• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Localized electric-field-enhanced low-light detection by a 2D SnS visible-light photodetector*

    2021-05-24 02:23:58HaoWen文豪LiXiong熊力CongbingTan譚叢兵KaiminZhu朱凱民YongTang唐勇JinbinWang王金斌andXiangliZhong鐘向麗
    Chinese Physics B 2021年5期
    關(guān)鍵詞:文豪

    Hao Wen(文豪), Li Xiong(熊力), Congbing Tan(譚叢兵), Kaimin Zhu(朱凱民), Yong Tang(唐勇),Jinbin Wang(王金斌), and Xiangli Zhong(鐘向麗)

    School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,Hunan,China

    Keywords: two-dimensional SnS,photogating effect,low-light detection

    1. Introduction

    In the fields of video imaging and optical communications, visible-light detectors that can work under poor lighting conditions are urgently needed. Up until now, low-light signal detection has played an important role in space exploration, etc.[1,2]However, at present, commercial visible-light photodetectors, mainly based on Si, Ge and CdS,suffer from with high noise levels,which hinders their application in lowlight detection. The adjacent layers of two-dimensional (2D)layered materials are weakly bound by the van der Waals interaction, which gives them special structural and physical properties.[3,4]Their high carrier mobility, perfect switching characteristics, strong light interaction and ease of processing give 2D materials great potential for use in the fields of electronics and optoelectronics.[5–9]The photogating effect is a special phenomenon that exists in most photodetectors based on 2D materials.[10,11]Devices that work by the photogating effect usually obtain higher photoconductive gains(G)at low incident optical densities.[12–14]Thus, two-dimensional layered materials are one of the promising candidates for manufacturing high-performance low-light detectors.

    In tin sulfide (SnS), one of the group IVA metal monochalcogenide semiconductors (MX, M =Ge, Sn; X =S, Se, Te), which is similar to puckered black phosphorous (BP),[15]one Sn atom bonds with three S atoms to form S–Sn layers with a van der Waals force present between them.[16]The SnS has an indirect bandgap of 1.07 eV and a direct bandgap of 1.3 eV, and therefore possesses a high light-absorption coefficient (α >104cm?1) in the visible spectrum.[17]Because it is stable in air, non-toxic,and earth-abundant, SnS has been seen as a suitable candidate for thin-film solar cells,[18,19]photocatalysis,[20]and photodetectors.[21–23]For example,Deng et al.[21]synthesized SnS nanoribbons in the solution phase and then fabricated a SnS-based photodetector for the first time; the photoconductivity gain(G)reached up to 2.3×104when illuminated by a 532 nm laser at an optical density of 50 mW·cm?2. Zhou’s group[22]fabricated an ultrathin SnS nanobeltbased nearinfrared (NIR) photodetector; their device showed a photoresponsivity of 300 A·W?1under the illumination of 800 nm light at a density of 2.57 mW·cm?2, and a photocurrent transition time as fast as 43 ms.

    In this work, highly crystalline 2D SnS nanosheets were prepared by a conventional physical vapor deposition (PVD)method. An 2D SnSbased two-terminal photodetector was constructed using ultraviolet photolithography. The device offers good lightsensing performance and cycling stability, and in particular,a high responsivity of 161 A·W?1and a high detectivity of 1.16×109Jones when illuminated by a 450 nm laser at the fairly weak optical density of 2 mW·cm?2. Compared with other photodetectors in similar bands, our device shows some advantages in weak light conditions(Table 1).

    Table 1. Comparison of the photoelectric performance of our SnS photodetector versus other 2D materials.

    2. Materials and methods

    2.1. Growth and characterization of 2D SnS nanosheets

    Two-dimensional SnS nanosheets were prepared using the physical vapor deposition (PVD) technique in a horizontal double-zone tube furnace (AnHui HeFei KeJing materials technology Co, Ltd.). For the growth process, 0.05 g of bulk SnS powder (99.5%, Alfa Aesar) in a quartz boat was used as the evaporation source and placed at the center of the hightemperature(HT)zone.Silicon substrates with a 300 nm-thick SiO2buffer layer were placed 15–20 cm away from the source in the low-temperature(LT)zone.Before heating commenced,the quartz tube was purged four times using high-purity Ar gas to drive off oxygen, then the HT zone and the LT zone were heated to 750°C and 550°C,respectively,at a speed of 20°C/min. When the HT zone reached 750°C,the temperature was maintained for 10 minutes in this area, ensuring the full evaporation of the SnS powder,and the temperature of LT zone was kept at 550°C at the same time. The Ar gas pressure in the quartz tube was fixed at 80 Torr with a flow rate of 70 standard cubic centimeters(sccm).

