幕| 熟女少妇亚洲综合色aaa.| 黄网站色视频无遮挡免费观看| 久久久水蜜桃国产精品网| 久久精品91无色码中文字幕| 亚洲国产精品久久男人天堂| 国产午夜福利久久久久久| 亚洲av电影在线进入| 可以免费在线观看a视频的电影网站| 亚洲午夜精品一区,二区,三区| 亚洲久久久国产精品| 国内精品久久久久久久电影| 久久精品亚洲熟妇少妇任你| 免费av毛片视频| 日本一区二区免费在线视频| 搞女人的毛片| 亚洲,欧美精品.| 老司机福利观看| 精品国产亚洲在线| 国产成人精品在线电影| 国产激情久久老熟女| 国产午夜福利久久久久久| 嫩草影院精品99| 黄色丝袜av网址大全| 午夜视频精品福利| 免费女性裸体啪啪无遮挡网站| 午夜久久久久精精品| 久久人人97超碰香蕉20202| 一夜夜www| 我的亚洲天堂| 亚洲国产精品999在线| 日韩大码丰满熟妇| 真人做人爱边吃奶动态| 国产亚洲精品久久久久久毛片| 黄片小视频在线播放| 午夜免费激情av| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久人人人人人| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 午夜影院日韩av| a在线观看视频网站| 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区| 亚洲人成电影免费在线| 亚洲自偷自拍图片 自拍| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 在线观看免费视频日本深夜| 亚洲av日韩精品久久久久久密| 国产精品久久电影中文字幕| 亚洲成人久久性| 高清黄色对白视频在线免费看| 怎么达到女性高潮| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到| 两性午夜刺激爽爽歪歪视频在线观看 | 999久久久国产精品视频| 久久精品国产亚洲av高清一级| 淫妇啪啪啪对白视频| 国产精品香港三级国产av潘金莲| 99久久国产精品久久久| 亚洲三区欧美一区| 一个人观看的视频www高清免费观看 | 51午夜福利影视在线观看| 窝窝影院91人妻| 久久亚洲精品不卡| 久99久视频精品免费| 女同久久另类99精品国产91| 国产亚洲精品久久久久5区| 91老司机精品| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| 亚洲国产精品合色在线| 黑丝袜美女国产一区| 精品久久久久久久久久免费视频| 国产成人系列免费观看| 精品国产一区二区久久| 亚洲国产高清在线一区二区三 | 久久久久亚洲av毛片大全| 国产成人影院久久av| 搞女人的毛片| 国产亚洲欧美在线一区二区| 丰满人妻熟妇乱又伦精品不卡| 精品人妻1区二区| 后天国语完整版免费观看| 侵犯人妻中文字幕一二三四区| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| 国产男靠女视频免费网站| 亚洲成av人片免费观看| 亚洲欧美精品综合一区二区三区| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| 久久精品国产清高在天天线| 人妻久久中文字幕网| 亚洲 国产 在线| 欧美乱妇无乱码| 国产乱人伦免费视频| 叶爱在线成人免费视频播放| 可以在线观看毛片的网站| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| 老熟妇仑乱视频hdxx| 禁无遮挡网站| 精品不卡国产一区二区三区| 久久人妻福利社区极品人妻图片| 国产成人av激情在线播放| 久久精品国产清高在天天线| www国产在线视频色| 日韩免费av在线播放| 成人手机av| 97人妻天天添夜夜摸| 51午夜福利影视在线观看| 波多野结衣巨乳人妻| 深夜精品福利| 人人澡人人妻人| 欧美午夜高清在线| 欧美中文综合在线视频| 亚洲欧美日韩无卡精品| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费| 国产成人精品久久二区二区91| 色播在线永久视频| 亚洲无线在线观看| 久久青草综合色| 亚洲久久久国产精品| 黄色丝袜av网址大全| 在线观看一区二区三区| 亚洲免费av在线视频| 纯流量卡能插随身wifi吗| 精品欧美国产一区二区三| 久久香蕉精品热| 1024视频免费在线观看| 757午夜福利合集在线观看| 免费观看人在逋| 韩国av一区二区三区四区| 国产三级黄色录像| 午夜免费鲁丝| 亚洲,欧美精品.| svipshipincom国产片| 99re在线观看精品视频| 老司机午夜十八禁免费视频| 韩国精品一区二区三区| av福利片在线| 国产一区二区三区视频了| 午夜福利在线观看吧| 手机成人av网站| 日本a在线网址| 午夜福利影视在线免费观看| 久久香蕉国产精品| 怎么达到女性高潮| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 免费av毛片视频| 最新美女视频免费是黄的| 亚洲激情在线av| 最近最新中文字幕大全电影3 | 午夜日韩欧美国产| 91成年电影在线观看| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 九色国产91popny在线| 天堂√8在线中文| 精品国内亚洲2022精品成人| 欧美老熟妇乱子伦牲交| 国产精品永久免费网站| 精品国产美女av久久久久小说| 国产激情久久老熟女| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 久热这里只有精品99| 国产片内射在线| 国产精品二区激情视频| 9色porny在线观看| 精品乱码久久久久久99久播| 久久久久久久久免费视频了| 91麻豆精品激情在线观看国产| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 久久草成人影院| 男女下面进入的视频免费午夜 |