• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics analysis in a tumor-immune system with chemotherapy*

    2021-05-24 02:23:44HaiYingLiu劉海英HongLiYang楊紅麗andLianGuiYang楊聯(lián)貴
    Chinese Physics B 2021年5期
    關(guān)鍵詞:劉海

    Hai-Ying Liu(劉海英), Hong-Li Yang(楊紅麗), and Lian-Gui Yang(楊聯(lián)貴)

    School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China

    Keywords: dynamical model,tumor-immune system,chemotherapy,chaos

    1. Introduction

    It is well known that neoplastic diseases is one of the greatest killer diseases in the world. Tumor growth is a complex process, which puzzles the researchers with new and interesting challenges in relation to the dynamics and control of tumor growth. Unfortunately,interactions between cell populations like normal cells,effector immune cells,tumor cells,or other cell populations have not been fully understood. Thus,theoretical models are required to analyze the key parameters that control system dynamics.[1,2]They can also be used for designing new effective treatments.

    Many murine and in vitro studies have shown that immune system can kill tumor cells.[3,4]The immune system is the body’s defensive force. It helps prevent the invasion of foreign substances or promotes killing them. The substances that cause the immune system to response are called antigens.Anything that contains antigens can be recognized and destroyed by the immune system, such as pathogens or cancer cells. Pathogens are very different from normal cells and can be easily recognized as foreign substances, while the difference between cancer cells and normal cells is relatively small.For this reason,the immune system may not always recognize cancer cells as foreign substances. So the immune system’s ability to recognize and attack cancer cells is much weaker than pathogens. Sometimes, the immune system recognizes cancer cells but cannot eliminate them completely. On the one hand,the response may not be strong enough to kill them. On the other hand,cancer cells themselves can release substances to inhibit the immune system.

    Kuznetsov et al.[5]proposed an ODE model including effector immune cells and tumor cell populations. They showed that even with two cell populations,these models can provide very rich dynamics based on key parameters and explain some very important issues in cancer progression. Kirschner and Panetta[6]illustrated the dynamics between tumor cells, immune cells,and interleukin-2 through mathematical model. A simple model of three competing cell populations(host cells,immune cells, and tumor cells) was proposed by Letellier et al.,[7]which investigated the action of some parameter values on the resulting dynamics. These theoretical studies of tumorimmune dynamics are very useful and can enlighten scientists to design more effective treatments to help the immune system recognize cancer cells and enhance their response to destroy them. In the past few decades,immunotherapy has become an important part of the treatment of several cancers.

    The other most common treatment for cancer is chemotherapy: the treatment with a drug or combination of drugs through some protocols. Chemotherapy is harmful for normal cells and causes a series of side effects due to the poor selectivity of chemotherapeutic drugs. In addition, more effective drugs may be more toxic. Although chemotherapy alone cannot completely eliminate cancer cells,the benefit of chemotherapy persisted.[8,9]Combination therapy has become exciting new strategies for treating tumors. Several studies have shown that an appropriate combination of immunotherapy and chemotherapy can generate synergistic effects.[10–13]Other clinical studies have suggested that the success of combination therapy mainly depends on the choice of drugs used and the administration scheme.[14,15]Here we consider the chemotherapy agent as a predator on all cells. According to experimental protocols, we use a constant amplitude[16]for the continuous infusion rate of chemotherapy.We consider the chemotherapy agent to be a cell-cycle non-specific chemotherapeutic drug(e.g. cyclophosphamide[17])in our model,which can not distinguish proliferating and non-proliferating cells,and has killing effect on all cells.

    Mathematical modeling of tumor growth is a powerful tool to understand the system dynamics. Many mathematical models of tumor growth use nonlinear ODEs.[6,18–22]A mathematical model on tumor growth using mixed immunotherapy and chemotherapy is established in this paper. We consider three competing cell populations(host cells,effector immune cells,and tumor cells)and chemotherapeutic drug in our model. This paper is organized as follows: we describe our model in Section 2. In Section 3, we analyze the existence and stability of equilibrium points. We perform a numerical simulation under a certain parameter set and show the chaotic attractor in Section 4. We end with a conclusion in Section 5.

    2. Mathematical model

    We now present our model of interactions between normal (host) cells, effector immune cells, tumor cells, and chemotherapeutic drug. The model is based on the considerations described below:

    (i)Both normal cells and tumor cells exhibit logistic proliferation rates and compete for available resources,as justified in Refs.[24–26].

