• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature*

    2021-05-24 02:27:52TaiMinCheng成泰民MeiLinLi李美霖ZhiRuiCheng成智睿GuoLiangYu禹國梁ShuShengSun孫樹生ChongYuanGe葛崇員andXinXinZhang張新欣
    Chinese Physics B 2021年5期

    Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹國梁),Shu-Sheng Sun(孫樹生), Chong-Yuan Ge(葛崇員), and Xin-Xin Zhang(張新欣)

    1Department of Physics,College of Sciences,Shenyang University of Chemical Technology,Shenyang 110142,China

    2School of Materials Science and Engineering,Shenyang University of Chemical Technology,Shenyang 110142,China

    3School of Software Engineering,Shenyang University of Technology,Shenyang 110870,China

    Keywords: invariant eigen-operator method,Jordan–Wigner transformations,critical magnetic field intensity,magnetic phase diagrams

    1. Introduction

    Low-dimensional frustration quantum magnetic systems have attracted much attention since they exhibit strange quantum phenomena, which are closely related to the lowtemperature quantum phase transition of low-dimensional condensed matter.[1–8]Especially in the diamond-chain compound Cu3(CO3)2(OH)2single crystal,[2]the 1/3 magnetization plateau and double peaks of magnetic susceptibility and specific heat were observed experimentally. This triggered intensive research interests in such low-dimensional magnetic chain materials.[3–7]Rule et al.[5]used inelastic neutron scattering experiments to investigate the exchange integrals of the diamond chain compound azurite Cu3(CO3)2(OH)2and again confirmed the existence of the 1/3 magnetization plateau from the experiment. Jeschke et al.[6]theoretically investigated the magnetic properties and the exchange integrals of the spin-1/2 diamond chain with density functional theory and explained the formation mechanism of the frustrated material with first-principles. In the calculation of properties in low-dimensional magnetic quantum systems, the densitymatrix renormalization group[9](DMRG)method exhibits its advantages. For example, the DMRG method is employed in the phase diagram[3,4]study of the one-dimensional magnetic quantum chain system.

    In addition, there are also other theoretical methods to study the magnetic and thermodynamic properties of onedimensional magnetic chain,e.g.,the transfer-matrix densitymatrix renormalization group method[7,8](TMRG), the invariant eigen-operator (IEO) method[10–12]combined with Jordan–Wigner (J–W) transformations,[13,14]and the spinwave theory[15]method from a fully polarized vacuum combined with the quantum Monte Carlo (QMC) simulation.[15]The magnetic-field vs temperature phase diagram of alternate ferrimagnetic chains reported in the paper of Silva and Montenegro-Filho[15]has caught our attention. In their work,the relationship between the critical magnetic field and the double peak of magnetic susceptibility,as well as the correlation between the magnetization curve and the magnetic phase diagram,have attracted our great interest.

    We have specifically investigated the properties of a spin-1/2 ferrimagnetic diamond XY chain[10]with the IEO method,two peaks in magnetic susceptibility and specific heat as well as two valleys in entropy appear at the critical magnetic field,which are similar to Silva’s work,[15]and the two peaks are also very similar in height.This triggered our motivation to investigate the magnetic phase diagram of the one-dimensional magnetic chain system with the IEO method.

    The elementary excitation of the spin-1/2 ferrimagnetic chain system is also a fermion-type collective excitation that satisfies the Pauli exclusion principle. This fermion-type collective excitation is closely related to the Luttinger liquid(LL)phase in one-dimensional quantum wires. The quantum critical point separates a gapped insulating phase and a gapless conducting phase. The quantum critical state can be experimentally accessed through an applied magnetic field in magnetic insulators.[16,17]In these systems,the gapped phases are associated with magnetization plateaus in the magnetization curves. Oshikawa et al.[18]clarified that this magnetization plateau should be understood as a topological effect.

    In this paper,the alternating ferrimagnetic diamond chain of the one-dimensional spin-1/2 Heisenberg with long-range interaction in the external magnetic field was investigated using the IEO method[10–12]combined with J–W transformations. Therefore,we derived the elementary-excitation energy spectra and partition function of the system under the external magnetic field. We only conducted a detailed study of the magnetization and the magnetic phase diagram of the system at absolute zero and finite temperature. Given the partition function of the system under the external magnetic field, it is easy to obtain the expressions of additional thermodynamic and magnetic physical quantities of the system (such as specific heat,internal energy,free energy,entropy,magnetic susceptibility).