    The morphology, size, and distribution of the synthesized 2D SnS nanosheets were characterized by an optical microscope (OM; Zeiss Primo Star) and field-emission scanning electron microscopy (FESEM; JSM-6700F). Powder Xray diffraction (XRD; Rigaku Ultima IV) was used to analyze the chemical composition, and high-resolution transmission electron microscopy(HRTEM;JEM 2100F)was carried out to confirm the single crystallinity of the samples. The TEM samples were prepared by the liquid-phase ultrasonic method. First, we put the SnS/SiO2/Si samples into a beaker which contained 10 mL ethanol,then the mixture was treated with ultrasonic oscillation for 20 minutes to exfoliate the SnS nanosheets from the SiO2/Si substrate, after which the SnS was suspended on the ethanol. Finally, the dispersion liquid was dropped onto a Cu grid and dried. UV-Vis diffuse reflectance spectroscopy (PerkinElmer 950) was used to measure the light-absorbing properties of SnS powder. The thickness of the nanosheets was measured by atomic force microscopy (AFM; Asylum Research MFP-3D Infinity). The collection of Raman spectra was carried out by a Renishaw inVia system with an excitation wavelength of 532 nm and a power of 500μW.The laser was focused on the top surface of a single SnS nanosheet.

    2.2. Fabrication and characterization of the 2D SnS-based photodetector

    Ultraviolet photolithography was applied to fabricate the 2D SnS-based two-terminal photodetector. Two Au–Ti(20 nm:10 nm) electrodes were deposited on an individual SnS nanosheet. Electrical measurements were carried out at room temperature using a semiconductor analyzer (Agilent B1500A) equipped with a four-channel probe station (EB).The photoresponse of the device was measured under 450 nm laser illumination.

    3. Results and discussion

    High-quality SnS nanosheets were synthesized in a double-zone tube furnace, as shown in Fig. 1(a). We found that lower temperatures in the deposition area facilitated largescale nanosheet growth,mainly by weakening the thermal motion of the Sn and S atoms. Therefore, when they reached the LT zone, they were more easily able to nucleate on the substrate.[30]In Fig.1(b),a typical optical image(center)and an SEM(bottom left)image of the SnS nanosheets on a mica substrate are clearly shown;the lateral dimensions of the SnS nanosheets range from 2 μm to 40 μm. Almost all of the nanosheets are near-rectangular in shape, and consistent with the shape of orthorhombic SnS crystals, as demonstrated in previous 2D SnS studies.[17,23,31]On the right side of Fig.1(b),EDS images of the nanosheet reveal the distributions of S and Sn elements within a single SnS nanosheet,indicating the uniformity of a single SnS nanosheet. The EDX spectrum in Fig. 1(c) further illustrates that the ratio of S and Sn atoms in a single nanosheet is 1:1, which proves the high purity of SnS.The Si elements originate from the silicon substrate.

    To support the structural analysis of the SnS nanosheets,Raman spectra were obtained to provide molecular rotation and vibration information. According to previous reports,SnS has two major active modes, Agand B3g.[17,32]As illustrated in Fig. 1(d), three peaks located at 94.5 cm?1, 194.6 cm?1,and 219.0 cm?1belong to the Agmode, while the peak at 165.2 cm?1belongs to the B3gmode. These results confirm the pure orthorhombic phase of the synthesized SnS nanosheets. The AFM image in Fig.1(e)shows an individual SnS nanosheet with a height of 7.3 nm and a flat surface,corresponding to thirteen SnS monolayers. To further investigate the crystal structure of the sample,a TEM test was conducted.As shown in Figs. 1(f) and 1(g), the selected area electron diffraction(SAED)pattern shows sharp diffraction spots,and the HRTEM image shows that the lattice spacing is 0.34 nm,which is a good match for the (120) plane of the SnS. These results confirm the single-crystalline quality of the rectangular SnS nanosheets.

    Fig. 1. (a) Schematic of the double-zone tube furnace used for 2D SnS growth, (b) optical image of large-scale SnS nanosheets with uniform shapes; lower left: SEM image of SnS nanosheets; upper right: S and Sn elemental mapping of a single SnS nanosheet; (c) EDX spectrum of an SnS nanosheet;(d)Raman spectrum of an SnS nanosheet at room temperature;(e)AFM images and height information of the sample;(f)SAED and(g)HRTEM pattern of the corresponding SnS nanosheet.