    (ii)In order to keep the model simple,we assume that the rate of recognition of the tumor cells by the immune system depends directly on the number of tumor cells with positive constants ρ2,according to a Holling type-2 function.[5]

    (iii) The tumor cells are being destroyed by effector immune cells at a rate proportional to the product of densities of tumor cells and effector immune cells.[7]

    (iv) Chemotherapeutic drug acts as a killer, which has a negative effect on all cells.[27]

    (v)The concentration of the chemotherapy drug increases due to continuous infusion.[28]

    (vi) The concentration of the chemotherapy drug decreases due to its effect on the cells and also because of the washout process.[28]

    (vii) Effector immune cells decrease due to their action on the tumor cells,as well as the natural death process and the killing of chemotherapeutic drug.[29]

    Hence, the model can be shown by the following set of ordinary differential equations:

    where N(t),I(t),and T(t)are the numbers of normal cells,effector immune cells,and tumor cells,respectively. D(t)is the concentration of the chemotherapeutic drug at time t.

    All the model parameters are positive constants and may be interpreted as follows: ρ1, ρ2, ρ3are growth rates of normal cells,effector immune cells,and tumor cells,respectively;α13,α31are competition coefficients between normal cells and tumor cells;α23is effector immune cells inhibition rate by tumor cells; α32is tumor cells killing rate by effector immune cells; δ2is natural death rate of effector immune cells; δ4is the infusion rate of the chemotherapeutic drug; ξ is washout rate of chemotherapy;q1,q2,q3are coefficients of chemotherapeutic drug on normal cells, effector immune cells, and tumor cells,respectively;g1,g2,g3are the combination rates of the chemotherapeutic drug with normal cells,effector immune cells,and tumor cells,respectively.

    Theorem 1 The solutions N(t), I(t), T(t), and D(t) of system equations (1)–(4) with nonnegative initial conditions N(0), I(0), T(0), and D(0) remain in the nonnegative ones other than t for all t ≥0.

    Proof Let us consider the system Eqs. (1)–(4) in vector form X =(N,I,T,D)T∈R4and

    where F : C+→R4, F ∈C∞(R4). Then the system equations(1)–(4)become

    From the standard Kamke comparison theory[30,31]we have

    Similarly,system(3)leads to

    Since gi>0,with i=1,2,3,we obtain from system(4)

    which means that

    Now,from system(2)it follows that

    We assume that supN(t)=Ns,infN(t)=Ni,supT(t)=Ts,infT(t)=Ti,sup D(t)=Ds,infD(t)=Didue to the boundedness of N(t),T(t),and D(t),where sup stands for supremum and inf stands for inferior. Hence

    Then we have

    Therefore,

    which completes the proof.

    3. Existence and stability of equilibrium points

    In this section, we will obtain the equilibrium points of our system and investigate the existence and stability behavior of the system at various equilibrium points. In order to get the fixed points of the system Eqs.(1)–(4),we set

    The eigenvalues of the Jacobian matrix at equilibrium point E1are

    It is clear that λ2and λ4are negative. E1is stable if λ1<0 and λ3<0,i.e.,D*>ρ1/q1and D*>ρ3/q3.

    (II) The second equilibrium point is obtained as E2=(0,0,T*,D*),where T*and D*satisfy the following equation:

    The equilibrium point E2corresponds to a site where only tumor cells are observed. The Jacobian matrix of system Eqs.(1)–(4)at E2is given by

    The eigenvalues of the Jacobian matrix at equilibrium point E2are

    and λ3,4are solutions of the characteristic equation

    where B is the Jacobian submatrix

    E2is stable for ρ1?α13T*?q1D*<0,(ρ2T*/(1+T*))?α23T*?δ2?q2D*<0,Tr(B)<0,and Det(B)>0.

    (III) The third equilibrium point of the system is E3(N*,0,0,D*), which means that the system is in healthy stage. N*and D*are the solutions of the following equation:

    The Jacobian matrix at E2is

    Therefore,eigenvalues of the characteristic equation are

    E4corresponds to a site where tumor cells are at equilibrium with effector immune cells. Similarly,we can get the Jacobian matrix at E4

    where

    The eigenvalues of the Jacobian matrix at the equilibrium point E4are

    together with λ2,3,4, which are solutions of the characteristic equation

    By the Routh–Hurwitz criterion,[32]the roots of Eq.(34)have negative real part if and only if

    (V) The fifth equilibrium point is E5=(N*,I*,T*,D*),which corresponds to a site where host, immune, and tumor cells co-exist. N*,I*,T*,D*satisfy

    The stability analysis is performed using the Jacobian matrix

    where

    The eigenvalues of the Jacobian matrix at the equilibrium point E5are solutions of the characteristic equation

    where

    E5is a stable point if and only if

    Table 1 presents the parameter default values that we consider in our model obtained from the literatures.

    Table 1. Parameter values.