    2. The partition function and elementary excitations of the system

    As shown in Fig. 1, dimer and monomer are alternately arranged to form a ferrimagnetic diamond chain with 1/2 spin.Here Sl,d1and Sl,d2represent the dimer’s spin quantum, and Sl,mrepresents the monomer’s spin quantum. Suppose that such a system has an N (l =1,2,...,N) cyclic structure. We use the Heisenberg interaction theory model to describe, and the Hamiltonian of the system can be expressed as follows:

    Fig.1. The alternating ferrimagnetic diamond chain of the one-dimensional spin-1/2 Heisenberg model is composed of dimers and monomers.

    The lattice Fourier transforms for operators al, bland clare as follows:

    From Eqs. (4) and (17), the partition function of the system can be easily obtained as follows:

    in which h=guBH.

    3. Analysis and discussion

    From the temperature-dependent thermal disorder energy(kBT), the Zeeman energy (guBH) that related to the external magnetic field, the ferromagnetic exchange energy (J2)that makes the electron spins in the dimer molecule parallel to each other, the antiferromagnetic exchange energy (J1and J3) that makes the electron spins between dimers and monomer molecules antiparallel arranged and the ferromagnetic exchange energy (Jm) which makes the electron spins of monomers and monomer molecules aligned in parallel,etc.Using the competition between the above energies, the magnetization behavior of the alternating ferrimagnetic diamond chain with a spin of 1/2 under an external magnetic field was analyzed.

    To this end, when we change the exchange integral (J1,J2, J3, Jm), we study the change of the system’s magnetization with the external magnetic field at absolute zero and finite temperature. Thus,three critical magnetic field intensities HCB,HCEand HCSare obtained. Here HCBrepresents the critical magnetic field intensity,at which the system begins to exhibit a 1/3 magnetization plateau, HCErepresents the critical magnetic field intensity where the 1/3 magnetization plateau disappears, and HCSrepresents the critical magnetic field intensity where the system begins to exhibit the fully polarized(FP)plateau.

    According to Eqs. (13) and (14), the elementaryexcitation spectra of the system satisfies the relationship of ?ω1,k>?ω3,k>?ω2,kin the entire Brillouin zone (where ?ω1,k>0,but ?ω3,kand ?ω2,kcan be positive or negative).

    When H ≥HCS, the energies of three elementary excitations are greater than zero in the Brillouin zone, and they drive the system from low energy state to high energy state,leading to an energy gap(UP gap)and the fully polarized(FP)plateau phase. FP phase appears when H is higher than HCS.In this area,the magnetic moment of dimer molecules and the single matrix molecule is fully parallel to the external magnetic field,which is similar to that of the ferromagnetic phase.The whole system is fully polarized. When HCS>H >HCE,the energy of ?ω2,kcan be positive or negative, resulting in a gapless state of the system and the Luttinger liquid(LL)phase.LL phase emerges when the magnetic field intensity H is in the range of HCE<H <HCS. In this area,the magnetic moment of the monomer’s molecule will rotate along the direction of the external magnetic field when the elementary excitation energy increases, which will induce the magnetic moment of dimer’s molecules to deviate from the external magnetic field randomly. The projection of the total magnetic moment along the direction of the external magnetic field will increase with the external magnetic field.When HCE≥H ≥HCB,the energy of ?ω2,kappears to be negative. It transforms the system from a high energy state to a low energy state,leading to an energy gap(DN gap)and the ferrimagnetic(FRI,1/3 magnetization)plateau phase. FRI plateau phase appeared when the magnetic field intensity H is in the range of HCE≥H ≥HCB. In this area,the magnetic moment of the dimer’s molecules is parallel to the external magnetic field, whereas the magnetic moment of the monomer’s molecule is along the opposite direction.The total magnetic moment of the ferrimagnetic system is the maximum and remains unchanged with the increase of the external magnetic field. When HCB>H,the energy of ?ω3,kcan be positive or negative,inducing a gapless state of the system and the ferrimagnetic(FRI)phase. FRI phase is a disordered ferrimagnetic-like phase in which the magnetic moments of the dimer’s molecule are arranged approximately antiparallel to the magnetic moments of the monomer’s molecule,but the size of the magnetic moment is different. Moreover, in this phase, the projection of the total magnetic moment along the direction of the external magnetic field will increase with the external magnetic field.