    To study the photoelectric properties of SnS, measurements of the SnS powder were made by UV-Vis diffuse reflectance spectroscopy(DRS),as illustrated in Fig.2(a). The weak reflection at wavelengths of 400–900 nm indicates the strong light-absorbing properties of SnS in the visible light range. By adding a tangent line for the linear part of the reflection in Fig.2(a),we confirm that the edge of the SnS light absorption is located at about 1000 nm and close to an indirect bandgap of about 1.1 eV(1100 nm). The SnS-based photodetector was fabricated using a series of processes as described in the experimental section. A schematic of the structure of the device is visualized in Fig. 2(b), and figure 2(c) exhibits an optical image of the top surface. From the optical image,we can easily conclude that the SnS conductive channel length is 8μm. The I–V curves of the device under different optical laser powers are shown in Fig. 2(d), at a laser wavelength of 450 nm. When the incident optical power is increased from 0.5 to 44.3 mW,the photocurrent of the device increases from 405 nA to 5.048μA,showing an obvious response to 450 nm blue light. The blue to red lines correspond to dark current and photocurrent at different optical powers,respectively. It is noteworthy that Fig. 3(a) shows the dark current of the photodetector at bias voltages of ?3 to 3 V, for which the zero dark current area lies in a low voltage range, indicating an energy gap between the SnS nanosheet and the Ti/Au electrodes. Nearly symmetrical I–V characteristic curves in the positive(V >0)and negative areas(V <0)illustrate the nonrectifying effect of the metal-semiconductor junction.According to previous research,P-type semiconductors made of SnS have a work function of 4.2 eV, smaller than that of titanium(4.33 eV), and the hole concentration in solution-phase synthesized SnS nanoribbons is larger than 1019cm?3. A dark current larger than 100 nA at a bias voltage of 1 V also confirms the huge hole concentration in SnS.The items mentioned above indicate an ohmic contact between the SnS nanosheet and the Ti–Au electrodes. The investigation into the photodetector was performed at room temperature,and the room was kept dark during the test.[10,33–35]

    Fig. 2. (a) UV-Vis reflection spectrum of SnS; (b) schematic of 2D twoterminal photodetector; (c) optical image of the two-terminal structure;(d)I–V curves of device under blue light at 450 nm with different powers.The measurements were carried out at room temperature.

    Fig. 3. (a) Dark current of device with bias voltage sweeps from ?3 to 3 V.The laser wavelength is 450 nm. (b)The stable switching behavior of the device under 450 nm light illumination with a 3 V bias voltage; (c)the response and(d)recovery time of the device under visible light at 450 nm.

    Next,we tested the cycling performance of the device,as shown in Fig. 3(b). The current of the device rose to a high value in the light absorption period (with the laser on), but remained at a low value in the dark(with the laser off). In detail,the photodetector was illuminated by a 450 nm laser with an optical density of 47 mW·cm?2;the laser was switched on and off repeatedly at 10 s intervals at a bias voltage of V. As shown, the device current in the laser’s ‘off’ state was below 1μA while it was larger than 2.2μA in the laser’s‘on’state,making a good identification of photoswitching performance of device. In particular, there is no obvious reduction in the photocurrent during the testing period. In addition,the photoswitching rate of the device is vital for practical applications.To our knowledge,the response and recovery time τ is calculated as

    in which τrrefers to the time required for the current to rise from 10%of the maximum photocurrent to 90%,while,on the contrary,τfdenotes the time required for the current to decay from 90%of the maximum photocurrent to 10%.[36–39]The response and recovery processes of the device have been investigated and the results are shown in Figs.3(c)and 3(d), from which τrand τfare deduced to be 96 ms and 87 ms, respectively. In summary,the SnS nanosheetbased photodetector exhibits an excellent photoresponse and stable photoswitching.These features benefit from the high crystalline quality of the nanosheets and the large specific surface areas,which help to bring about fast photo-excited carrier diffusion.

    According to previous reports,[36]the dependence of the photocurrent on the incident optical density fits the law Iph∝. Significantly, there are several key parameters used to assess the properties of photodetectors.First,the photoresponsivity(Rλ)is used to estimate the photoelectric switching ability,as calculated by the formula where the photocurrent, ΔI=Iphoto?Idark, while Pλrefers to the power density of the incident light, and S is the effective illuminated area of the device. Figure 2(c) shows that the channel area of the SnS photodetector is about 80 μm2.To be specific, the area of the incident light spot reaches 24 mm2, which is much larger than the channel’s surface area, so here, S=80μm2. Taking the 0.5 mW incident light power and 3 V bias voltage into account,ΔI=0.403μA andS=2.5×10?6mW,thus Rλis calculated to be 161.08 A/W.The external quantum efficiency (EQE) is obtained using the following equation:where h is Planck’s constant,c is the velocity of light,λ is the wavelength of the light used for excitation,and e is the electron charge. After calculation,the EQE reaches up to a surprising 4.45×104%, which exceeds that of many other IV–VI group compounds reported previously.The detectivity(D*),an index used to estimate the sensitivity of light signals,is expressed as

    According to this formula, the D*of the device is calculated to be 1.15×109Jones. Figure 4(a) presents Rλand EQE versus the optical power density. When the incident optical power density rises from 2 to 177 mW·cm?2, both Rλand EQE clearly decrease. Figure 4(b) shows Rλand D*versus power density; the detectivity of the device also drops from 1.15×109to 1.63×108Jones with increasing power density under light illumination at 450 nm. We also measured the photoresponse performance of the device at a wavelength of 808 nm (in Fig. 5). Under light at 2.1 mW/cm2, Rλis 45.6 A/W, which is lower than at a wavelength of 450 nm.At 808 nm,the Rλ,EQE and D*also show a tendency to decrease rapidly as the optical power increases. Zheng et al.[40]reported that the photoresponsivity of a SnS nanowire photodetector reached its maximum at 700 nm, and when the wavelength was greater than 800 nm, the photoresponsivity decreased rapidly. Their result is consistent with our experimental observations.