    With these parameter values, the model has five equilibrium points with nonnegative coordinates,

    The instability of point E2indicates that a site cannot remain too long without normal cells. The stability of point E3confirm that it is possible to achieve a cure state (cancer cells are eradicated) with the selected parameter set but it is sensitive to the initial conditions (Fig. 1). When the initial conditions are (N0,I0,T0,D0)=(0.8,0.8,0.01,0), the system reaches a stable cure state. But when the initial conditions are(N0,I0,T0,D0)=(0.8,0.5,0.01,0),the system becomes unstable.E4is a saddle-focus with a one-dimensional(1D)unstable manifold and E5is a saddle-focus with a 2D unstable manifold. It means that the system may exhibits chaotic dynamics.

    Fig. 1. Time responses of the system states, where N, I, and T are the numbers of normal cells, effector immune cells, and tumor cells, respectively. Parameter D is the concentration of the chemotherapeutic drug. (a) The initial conditions of the system are(N0,I0,T0,D0)=(0.8,0.8,0.01,0),(b)the initial conditions of the system are(N0,I0,T0,D0)=(0.8,0.5,0.01,0).

    4. Chaotic dynamics

    Many nonlinear dynamical systems found in nature exhibit routes to chaos[35,36]and some studies in the literature show that the cancer models also exhibit chaos.[22,37]In this section, we present computer simulation of the system to show that the system exhibits chaotic dynamics with the selected parameter set. The initial conditions are selected as(N0,I0,T0,D0)=(0.1,0.01,0.01,0).

    Fig.2. The Lyapunov exponents.

    The Lyapunov exponent provides a qualitative and quantitative characterization of dynamic behavior and is related to the exponential divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov exponents is defined as chaos. The Lyapunov exponents of system Eqs.(1)–(4)are depicted in Fig.2 which are computed to be uN=0.013560,uI=?0.000513,uT=?0.312961,and uD=?0.453686. It is clear that uN>0,that is,the system to be chaotic. Since uN+uI>0,uN+uI+uT<0,the Lyapunov dimension is

    The fractal Lyapunov dimension further shows that the system exhibits chaotic dynamics(see a detailed discussion about Lyapunov exponent and Lyapunov dimension in Refs. [38,39]).

    Fig.3. Time responses of the system states.

    Time responses of the states N,I,T,and D are shown in Fig. 3. First, normal cells proliferate rapidly due to the high initial concentration. However,because of the competitive advantage, tumor cells start to proliferate quickly and followed by a decrease of normal cells. Subsequently,on the one hand,the population of effector immune cells increased rapidly,in reaction against the cancer progression. On the other hand,the infusion of the chemotherapeutic drug accelerates the decrease of tumor cells. However,the decrease of tumor cells is accompanied by the decrease of immune effector cells and the concentration of the chemotherapeutic drug. Thereby, all the populations start to oscillate. The projection of the attractor onto the 2D coordinate planes are shown in Figs.4 and 5. And the projection of the attractor onto the three-dimensional(3D)coordinate plane is illustrated in Fig.6.

    Fig.4. Projection of the attractor onto the I–T plane(δ4=0.02).

    Fig.5. Projection of the attractor onto the D–T plane(δ4=0.02).

    Fig.6. Projection of the attractor onto the 3D D–I–T plane, where N,I,and T are the numbers of normal cells,effector immune cells,and tumor cells,respectively. D is the concentration of the chemotherapeutic drug(δ4=0.02).

    Fig.7. Time responses of the system states(δ4=0.13).

    The effect of immunotherapy on tumor cell proliferation has been studied(see a detailed discussion in Ref.[7]). Here we focus on the effect of chemotherapy in the treatment of cancer tumors by immunotherapy. The infusion rate of the chemotherapeutic drug is chosen as δ4=0.13(Figs.7 and 8),δ4=2(Figs.9 and 10),and δ4=4(Figs.11 and 12),respectively. As δ4increases from 0.13 to 4, the transformation of the system from the period-2 state to period-1 state and then from the period-1 state to a stable state can be observed. It can also be seen from the time responses of the system states that with the increase of δ4followed by a decrease of tumor cells.

    Fig.8. Projection of the attractor onto the D–I–T plane(δ4=0.13).

    Bifurcation diagrams of tumor cells densities and normal cells densities in terms of the infusion rate of the chemotherapeutic drug(δ4)are computed(Figs.13 and 14). It is clearly that when the infusion rate of chemotherapy is low, the peak fluctuation range of tumor cell oscillation is larger than that of normal cells, but the fluctuation range of valley value is much smaller than that of normal cells. As the increasing of δ4,the chaotic dynamics gradually disappears,and the system reaches a stable state after experiencing period-doubling bifurcation and limit cycle oscillation. We also find an interesting phenomenon that chemotherapy-induced effector immune cells and normal cells damage seriously, which may cause treatment failure, is observed in Figs. 13 and 14 with highdose chemotherapy drug. When the system reaches a steady state,the density of tumor cells increases with the increase of chemotherapeutics, while the density of normal cells is negatively correlated with chemotherapeutics. This means that increasing the intensity of chemotherapy (by increasing the dose)is not necessarily the best way to improve treatment. In fact, increasing the intensity of chemotherapy can have side effects on host cells and immune cells,thereby weakening the barrier against tumor progression. Therefore,a set of effective and safe dose of combined chemotherapy and immunotherapy needs to be further determined.