    Combined with Eq.(20)and Fig.2,it can be seen that at absolute zero temperature,when the energy of the elementaryexcitation spectrum is greater than zero,the Fermi–Dirac statistical distribution 〈nσ〉=1/(1+e?ωσ,k/(kBT)), (σ=1,2,3)is zero. Due to ?ω1,k>0,so〈n1〉=0. Moreover,the energy of the elementary-excitation spectra will increase with the increase of the external magnetic field intensity (see Fig. 2).

    Fig.2. The dispersion curves of elementary-excitation spectrum at 0 K in different external magnetic fields(guBH/J=0.0,0.15,0.34,0.42,0.50,0.75,1.02,1.17)(other parameters are set as J1/J=0.47,J2/J=?1,J3/J=0.21,Jm/J=?0.1).

    The elementary excitations (?ω1,k, ?ω2,kand ?ω3,k) satisfy the Fermi–Dirac statistical distribution. The analysis of elementary-excitation spectra gives the relationship with the critical magnetic field as follows.Here HCB,HCE,and HCSare the external magnetic field intensities as the minimum value of ?ω3,k, the maximum value of ?ω2,k, and the minimum value of ?ω2,kare equal to zero,respectively. This can be expressed by the following equations:

    We use Eq.(21)to draw the magnetic phase diagrams of magnetic field-different exchange integrals at absolute zero.The relationships between the system’s magnetization curve at finite temperature and the critical external magnetic field intensities are obtained according to Eq.(20),and the magnetic field-temperature phase diagram is drawn.

    In the magnetic phase diagrams, the FP plateau phase is represented in olive green, the LL phase is in blue, the FRI plateau phase(i.e.,1/3 magnetization plateau phase)is in magenta,and the FRI phase is in cyan(see Figs.4,6,9 and 12).

    Fig.3.The magnetization change with the external magnetic field at different temperatures(other parameters are set as J1/J=0.47,J2/J=?1,J3/J=0.21,Jm/J=?0.1).

    Fig. 4. The critical magnetic field intensities (HCB, HCE and HCS) as a function of temperature (other parameters are set as J1/J = 0.47,J2/J=1.0,J3/J=0.21,Jm/J=?0.1).

    Fig. 5. The magnetization changes with the external magnetic field at T =0 K,under different ferromagnetic exchange integrals J2/J (?0.5,?0.75, ?1.0, ?1.25, ?1.5, ?1.75, ?2.0) (other parameters are set as J1/J=0.47,J3/J=0.21,Jm/J=?0.14).

    It can be seen from Figs. 3 and 4 that in the spin-1/2 alternating ferrimagnetic diamond chain, when the reduced exchange integrals are J1/J=0.47, J2/J=?1, J3/J=0.21,Jm/J = ?0.1, the spin magnetic order of the system is destroyed by the thermal disorder energy with the increase of temperature.Therefore,the symmetry of the system increases,and the order decreases. Its manifestation is in the low temperature range of kBT/J <0.008,the width of the 1/3 magnetization plateau of the system gradually decreases with the increase of temperature(see Figs.3 and 4). The width of the 1/3 magnetization plateau is the largest at 0 K.As the temperature increases, the critical magnetic field intensity HCBgradually increases(i.e.,moves to the right),while the critical magnetic field intensity HCEdecreases(i.e.,moves to the left),resulting in the width of 1/3 magnetization plateau gradually decreasing(see Fig.3). Until kBT/J=0.008, the 1/3 magnetization plateau completely disappears. But the region of the spin-flop states(i.e.,LL phase)gradually increases with increasing temperature. When kBT/J >0.008,the critical magnetic field intensity HCBand HCEof the system are completely coincident and are independent of temperature.The above analysis shows that the appearance of the 1/3 magnetization plateau of the system is closely related to the quantum effect of the system.Because the quantum effect of the system is more pronounced at extremely low temperatures, but this quantum effect is not observed at room temperature. This is because the quantum effects are completely suppressed by the thermal disorder energy at room temperature. Therefore, the appearance of the 1/3 magnetization plateau in the low temperature region is the macroscopic manifestation of the quantum effect. The critical temperature at which the 1/3 magnetization plateau disappears is kBT/J =0.008, this temperature corresponds to the threephase critical point of the FRI phase, the FRI plateau phase,and the LL phase(see Fig.4).