    At low optical densities, the high optical responsiveness of SnS photodetectors may be caused by the photogating effect. Figures 4(c), 4(d)and 4(e)show schematic diagrams of carrier distribution in a semiconductor channel in the dark and under different illuminations. The photogating effect of the device is due to two mechanisms: (i)In two-dimensional SnS photodetectors,the local electric field caused by nanoparticles or defects traps some of the carriers and acts as a gate.[2,41–44]Huang et al.[45]and Liu et al.[46]proposed that SnS defects may be caused by S vacancies. Under light conditions, photogenerated electron-hole pairs are generated in the channel.Because of the structural defects in SnS nanosheets or disorder at the interface, band tail states inevitably appear in the conduction and valence bands.[24]When the photodetector is illuminated,the electron-hole pairs excited by the light are firstly separated by an external bias voltage, and then the electrons are likely to be trapped in a localized state. They can be regarded as partial gates. Because the photocurrent generated is determined by Iphoto=gm×ΔVg(Iphotois the photocurrent,gmis the transconductance,ΔVgis the gate voltage),the presence of local gates increases the photoresponse.[41](ii)In addition,one type of carrier is captured, which extends the life of another type of carrier. Since the total charge remains neutral,then Δp=Δn+nt(Δp and Δn are the densities of photogenerated holes and electrons,respectively,ntis the trapped electron carrier concentration),and the additional photoconductivity can be expressed as follows:

    where μnand μpstand for the mobilities of electrons and holes, respectively. Obviously, the separation effect due to local states increases the photoconductivity.[24]Since ntare limited by the number of defects,the photogenerated electronhole pairs cannot effectively be separated when the local state is fully occupied. Therefore,continuing to increase the optical power will shorten the carrier lifetime,resulting in a decrease in Rλ,EQE and D*.

    Fig. 4. (a) Induced Rλ and EQE, (b) Rλ and D* properties of the device for a range of optical power densities; (c) band alignment of the SnS channel connected by two Ti–Au electrodes under external bias in the dark. The blue dotted circles represent the local state in the conduction band edge;(d)the local state captures the photogenerated electrons,and the electrons are trapped at the edge of the band as a local gate;(e)when the local state is full.

    We further analyzed the dependence of photocurrent on optical power.As shown in Fig.6,under different voltages,the relationship between the photocurrent and the optical power in the device is nonlinear. This phenomenon may be caused by the combination of two mechanisms: the photoconductive effect and photogating effect.[24]The process of the photocurrent change can be divided into three stages: (i)When the optical power is fairly weak,the photogating effect plays a major role; qμpnt(the gain in photoconductivity caused by defecttrapped carriers)increases with the optical power, so that Δσ and the photocurrent increase rapidly;(ii)With an increase of the optical power,more carriers are generated in the channel.Defects that are filled reduce the separation effect of electronhole pairs, so that the photocurrent growth slows down. But at the same time,the defecttrapped carriers form a local gate,making the photocurrent increase; (iii) Both qμpntand ΔVgreach a maximum when the defects are full; an increase of the optical power will lead to a further reduction in the photocurrent growth rate.At this stage,the photocurrent is mainly produced by the photoconductivity effect.

    Fig. 5. (a) I–V curve of the device under blue light at 808 nm at different powers;the measurements are carried out at room temperature. (b)The stable switching behavior of the device under 808 nm light illumination at a 3 V bias voltage;(c)the response and(d)recovery times of the device under visible light at 808 nm; (e)the induced Rλ and EQE,(f)Rλ and D* properties of the device for varying optical power densities at 808 nm.

    Fig.6. (a)and(b)the relationship between photocurrent and optical power at different voltages,for a wavelength of 450 nm.

    4. Conclusion

    In summary,we fabricated a 2D SnS-based two-terminal photodetector. At a low optical density of 2 mW·cm?2,the photodetector obtained a high responsivity (Rλ) of 161.08 A·W?1, while the external quantum efficiency (EQE)and detectivity (D*) reached up to 4.45×104% and 1.15×109Jones, respectively. These results show that the twodimensional SnS has the potential to be applied in low-light detection. When the optical power density increases,Rλ,EQE and D*all show a downward trend. This phenomenon is explained by the photogating effect. The defects in the SnS nanosheets or the local electric field formed in the interface can trap electrons and extend the life of holes. When the optical power density increases,the local states are filled,and the local electric fields have a reduced effect on electron-hole pair separation,resulting in a shortened carrier lifetime.Therefore,Rλ,EQE and D*show a decreasing trend with an increase in optical power density.