    It can be seen that high-dose chemotherapy drug can minimize the number of tumor cells,but it is difficult to eradicate them completely.

    Fig.9. Time responses of the system states(δ4=2).

    Fig.10. Projection of the attractor onto the D–I–T plane(δ4=2).

    Fig.11. Time responses of the system states(δ4=4).

    Fig.12. Projection of the attractor onto D–I–T plane(δ4=4).

    Fig.13. Bifurcation diagram of tumor cells densities in terms of δ4.

    Fig.14. Bifurcation diagram of normal cells densities in terms of δ4.

    Fig.15. Bifurcation diagram of tumor cells densities in terms of q1.

    Next,we compute the bifurcation diagrams of the q1and q2: coefficients of chemotherapeutic drug on normal cells and effector immune cells,respectively. Unlike δ4,when the system reaches a steady state,the number of normal cells gradually decreases with the increase of q1(Fig.16),but the number of tumor cells is almost unchanged(Fig.15). However, from Figs.17 and 18,we find that when the system reaches a steady state,the number of normal cells also gradually decreases with the increase of q2,but the number of tumor cells is positively correlated with q2. This means that the immune system has a much greater impact on tumor cells than normal cells compete with tumor cells.

    Fig.16. Bifurcation diagram of normal cells densities in terms of q1.

    Fig.17. Bifurcation diagram of tumor cells densities in terms of q2.

    Fig.18. Bifurcation diagram of normal cells densities in terms of q2.

    5. Conclusions

    In this paper, we develop and analyze a mathematical model on tumor growth using mixed immunotherapy and chemotherapy, which inspired by population dynamic. Three competing cell populations (normal cells, effector immune cells,tumor cells)and chemotherapeutic drug have been considered in our model. We analyze the existence and stability of the equilibrium points and show that the model exhibits chaotic dynamics, that is, the nonlinear growth observed in cancer cell culture. Moreover, we confirm the chaotic dynamics by computing the Lyapunov exponents and the Lyapunov dimension which is obtained to be fractal. The phase diagrams show that there exists a chaotic attractor in the system. This model produces a large number of tumor cell oscillations,which corresponds to the rapid growth of cancer,and reproduces some clinical evidence well.[39–41]

    Bifurcation diagrams of tumor cells densities and normal cells densities in terms of the infusion rate of the chemotherapeutic drug (δ4) have shown the effect of chemotherapy in chaotic dynamics. As the increase of the infusion rate of the chemotherapeutic drug(δ4), the transformation of the system from chaotic state to period-doubling state, from the perioddoubling state to period-1 state and then from the period-1 state to a stable state can be observed. This means that appropriate chemotherapy can reduce the proliferation rate of tumor cells and effectively control the growth of tumor. However,under the action of high-dose drug may lead to treatment failure. The bifurcation analysis of q1and q2shows that the main reason for the failure may be severe damage to the immune system.

    Because of the abnormal development of cells division and replication, the original regular protein replication produces chaotic motion under the action of external stimuli,leading to the occurrence of tumors. Some studies have provided evidence that tumor growth is a complex chaotic system.[42–44]This chaotic phenomenon corresponds to the rapid and uncontrolled growth of tumors observed in the clinic.The essence of chaos is dependence on initial conditions,which is a nonlinear problem. Our analysis is based on the study of the stability of equilibrium points and providing a parameter set with chaotic attractors. In the current treatment of tumors, chemotherapy and immunotherapy are used to control the chaotic by taking advantage of the extreme sensitivity of chaos to initial conditions. Our results show that immunotherapy and chemotherapy are only adjustments and suppressions of this chaos, so it is difficult to achieve a complete cure state. For this reason, a new direction is proposed for tumor treatment, that is,to fundamentally destroy the condition of chaotic production of protein molecules,and it is possible to truly cure tumors.