    Fig.6. The critical magnetic field intensities(HCB,HCE and HCS)as a function of ?J2/J at T =0 K(other parameters are set as J1/J=0.47,J3/J=0.21,Jm/J=?0.14).

    Fig.7.The magnetization changes with the external magnetic field at finite temperature kBT/J=0.01,under different ferromagnetic exchange integrals J2/J (?0.5, ?0.75, ?1.0, ?1.25, ?1.5, ?1.75, ?2.0)(other parameters are set as J1/J=0.47,J3/J=0.21,Jm/J=?0.14).

    As can be seen from Figs. 5–7, when the reduced exchange integrals (J1/J =0.47, J3/J =0.21, Jm/J =?0.14),with the increase of reduced ferromagnetic exchange integral?J2/J (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0), the critical magnetic field intensity HCEdecreases (i.e., moves to the left) at T =0 K and finite temperature.However,the critical magnetic field intensities HCBand HCSdo not change,which means that HCBand HCShave nothing to do with the ferromagnetic exchange energy(J2)that makes the electron spins of the dimer molecules parallel. Therefore, as the reduced ferromagnetic exchange integral ?J2/J increases,the region of the spin-flop states expands,and the width of the 1/3 magnetization plateau gradually decreases, but the decreasing rate becomes slower and slower and consequently, leading to the width of the 1/3 magnetization plateau tend to be constant. The thermal disorder energy kBT destroys the magnetic order of the system(see Fig. 7), with the increase of the reduced ferromagnetic exchange integral ?J2/J, which accelerates the expansion of the region of spin-flop states and decreases the width of the 1/3 magnetization plateau.There is no three-phase critical point in the magnetic phase diagram, so the change of ferromagnetic exchange integral ?J2/J does not cause the disappearance of 1/3 magnetization plateau(see Fig.6).

    In Fig. 8, when the reduced exchange integrals are J2/J=?1,J3/J=0.21,Jm/J=?0.14,and the external magnetic field guBH/J=0,and the reduced antiferromagnetic exchange integral J1/J=0, we can be obtained from Eqs. (13)and(14)that there are ?ω1,k>0,?ω3,k>0,and ?ω2k<0 in the entire Brillouin zone. And elementary excitations ?ω1,k,?ω2,kand ?ω3,ksatisfy the Fermi–Dirac statistical distribution.Therefore,from Eq.(20),it can be seen that when the external magnetic field guBH/J=0, and J1/J=0, the total magnetization M/(guBN)=0.5 at T =0 K(see Fig.8(a)). According to the principle of symmetry, the same result at 0 K should be obtained when J2/J = ?1, J1/J = 0.21, Jm/J = ?0.14,guBH/J =0 and J3/J =0. However, as can be seen from Fig. 10(a), when the reduced exchange integrals are J2/J =?1.0,J1/J=0.47,Jm/J=?0.14,the external magnetic field guBH/J=0,and the reduced antiferromagnetic exchange integral J3/J =0, we can obtain from Eqs. (13) and (14) that there are ?ω1,k>0,?ω3,k<0 and ?ω2,k<0 in the entire Brillouin zone. So, from Eq. (20), we can know that when the external magnetic field guBH/J =0, and J3/J =0, the total magnetization M/(guBN)=?0.5 at T =0 K.Similarly,when J2/J =?1.0, J3/J =0.47, Jm/J =?0.14, guBH/J =0 and J3/J=0,the same result should be obtained.

    Fig. 8. The magnetization changes with the external magnetic field at(a)T =0 K and(b)finite temperature kBT/J=0.02, under different antiferromagnetic exchange integrals J1/J (0.0, 0.1, 0.2, 0.33, 0.4, 0.5, 0.6)(other parameters are set as J2/J=?1,J3/J=0.21,Jm/J=?0.14).

    It can be seen from Figs. 8 and 10 that the critical magnetic field intensities HCB,HCEand HCSincrease(all move to the right) with the increase of the reduced antiferromagnetic exchange integrals (J1/J, J3/J), and the region of spin-flop states widens.However,if only J1/J is changed(see Figs.8(a)and 9), the 1/3 magnetization plateau disappears when the J1/J=0.33 at 0 K.As can be seen from Figs.7(b)and 9(b),thermal disorder energy kBT accelerates the decrease and the increase of the width of the 1/3 magnetization plateau and the region of spin-flop states,respectively.