    猜你喜歡
    文豪
    Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
    黨的光輝亞克西
    心聲歌刊(2022年1期)2022-06-06 10:30:44
    沒(méi)上過(guò)大學(xué)也能當(dāng)文豪嗎?
    朱文豪陶藝作品
    Analysis on Lump,lumpoffand Rogue Waves with Predictability to a Generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation?
    被迫北漂15年:有一種音樂(lè)境界叫“賢妻有為”
    重要的事
    故事大王(2017年8期)2017-08-10 19:36:01
    Numerical simulation of flow through circular array of cylinders using porous media approach with non-constant local inertial resistance coefficient*
    劉老師是一本萬(wàn)能書(shū)
    小白兔迷路了
    久久草成人影院| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看 | 亚洲国产精品999在线| av黄色大香蕉| 两个人视频免费观看高清| 一a级毛片在线观看| av中文乱码字幕在线| 麻豆久久精品国产亚洲av| 变态另类成人亚洲欧美熟女| 成人精品一区二区免费| 国产在视频线在精品| 非洲黑人性xxxx精品又粗又长| 91在线精品国自产拍蜜月 | 欧洲精品卡2卡3卡4卡5卡区| 99精品久久久久人妻精品| 丝袜美腿在线中文| 亚洲精品色激情综合| 男人舔女人下体高潮全视频| 1000部很黄的大片| 国产精品亚洲一级av第二区| 亚洲精品影视一区二区三区av| 国产成+人综合+亚洲专区| 久久久色成人| 老汉色av国产亚洲站长工具| 亚洲国产精品合色在线| 欧美大码av| 国产69精品久久久久777片| 亚洲五月天丁香| 91在线精品国自产拍蜜月 | 免费观看精品视频网站| 中文在线观看免费www的网站| 午夜激情福利司机影院| 天天躁日日操中文字幕| 欧美zozozo另类| 免费无遮挡裸体视频| 日日夜夜操网爽| 婷婷丁香在线五月| 国产69精品久久久久777片| 亚洲人与动物交配视频| 午夜老司机福利剧场| 嫩草影院入口| 啪啪无遮挡十八禁网站| 久久久久久大精品| 国产成+人综合+亚洲专区| 美女 人体艺术 gogo| 国产亚洲精品久久久com| 免费看十八禁软件| 色精品久久人妻99蜜桃| 久久6这里有精品| 一个人观看的视频www高清免费观看| 欧美性感艳星| 国产三级黄色录像| 国产蜜桃级精品一区二区三区| eeuss影院久久| 亚洲自拍偷在线| 精品人妻1区二区| 一进一出抽搐gif免费好疼| 一区二区三区激情视频| 亚洲国产精品合色在线| 天堂网av新在线| 国产高清三级在线| 精品久久久久久久久久久久久| 在线播放国产精品三级| 日韩欧美在线二视频| 精品久久久久久久久久久久久| 欧美日韩亚洲国产一区二区在线观看| www国产在线视频色| 性欧美人与动物交配| 夜夜夜夜夜久久久久| 美女 人体艺术 gogo| 亚洲人与动物交配视频| 在线观看日韩欧美| 国产美女午夜福利| 午夜精品久久久久久毛片777| 精品熟女少妇八av免费久了| 别揉我奶头~嗯~啊~动态视频| 国产成人影院久久av| 亚洲五月婷婷丁香| 男插女下体视频免费在线播放| 中国美女看黄片| 国产成年人精品一区二区| 亚洲美女黄片视频| 熟妇人妻久久中文字幕3abv| 久久久久免费精品人妻一区二区| 一级毛片高清免费大全| 久久久久久久亚洲中文字幕 | 久久伊人香网站| 色综合欧美亚洲国产小说| 久久草成人影院| 亚洲精品456在线播放app | 国产男靠女视频免费网站| 亚洲成人精品中文字幕电影| 亚洲av五月六月丁香网| 国产精品 国内视频| 香蕉丝袜av| 亚洲七黄色美女视频| 男女之事视频高清在线观看| 叶爱在线成人免费视频播放| 叶爱在线成人免费视频播放| 香蕉丝袜av| 免费人成视频x8x8入口观看| 亚洲av熟女| 亚洲欧美日韩卡通动漫| 一区二区三区免费毛片| 国模一区二区三区四区视频| 母亲3免费完整高清在线观看| 日韩av在线大香蕉| 最近最新中文字幕大全免费视频| 日本a在线网址| 亚洲欧美日韩卡通动漫| 欧美日韩乱码在线| 国产精品精品国产色婷婷| 亚洲av日韩精品久久久久久密| 噜噜噜噜噜久久久久久91| 亚洲狠狠婷婷综合久久图片| 最近视频中文字幕2019在线8| 中文字幕熟女人妻在线| 俄罗斯特黄特色一大片| 亚洲aⅴ乱码一区二区在线播放| 国产精品 国内视频| 免费观看的影片在线观看| 男插女下体视频免费在线播放| av女优亚洲男人天堂| 在线免费观看不下载黄p国产 | 成人特级黄色片久久久久久久| 国产精品亚洲一级av第二区| 全区人妻精品视频| 999久久久精品免费观看国产| 国产一区二区三区视频了| 12—13女人毛片做爰片一| 亚洲 国产 在线| 人人妻,人人澡人人爽秒播| 亚洲乱码一区二区免费版| 国产一区在线观看成人免费| 亚洲成人久久爱视频| 国产精品女同一区二区软件 | 美女被艹到高潮喷水动态| 午夜日韩欧美国产| 久久精品国产亚洲av涩爱 | 精品人妻偷拍中文字幕| 女人高潮潮喷娇喘18禁视频| 91av网一区二区| 免费看a级黄色片| 国产一区在线观看成人免费| 亚洲,欧美精品.