    猜你喜歡
    劉海
    微距下的昆蟲
    以小見大 以情動(dòng)人
    奇怪的劉海
    唐宋以來(lái)鹽業(yè)古官印輯考
    讓注意力“飛”回來(lái)
    Establish a Three-dimensional Fluorescent Fingerprint Database of Traditional Chinese Medicines
    Hubbard model on an anisotropic checkerboard lattice at finite temperatures:Magnetic and metal–insulator transitions
    學(xué)生天地(2019年36期)2019-08-25 08:59:52
    盛夏里的劉海風(fēng)情
    婦女(2017年8期)2017-08-21 23:30:37
    只靠劉海就能實(shí)現(xiàn)的超簡(jiǎn)單變身方法!
    26uuu在线亚洲综合色| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9| 3wmmmm亚洲av在线观看| 国产成人精品无人区| 99久久精品一区二区三区| videossex国产| xxxhd国产人妻xxx| 成人国语在线视频| 黄片无遮挡物在线观看| 欧美日韩综合久久久久久| 秋霞伦理黄片| 老熟女久久久| 自线自在国产av| 久久韩国三级中文字幕| av又黄又爽大尺度在线免费看| 成人毛片a级毛片在线播放| 欧美变态另类bdsm刘玥| 亚洲欧美中文字幕日韩二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲av二区三区四区| 91精品国产九色| 热99国产精品久久久久久7| 久久 成人 亚洲| 男女边吃奶边做爰视频| 少妇人妻久久综合中文| av福利片在线| 亚洲人成77777在线视频| 一级毛片aaaaaa免费看小| 三级国产精品片| 在线观看免费日韩欧美大片 | 日韩大片免费观看网站| 成人手机av| 熟女电影av网| 中文字幕免费在线视频6| 美女国产高潮福利片在线看| 欧美少妇被猛烈插入视频| 最新的欧美精品一区二区| 精品人妻熟女毛片av久久网站| 免费少妇av软件| 999精品在线视频| 亚洲四区av| 99九九在线精品视频| 97在线视频观看| 日韩三级伦理在线观看| 99热网站在线观看| 久久久久精品久久久久真实原创| 亚洲精品亚洲一区二区| 色94色欧美一区二区| 久久久国产精品麻豆| 欧美变态另类bdsm刘玥| 国产色婷婷99| 十八禁高潮呻吟视频| 18禁动态无遮挡网站| 国产免费一区二区三区四区乱码| 丰满少妇做爰视频| 亚洲,一卡二卡三卡| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 国产片特级美女逼逼视频| 一区二区三区免费毛片| 亚洲精品av麻豆狂野| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 久久 成人 亚洲| 校园人妻丝袜中文字幕| 能在线免费看毛片的网站| 日韩 亚洲 欧美在线| 最近2019中文字幕mv第一页| av国产精品久久久久影院| 亚洲美女黄色视频免费看| 久久婷婷青草| 久久国内精品自在自线图片| 国产成人91sexporn| 高清视频免费观看一区二区| 亚洲欧美日韩另类电影网站| 在现免费观看毛片| 亚洲,一卡二卡三卡| 天堂8中文在线网| 久久久久久久精品精品| 国产欧美另类精品又又久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 成人亚洲精品一区在线观看| 国产精品不卡视频一区二区| 免费少妇av软件| 丝瓜视频免费看黄片| 久久久久久久大尺度免费视频| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 欧美激情极品国产一区二区三区 | 高清在线视频一区二区三区| 内地一区二区视频在线| 99热全是精品| 久久人人爽人人片av| 欧美xxxx性猛交bbbb| 一区二区三区乱码不卡18| 久久99热这里只频精品6学生| 男女边吃奶边做爰视频| 97超视频在线观看视频| 亚洲国产欧美在线一区| 日韩中文字幕视频在线看片| 国产一区二区在线观看av| 日韩三级伦理在线观看| 久久精品久久久久久噜噜老黄| 一级,二级,三级黄色视频| 精品熟女少妇av免费看| 人人妻人人澡人人爽人人夜夜| 一级毛片aaaaaa免费看小| 在线观看www视频免费| 亚洲精品av麻豆狂野| av国产精品久久久久影院| 精品国产一区二区久久| 这个男人来自地球电影免费观看 | 日韩免费高清中文字幕av| 免费观看无遮挡的男女| 日韩中文字幕视频在线看片| 美女主播在线视频| 成人国产麻豆网| 亚洲精品视频女| 精品国产一区二区三区久久久樱花| 中文字幕亚洲精品专区| 少妇 在线观看| 大香蕉97超碰在线| 在线观看美女被高潮喷水网站| 精品午夜福利在线看| 精品久久久久久久久亚洲| 国产极品天堂在线| 日本黄大片高清| 天堂中文最新版在线下载| 久久久久国产网址| 又黄又爽又刺激的免费视频.