    Fig. 9. The critical magnetic field intensities (HCB, HCE and HCS) as a function of J1 at T =0 K (other parameters are set as J2/J =?1.0,J3/J=0.21,Jm/J=?0.14).

    As can be seen from Fig.9,in a spin-1/2 alternating ferrimagnetic diamond chain at T = 0 K, when J2/J = ?1.0,J3/J = 0.21, Jm/J = ?0.14, and the antiferromagnetic exchange integral J1/J <0.061, as the antiferromagnetic exchange integral J1increases, the width of the 1/3 magnetization plateau of the system increases more and more. And with the increase of J1,the saturation critical magnetic field intensity HCSand HCEincreases linearly, and the increase in the amplitude and rate of HCSis greater than that of HCE, so the region of spin-flop states has expanded. This is because the critical magnetic field intensity HCBdoes not change with J1in this range (J1/J <0.061). When 0.061 <J1/J <0.33, as the antiferromagnetic exchange integral J1increases,the critical magnetic field intensity HCBbegins to increase linearly,and the rate of increase is greater than that of HCE. As a result,the 1/3 magnetization plateau gradually decreases until it completely disappears near J1/J =0.33. When J1/J >0.33,the 1/3 magnetization plateau and the region of spin-flop states gradually increase with the increase of J1. Here,the 1/3 magnetization plateau disappears at the three-phase critical point of the FRI phase,the FRI plateau phase,and the LL phase.The critical antiferromagnetic exchange integral corresponding to this three-phase critical point is J1/J=0.33(see Fig.9).

    Fig.10. The magnetization changes with the external magnetic field at(a) T =0 K and (b) finite temperature kBT/J =0.02, under different anti-ferromagnetic exchange integrals J3/J (0.0, 0.2, 0.4, 0.8) (other parameters are set as J2/J=1,J1/J=0.47,Jm/J=0.14).

    It can be seen from Figs.11 and 12 that when the reduced exchange integral J1/J=0.47,J2/J=?1,J3/J=0.21 is unchanged, at T =0 K (see Figs. 11(a), 11(b) and 12), when?Jm/J <0.184, the critical magnetic field intensity HCEdecreases (i.e., moves to the left) with the ferromagnetic exchange integral ?Jm/J increase. However, the critical magnetic field intensities HCBand HCSdo not change, resulting in the width of 1/3 magnetization plateau gradually decreasing and the region of spin-flop states gradually expanding.When ?Jm/J =0.184, the 1/3 magnetization plateau disappears completely. When 0.336 >?Jm/J >0.184, the critical magnetic field intensity HCBdecreases (i.e., moves to the left),but the critical magnetic field intensities HCEand HCSdo not change,resulting in the width of 1/3 magnetization plateau gradually increasing,and the region of spin-flop states are constant and independent of Jm. When ?Jm/J >0.366,the three critical magnetic field intensities HCB, HCEand HCSare constant and independent of the ferromagnetic exchange integral Jm. Therefore, when ?Jm/J >0.366, the width of the 1/3 magnetization plateau and the width of the region of spin-flop states are constant and independent of Jm. Here,the 1/3 magnetization plateau disappears at the three-phase critical point of the FRI phase, the FRI plateau phase, and the LL phase.The critical ferromagnetic exchange integral corresponding to this three-phase critical point is ?Jm/J=0.184(see Fig.12).

    When ?Jm/J = 0.184, the 1/3 magnetization plateau completely disappears, and under the effect of thermal disorder energy kBT outside the FP plateau region, this magnetization curve is separated from the magnetization curve in other cases (Jm/J =0.0, ?0.05, ?0.1, ?0.15, ?0.25, ?0.3,?0.35)at the finite temperature kBT/J=0.01 except for the FP plateau region (see Figs. 11(c) and 11(d)). This shows that there is a competition between magnetic order, which is caused by an external magnetic field in the system, and thermal disorder at finite temperatures.

    Fig.11. The magnetization changes with the external magnetic field at(a), (b)T =0 K and(c), (d)finite temperature kBT/J=0.01, under different ferromagnetic exchange integrals Jm/J (0.0,?0.05,?0.1,?0.15,?0.184,?0.25,?0.3,?0.35)(other parameters are set as J1/J=0.47,J2/J=?1.0,J3/J=0.21).