| 久久精品影院6| 国产精品日韩av在线免费观看| 偷拍熟女少妇极品色| 一个人免费在线观看电影| 亚洲黑人精品在线| 黄片大片在线免费观看| 国产欧美日韩一区二区精品| 国产亚洲av嫩草精品影院| 国产精品 国内视频| 亚洲欧美日韩高清专用| 欧美日韩一级在线毛片| 无人区码免费观看不卡| 亚洲不卡免费看| 国产精品一区二区免费欧美| 日日夜夜操网爽| 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区四那| 国产亚洲精品综合一区在线观看| 99精品在免费线老司机午夜| 夜夜躁狠狠躁天天躁| 国产探花在线观看一区二区| 久久久久免费精品人妻一区二区| 特级一级黄色大片| 成年版毛片免费区| 亚洲人成网站在线播放欧美日韩| 黄色成人免费大全| 亚洲欧美日韩东京热| 国产精品99久久久久久久久| 亚洲人成网站在线播| 亚洲成人久久爱视频| 女人十人毛片免费观看3o分钟| 色播亚洲综合网| 午夜福利视频1000在线观看| 亚洲人成电影免费在线| 欧美日韩福利视频一区二区| 99在线视频只有这里精品首页| 一级黄片播放器| 人妻久久中文字幕网| 最新美女视频免费是黄的| 亚洲在线观看片| 久久久精品大字幕| 亚洲av成人精品一区久久| 可以在线观看毛片的网站| 久久精品国产综合久久久| 成年版毛片免费区| 久久精品91蜜桃| 在线视频色国产色| 久久99热这里只有精品18| 免费高清视频大片| 久久久久久久久久黄片| 国产黄a三级三级三级人| 女人十人毛片免费观看3o分钟| 亚洲最大成人手机在线| 欧美丝袜亚洲另类 | 亚洲乱码一区二区免费版| 久久这里只有精品中国| 九色成人免费人妻av| 欧美zozozo另类| 欧美乱妇无乱码| 欧美中文综合在线视频| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 国内少妇人妻偷人精品xxx网站| 黄色女人牲交| 长腿黑丝高跟| 欧美在线一区亚洲| 欧美色欧美亚洲另类二区| 日韩欧美在线二视频| 欧美乱码精品一区二区三区| 国产老妇女一区| 日本五十路高清| 国产成年人精品一区二区| 99国产精品一区二区蜜桃av| 国产成人av教育| 首页视频小说图片口味搜索| 天堂网av新在线| 亚洲av二区三区四区| 此物有八面人人有两片| 久久精品国产清高在天天线| 免费看美女性在线毛片视频| 俺也久久电影网| 99久国产av精品| 天堂av国产一区二区熟女人妻| 黄色成人免费大全| 成人国产一区最新在线观看| 男女床上黄色一级片免费看| 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 99热这里只有精品一区| 9191精品国产免费久久| 每晚都被弄得嗷嗷叫到高潮| 香蕉av资源在线| 欧美zozozo另类| 亚洲欧美精品综合久久99| 一本综合久久免费| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看| 观看美女的网站| 夜夜夜夜夜久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品香港三级国产av潘金莲| 精品一区二区三区视频在线 | 一本一本综合久久| 一个人看视频在线观看www免费 | 熟妇人妻久久中文字幕3abv| 床上黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 免费看a级黄色片| 亚洲成av人片免费观看| 老熟妇乱子伦视频在线观看| 听说在线观看完整版免费高清| 精品人妻一区二区三区麻豆 | 午夜激情福利司机影院| 精品国产亚洲在线| 亚洲七黄色美女视频| 看片在线看免费视频| 99久久精品热视频| 日本黄色片子视频| 欧美一区二区精品小视频在线| 99久久无色码亚洲精品果冻| 欧美乱码精品一区二区三区| 九色成人免费人妻av| 国产av一区在线观看免费| 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲一级av第二区| 一夜夜www| 小蜜桃在线观看免费完整版高清| 99精品欧美一区二区三区四区| 精品久久久久久成人av| 国产野战对白在线观看| 日韩有码中文字幕| 午夜两性在线视频| 色播亚洲综合网| 国产熟女xx| 久久精品影院6| 在线播放国产精品三级| 丁香欧美五月| 精品无人区乱码1区二区| 亚洲电影在线观看av| 欧美在线一区亚洲| 国产成+人综合+亚洲专区| 久久香蕉国产精品| 久久久久久久亚洲中文字幕 | 日韩欧美精品免费久久 | 五月伊人婷婷丁香| 国产日本99.