| 久久人人爽人人片av| av不卡在线播放| 黄色毛片三级朝国网站| 国产精品欧美亚洲77777| 九九久久精品国产亚洲av麻豆| 黄片无遮挡物在线观看| 欧美精品一区二区免费开放| 伊人亚洲综合成人网| 国产成人一区二区在线| 精品亚洲乱码少妇综合久久| 999精品在线视频| 成人无遮挡网站| 午夜久久久在线观看| www.色视频.com| 只有这里有精品99| 国产精品 国内视频| 美女脱内裤让男人舔精品视频| 赤兔流量卡办理| 如何舔出高潮| 在现免费观看毛片| 国产精品三级大全| 制服诱惑二区| 在线观看免费日韩欧美大片 | 亚洲综合色网址| 亚州av有码| 中文天堂在线官网| 老司机影院毛片| 人妻一区二区av| 人妻人人澡人人爽人人| 欧美另类一区| 免费人妻精品一区二区三区视频| 天堂中文最新版在线下载| 免费看不卡的av| 国产高清三级在线| 国产色婷婷99| 2021少妇久久久久久久久久久| av天堂久久9| av又黄又爽大尺度在线免费看| 91aial.com中文字幕在线观看| 夫妻性生交免费视频一级片| 熟女av电影| 国产日韩欧美亚洲二区| a级毛色黄片| 观看美女的网站| 欧美日韩精品成人综合77777| 午夜免费男女啪啪视频观看| 久久久精品区二区三区| 国产乱来视频区| 中文字幕制服av| 欧美3d第一页| 日韩亚洲欧美综合| 毛片一级片免费看久久久久| 精品久久久久久久久av| 亚洲伊人久久精品综合| 国产av码专区亚洲av| av在线app专区| xxx大片免费视频| 亚洲精品日韩av片在线观看| .国产精品久久| 亚洲欧美色中文字幕在线| 久久久久国产精品人妻一区二区| 少妇猛男粗大的猛烈进出视频| 国产精品女同一区二区软件| 日韩中文字幕视频在线看片| 人人妻人人澡人人看| 精品人妻偷拍中文字幕| 久久热精品热| 国产成人精品久久久久久| 看免费成人av毛片| 精品酒店卫生间| 精品少妇黑人巨大在线播放| 乱码一卡2卡4卡精品| 午夜激情福利司机影院| 视频区图区小说| 亚洲欧美精品自产自拍| 精品久久久噜噜| 自线自在国产av| 丝袜在线中文字幕| 亚洲精品成人av观看孕妇| 一本久久精品| 日韩免费高清中文字幕av| 久久 成人 亚洲| 91精品国产国语对白视频| 国模一区二区三区四区视频| 国国产精品蜜臀av免费| 在线观看免费日韩欧美大片 | 国产精品偷伦视频观看了| 日本免费在线观看一区| 亚洲人成77777在线视频| 五月开心婷婷网| 亚洲无线观看免费| 国产精品一区二区在线观看99| 女性生殖器流出的白浆| 波野结衣二区三区在线| 久久鲁丝午夜福利片| 日韩精品免费视频一区二区三区 | 国产成人91sexporn| 最近最新中文字幕免费大全7| 美女国产视频在线观看| 七月丁香在线播放| 免费av中文字幕在线| 啦啦啦在线观看免费高清www| 人人澡人人妻人| 黄色毛片三级朝国网站| 人妻少妇偷人精品九色| 成人二区视频| 日日啪夜夜爽| 一级毛片aaaaaa免费看小| 色94色欧美一区二区| 男的添女的下面高潮视频| 亚洲精品aⅴ在线观看| 久久精品国产亚洲av涩爱| 黑丝袜美女国产一区| 欧美日韩一区二区视频在线观看视频在线| 日本免费在线观看一区| 国产极品天堂在线| 夜夜看夜夜爽夜夜摸| 夜夜看夜夜爽夜夜摸| 日本黄大片高清| 交换朋友夫妻互换小说| 亚洲av日韩在线播放| 日本黄色日本黄色录像| 亚洲人成网站在线播| 久久精品国产a三级三级三级| 涩涩av久久男人的天堂| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 欧美最新免费一区二区三区| 看十八女毛片水多多多| 99re6热这里在线精品视频| 亚洲经典国产精华液单| 人妻一区二区av| 国产欧美亚洲国产| 久久久久国产网址| 成人午夜精彩视频在线观看| 午夜福利视频在线观看免费| 免费观看av网站的网址| 人体艺术视频欧美日本| 视频在线观看一区二区三区| 精品熟女少妇av免费看| 午夜日本视频在线| 午夜av观看不卡| 久久热精品热| 夜夜看夜夜爽夜夜摸| 蜜臀久久99精品久久宅男| 日韩三级伦理在线观看| 精品久久久噜噜| 自线自在国产av| 妹子高潮喷水视频| 亚洲欧美中文字幕日韩二区| 日本爱情动作片www.在线观看| 亚洲国产精品一区三区| 色婷婷久久久亚洲欧美| av黄色大香蕉| 亚洲欧美精品自产自拍| 成人毛片a级毛片在线播放| 国产极品天堂在线| 制服诱惑二区| 日韩大片免费观看网站| 少妇的逼好多水| 视频区图区小说| 爱豆传媒免费全集在线观看| 国产精品欧美亚洲77777| 国产高清有码在线观看视频| 国产免费一区二区三区四区乱码| 色婷婷久久久亚洲欧美| 国内精品宾馆在线| a 毛片基地| 国产亚洲精品第一综合不卡 | 美女福利国产在线| 高清不卡的av网站| 啦啦啦中文免费视频观看日本| 一级毛片我不卡| 一区二区三区乱码不卡18| 免费日韩欧美在线观看| 妹子高潮喷水视频| 久久精品国产亚洲网站| 中文乱码字字幕精品一区二区三区| 午夜激情福利司机影院| 国产色爽女视频免费观看| 两个人免费观看高清视频| 国产午夜精品一二区理论片| 黄色配什么色好看| 久久久国产精品麻豆| 国产在线免费精品| 汤姆久久久久久久影院中文字幕| 一区在线观看完整版| 免费大片18禁| 中文乱码字字幕精品一区二区三区| 插阴视频在线观看视频| 亚洲国产色片| 18禁动态无遮挡网站| 一级爰片在线观看| 国产探花极品一区二区| 看十八女毛片水多多多| 97超碰精品成人国产| 老司机影院毛片| 亚洲激情五月婷婷啪啪| 26uuu在线亚洲综合色| 成人影院久久| 午夜福利视频精品| 亚洲综合精品二区| 十八禁高潮呻吟视频| 伦理电影大哥的女人| 美女主播在线视频| 男女边吃奶边做爰视频| 国精品久久久久久国模美| 中文字幕精品免费在线观看视频 | 亚洲熟女精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一区二区在线不卡| 一本久久精品| 老熟女久久久| 丝瓜视频免费看黄片| tube8黄色片| 一区二区日韩欧美中文字幕 | 亚洲综合色惰| 亚洲精品国产色婷婷电影| 日韩成人av中文字幕在线观看| 国产老妇伦熟女老妇高清| 日韩 亚洲 欧美在线| 飞空精品影院首页| tube8黄色片| 国产欧美亚洲国产| 精品国产露脸久久av麻豆| 欧美精品人与动牲交sv欧美| 少妇人妻久久综合中文| 欧美精品国产亚洲| 亚洲欧洲精品一区二区精品久久久 | 国产午夜精品久久久久久一区二区三区| 久久久久视频综合| 亚洲国产最新在线播放| xxxhd国产人妻xxx| 国产片特级美女逼逼视频| 18禁观看日本| 大香蕉久久网| 久久精品国产自在天天线| 国产成人av激情在线播放 | 成人18禁高潮啪啪吃奶动态图 | 国产日韩一区二区三区精品不卡 | 中文乱码字字幕精品一区二区三区| 丝袜脚勾引网站| 久久精品国产亚洲网站| 日韩一区二区三区影片| 日韩亚洲欧美综合| 青春草国产在线视频| 精品亚洲成a人片在线观看| 欧美老熟妇乱子伦牲交| 黄色配什么色好看| 超色免费av| 亚洲色图 男人天堂 中文字幕 | 51国产日韩欧美| 国产一级毛片在线| 男人添女人高潮全过程视频| 亚洲欧美一区二区三区黑人 | 狂野欧美激情性bbbbbb| 精品少妇久久久久久888优播| 美女福利国产在线| 日韩欧美精品免费久久| 国产成人aa在线观看| 高清在线视频一区二区三区| 欧美人与善性xxx| 国产高清不卡午夜福利| 精品国产露脸久久av麻豆| 一级毛片黄色毛片免费观看视频| 亚洲怡红院男人天堂| 性色avwww在线观看| 日韩一区二区三区影片| 少妇的逼水好多| 日本-黄色视频高清免费观看| 久久人妻熟女aⅴ| 街头女战士在线观看网站| 亚洲av福利一区| 亚洲国产最新在线播放| 香蕉精品网在线| 熟女av电影| 永久网站在线| 成人国产av品久久久| 久久久久精品久久久久真实原创| av卡一久久| 成人毛片60女人毛片免费| 哪个播放器可以免费观看大片| 日韩三级伦理在线观看| 国产高清有码在线观看视频| 秋霞在线观看毛片| 在线观看一区二区三区激情| 欧美人与善性xxx| 久久久久国产网址| 男女边摸边吃奶| 精品久久国产蜜桃| 久久久久精品性色| 日韩视频在线欧美| 少妇丰满av| 中国国产av一级| 日韩一区二区三区影片| 亚洲在久久综合| 欧美精品一区二区免费开放| 午夜久久久在线观看| 国产黄色视频一区二区在线观看| 熟女av电影| 日韩不卡一区二区三区视频在线| 一本大道久久a久久精品| 18禁观看日本| 日本欧美视频一区| 精品亚洲成国产av| 熟女av电影| av.在线天堂| 七月丁香在线播放| 国产精品嫩草影院av在线观看| 亚洲第一av免费看| 免费av不卡在线播放| 亚洲欧洲国产日韩| 日韩免费高清中文字幕av| 三上悠亚av全集在线观看| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕 | 少妇猛男粗大的猛烈进出视频| 国产 精品1| 蜜桃在线观看..| 又大又黄又爽视频免费| 国产精品久久久久成人av| 秋霞伦理黄片| 永久免费av网站大全| av国产久精品久网站免费入址| 久久久精品区二区三区| 精品酒店卫生间| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 日韩在线高清观看一区二区三区| 少妇被粗大猛烈的视频| 九色亚洲精品在线播放| av视频免费观看在线观看| 免费观看av网站的网址| 国产国拍精品亚洲av在线观看| 五月天丁香电影| 久久精品国产a三级三级三级| 国产精品.