免费观看| 99久久久亚洲精品蜜臀av| 日韩高清综合在线| 网址你懂的国产日韩在线| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 国产高清激情床上av| 成年女人毛片免费观看观看9| 大型黄色视频在线免费观看| 成年人黄色毛片网站| 国产乱人伦免费视频| 18禁美女被吸乳视频| 99久久99久久久精品蜜桃| 99在线人妻在线中文字幕| 国产 一区 欧美 日韩| 久久亚洲精品不卡| 婷婷丁香在线五月| 无遮挡黄片免费观看| 亚洲人与动物交配视频| 两个人的视频大全免费| 国产亚洲av嫩草精品影院| 免费av不卡在线播放| 欧美激情在线99| 国产精品99久久久久久久久| 嫩草影院精品99| a级一级毛片免费在线观看| 日本精品一区二区三区蜜桃| 国产 一区 欧美 日韩| 男女做爰动态图高潮gif福利片| 欧美一级毛片孕妇| 亚洲自拍偷在线| 国内精品久久久久久久电影| 日韩人妻高清精品专区| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 在线观看午夜福利视频| 激情在线观看视频在线高清| 18禁美女被吸乳视频| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 床上黄色一级片| 欧美一级a爱片免费观看看| 国产精品,欧美在线| 国内久久婷婷六月综合欲色啪| 午夜福利欧美成人| 中出人妻视频一区二区| 国产真实伦视频高清在线观看 | 久99久视频精品免费| 三级国产精品欧美在线观看| 亚洲av免费高清在线观看| 久久香蕉精品热| 欧美成人一区二区免费高清观看| 久久久久国产精品人妻aⅴ院| 免费大片18禁| 无限看片的www在线观看| 99国产综合亚洲精品| 小蜜桃在线观看免费完整版高清| 女生性感内裤真人,穿戴方法视频| 一级毛片女人18水好多| 久久精品影院6| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 亚洲av成人精品一区久久| 国产精品免费一区二区三区在线| 国产 一区 欧美 日韩| 午夜免费观看网址| 制服人妻中文乱码| 国产精品免费一区二区三区在线| 两个人看的免费小视频| 男女床上黄色一级片免费看| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 中文字幕久久专区| 有码 亚洲区| 美女被艹到高潮喷水动态| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 国产亚洲欧美在线一区二区| 亚洲人成网站高清观看| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 国产精品野战在线观看| 九九热线精品视视频播放| 亚洲国产欧美网| 国产精品自产拍在线观看55亚洲| 欧美+日韩+精品| 欧美一区二区亚洲| 又黄又粗又硬又大视频| 成人午夜高清在线视频| h日本视频在线播放| 久久精品91无色码中文字幕| 国产精品久久久久久久电影 | 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 精品人妻1区二区| 桃色一区二区三区在线观看| 熟女人妻精品中文字幕| 两个人的视频大全免费| 51国产日韩欧美| 神马国产精品三级电影在线观看| 老司机午夜十八禁免费视频| 国产三级在线视频| 国产v大片淫在线免费观看| 色噜噜av男人的天堂激情| 亚洲国产中文字幕在线视频| 免费av毛片视频| 两个人看的免费小视频| 变态另类丝袜制服| 91九色精品人成在线观看| 噜噜噜噜噜久久久久久91| 国产午夜精品论理片| 国产黄色小视频在线观看| 国产精品国产高清国产av| 天天躁日日操中文字幕| 一区二区三区激情视频| 99精品久久久久人妻精品| 亚洲精品亚洲一区二区| 夜夜夜夜夜久久久久| 丁香欧美五月| svipshipincom国产片| 搡女人真爽免费视频火全软件 | 少妇人妻一区二区三区视频| 蜜桃久久精品国产亚洲av| 久久久久久久久大av| 国产在线精品亚洲第一网站| 国产一区二区亚洲精品在线观看| 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 一个人看视频在线观看www免费 | 日韩人妻高清精品专区| 亚洲成a人片在线一区二区| 少妇人妻一区二区三区视频| 国产精品 欧美亚洲| 亚洲,欧美精品.