久久久| av福利片在线| av在线播放精品| 久久久久久久久久久丰满| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 九九爱精品视频在线观看| 欧美日韩综合久久久久久| 亚洲精品国产色婷婷电影| 国产在视频线精品| 一级爰片在线观看| 人妻夜夜爽99麻豆av| 日日爽夜夜爽网站| 国产乱人偷精品视频| 国产成人精品福利久久| 日韩成人伦理影院| 亚洲中文av在线| 中国三级夫妇交换| 我要看黄色一级片免费的| 大又大粗又爽又黄少妇毛片口| 国产成人精品久久久久久| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 熟女av电影| 超色免费av| 午夜福利视频精品| 亚洲av在线观看美女高潮| 日本黄大片高清| 亚洲欧洲日产国产| 最近2019中文字幕mv第一页| 久久毛片免费看一区二区三区| 亚洲精品视频女| 久久99热这里只频精品6学生| 久热久热在线精品观看| 伦精品一区二区三区| 五月伊人婷婷丁香| 国产成人av激情在线播放 | 亚洲欧洲精品一区二区精品久久久 | 国产免费视频播放在线视频| 久久久久久久国产电影| 肉色欧美久久久久久久蜜桃| 免费久久久久久久精品成人欧美视频 | 99九九在线精品视频| 国产成人freesex在线| 中国三级夫妇交换| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 9色porny在线观看| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 最近手机中文字幕大全| av专区在线播放| 97超视频在线观看视频| 曰老女人黄片| 国产精品一区二区三区四区免费观看| 亚洲美女视频黄频| 亚洲国产色片| 日韩在线高清观看一区二区三区| 26uuu在线亚洲综合色| 51国产日韩欧美| 天天躁夜夜躁狠狠久久av| 啦啦啦视频在线资源免费观看| 又黄又爽又刺激的免费视频.| 只有这里有精品99| 亚洲四区av| 亚洲无线观看免费| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 国产精品一区www在线观看| 国产精品国产av在线观看| 日韩精品有码人妻一区| 曰老女人黄片| 亚洲成色77777| 亚洲欧洲精品一区二区精品久久久 | 中文乱码字字幕精品一区二区三区| 高清视频免费观看一区二区| 欧美精品国产亚洲| 亚洲第一av免费看| 国产成人91sexporn| 久久精品国产a三级三级三级| 美女主播在线视频| 另类精品久久| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 成人毛片a级毛片在线播放| 在现免费观看毛片| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 久久人人爽人人片av| 午夜福利在线观看免费完整高清在| 亚洲av男天堂| 97在线人人人人妻| 国产国拍精品亚洲av在线观看| 在线观看免费视频网站a站| 青春草亚洲视频在线观看| 伦理电影大哥的女人| 一本一本综合久久| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片 | 免费av不卡在线播放| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 成人二区视频| 免费播放大片免费观看视频在线观看| 97超视频在线观看视频| 伊人久久国产一区二区| 亚州av有码| 午夜免费观看性视频| 日韩强制内射视频| 天天影视国产精品| 一边亲一边摸免费视频| videos熟女内射| 国产精品三级大全| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄| 晚上一个人看的免费电影| 伊人亚洲综合成人网| av卡一久久| av黄色大香蕉| 日韩大片免费观看网站| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| a 毛片基地| 天天操日日干夜夜撸| 久久久亚洲精品成人影院| 人妻人人澡人人爽人人| 日韩熟女老妇一区二区性免费视频| 久久97久久精品| 亚洲,欧美,日韩| 精品一区在线观看国产| 在线观看一区二区三区激情| 亚洲欧洲国产日韩| 99热这里只有是精品在线观看| 两个人的视频大全免费| 卡戴珊不雅视频在线播放| 美女脱内裤让男人舔精品视频| 国产黄片视频在线免费观看| 另类亚洲欧美激情| 国产精品人妻久久久影院| 99热这里只有精品一区| av播播在线观看一区| 亚洲av免费高清在线观看| 免费av不卡在线播放| 久久国产亚洲av麻豆专区|