| 99精品在免费线老司机午夜| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| www.www免费av| 身体一侧抽搐| 99热6这里只有精品| 欧美日本亚洲视频在线播放| 99热这里只有精品一区| 少妇的逼好多水| a级一级毛片免费在线观看| 国产精品自产拍在线观看55亚洲| 国内精品一区二区在线观看| 亚洲五月婷婷丁香| 日韩欧美国产一区二区入口| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久久黄片| 99久久99久久久精品蜜桃| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女| 成人av在线播放网站| 午夜免费成人在线视频| 色av中文字幕| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| 偷拍熟女少妇极品色| 成年版毛片免费区| 久久久色成人| 村上凉子中文字幕在线| 国产av一区在线观看免费| 老汉色av国产亚洲站长工具| 国产伦一二天堂av在线观看| 成人无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 国产单亲对白刺激| 国产精品免费一区二区三区在线| 色综合婷婷激情| 99国产精品一区二区蜜桃av| 日本黄大片高清| 免费在线观看成人毛片| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 亚洲av一区综合| 国产精品1区2区在线观看.| 好男人在线观看高清免费视频| 精品人妻1区二区| 亚洲国产中文字幕在线视频| 变态另类丝袜制服| 免费看光身美女| 一本久久中文字幕| 99国产极品粉嫩在线观看| 亚洲avbb在线观看| 国产精品一区二区三区四区久久| 欧美乱码精品一区二区三区| 精品久久久久久久末码| 中文字幕av成人在线电影| 精品午夜福利视频在线观看一区| 99精品欧美一区二区三区四区| 9191精品国产免费久久| 久久天躁狠狠躁夜夜2o2o| 久久久久久人人人人人| 免费在线观看亚洲国产| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜添小说| 69人妻影院| 成年女人看的毛片在线观看| 国产97色在线日韩免费| 色吧在线观看| 91九色精品人成在线观看| 日本 欧美在线| 久久久久久九九精品二区国产| 蜜桃亚洲精品一区二区三区| 日本精品一区二区三区蜜桃| 国产成+人综合+亚洲专区| 18禁裸乳无遮挡免费网站照片| 波多野结衣高清无吗| 内地一区二区视频在线| 国产三级黄色录像| 成年版毛片免费区| 国产精品美女特级片免费视频播放器| 男女下面进入的视频免费午夜| 一级毛片女人18水好多| 亚洲七黄色美女视频| 999久久久精品免费观看国产| 在线看三级毛片| 色综合亚洲欧美另类图片| 国产欧美日韩精品一区二区| 91久久精品国产一区二区成人 | 国模一区二区三区四区视频| 波多野结衣高清无吗| 成人18禁在线播放| or卡值多少钱| 99视频精品全部免费 在线| 免费在线观看成人毛片| 91麻豆精品激情在线观看国产| 免费av观看视频| 国模一区二区三区四区视频| 婷婷精品国产亚洲av在线| 99久久成人亚洲精品观看| 露出奶头的视频| 国语自产精品视频在线第100页| 成人性生交大片免费视频hd| 在线观看一区二区三区| 国产伦精品一区二区三区四那| 91久久精品国产一区二区成人 | 午夜免费激情av| 精品人妻1区二区| 中文在线观看免费www的网站| 黄色视频,在线免费观看| 在线a可以看的网站| 免费在线观看亚洲国产| 18禁国产床啪视频网站| 天堂av国产一区二区熟女人妻| 母亲3免费完整高清在线观看| 又粗又爽又猛毛片免费看| 亚洲男人的天堂狠狠| 国产精品一区二区三区四区久久| 757午夜福利合集在线观看| 毛片女人毛片| 丁香欧美五月| 可以在线观看毛片的网站| 啪啪无遮挡十八禁网站| 波多野结衣高清无吗| 中文字幕人妻熟人妻熟丝袜美 | 国产精品亚洲一级av第二区| 色视频www国产| 男女床上黄色一级片免费看| 欧美日韩瑟瑟在线播放| 国产成人aa在线观看| 黄色女人牲交| 好看av亚洲va欧美ⅴa在| 毛片女人毛片| eeuss影院久久| 国产激情偷乱视频一区二区| 中国美女看黄片| 亚洲美女黄片视频| 日韩大尺度精品在线看网址| 国产精品久久久久久人妻精品电影| 一进一出抽搐gif免费好疼| 亚洲精品乱码久久久v下载方式 | 免费av不卡在线播放| 在线看三级毛片| 亚洲精品色激情综合| 757午夜福利合集在线观看| 一进一出抽搐动态| 色综合亚洲欧美另类图片| 欧美日韩国产亚洲二区| 久久久色成人| 久久精品夜夜夜夜夜久久蜜豆| 午夜免费男女啪啪视频观看 | 女人高潮潮喷娇喘18禁视频| 精品久久久久久久久久免费视频| 99国产精品一区二区蜜桃av| 欧美又色又爽又黄视频| 亚洲人成网站高清观看| 69av精品久久久久久| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻熟人妻熟丝袜美 | 成年女人看的毛片在线观看| 色av中文字幕| 嫩草影院精品99| 国内精品美女久久久久久| 亚洲国产中文字幕在线视频| 久久久精品欧美日韩精品| 国产午夜福利久久久久久| 亚洲avbb在线观看| 国产精品自产拍在线观看55亚洲| 国产一区二区三区视频了| 国产精品久久电影中文字幕| 久久久精品欧美日韩精品| 欧美日韩黄片免| 亚洲精品乱码久久久v下载方式 | 中文亚洲av片在线观看爽| 欧美一级毛片孕妇| 午夜福利免费观看在线| 亚洲精品在线美女| 国产精品久久电影中文字幕| 俄罗斯特黄特色一大片| 成人av一区二区三区在线看| 级片在线观看| 亚洲av熟女| av天堂在线播放|