    Fig.12. The critical magnetic field intensities(HCB,HCE and HCS)as a function of Jm/J at T =0 K(other parameters are set as J1/J=0.47,J2/J=?1,J3/J=0.21).

    4. Conclusion

    We have obtained the following conclusions by studying the magnetization and magnetic phase diagram of the spin-1/2 alternating ferrimagnetic diamond chain in external magnetic fields at finite temperatures.

    (2) The 1/3 magnetization plateau will inevitably disappear as long as the three-phase critical point exists in the magnetic phase diagram,which is intersected by the FRI phase,the FRI plateau phase,and the LL phase. However,the 1/3 magnetization plateau will not disappear without this three-phase critical point.

    (3)The UP and the DN energy gap induce the appearance of the FP and the FRI plateau phase,respectively. Also,?ω2,kand ?ω3,kcan be positive or negative in the Brillouin zone,resulting in a gapless state in the system, then inducing the appearance of the LL and the FRI phase,respectively.

    (4) The width of the 1/3 magnetization plateau is the largest at 0 K. As the temperature increases, HCBgradually increases, while HCEdecreases, resulting in the width of 1/3 magnetization plateau gradually decreasing. Therefore,the appearance of the 1/3 magnetization plateau in the lowtemperature region is the macroscopic expression of the quantum effect.

    (5)The change of the ferromagnetic exchange energy ?J2does not change HCBand HCS. However,HCEdecreases with the increase of ?J2. As a result,the width of the 1/3 magnetization plateau decreases and the region of spin-flop states gets enlarged.

    (6) There are two critical values (?JmC1and ?JmC2)for the ferromagnetic exchange integral ?Jm. When ?Jm<?JmC1, as ?Jmincreases, HCEdecreases, but HCBand HCSremain unchanged, resulting in the width of the 1/3 magnetization plateau decreasing and the region of spin-flop states enlarged. When ?Jm=?JmC1,the 1/3 magnetization plateau disappears completely.When ?JmC2>?Jm>?JmC1,as ?Jmincreases,HCBdecreases,but HCEand HCSremain unchanged,resulting in the width of the 1/3 magnetization plateau gradually increases, while the region of spin-flop states is unchanged.When ?Jm>?JmC2,the three critical magnetic field intensities HCB,HCEand HCSare not related to ?Jm.

    (7) HCB, HCE, and HCSincrease with the antiferromagnetic exchange integral(J1or J3). While the change of J1or J3can tune the 1/3 magnetization plateau,so that the width of the 1/3 magnetization plateau of the system changes from large to small until it disappears,and then increases. The above results indicated that the appearance of the 1/3 magnetization plateau is closely related to the magnetic ordered structure of the system.

    免费高清在线观看日韩| 亚洲国产av新网站| 久久久久精品人妻al黑| 国产精品蜜桃在线观看| 免费观看无遮挡的男女| 亚洲av成人精品一二三区| 性高湖久久久久久久久免费观看| 麻豆精品久久久久久蜜桃| 亚洲精品国产色婷婷电影| 国产精品 国内视频| 国产又色又爽无遮挡免| 欧美丝袜亚洲另类| 久久青草综合色| 国产成人91sexporn| 丝袜喷水一区| 日韩 亚洲 欧美在线| 国产亚洲最大av| 国产一区二区三区av在线| 日本免费在线观看一区| 国产探花极品一区二区| 国产69精品久久久久777片| 精品一区二区免费观看| 日韩av在线免费看完整版不卡| 成人亚洲欧美一区二区av| 97精品久久久久久久久久精品| av一本久久久久| 草草在线视频免费看| 国产 一区精品| 夫妻性生交免费视频一级片| 亚洲国产毛片av蜜桃av| 丰满饥渴人妻一区二区三| 卡戴珊不雅视频在线播放| 久久精品国产自在天天线| 日韩欧美一区视频在线观看| 性色av一级| 在线免费观看不下载黄p国产| 国产精品人妻久久久影院| 国产精品无大码| 久久久亚洲精品成人影院| 亚洲在久久综合| 久久99热6这里只有精品| 亚洲精品久久午夜乱码| 日本午夜av视频| 免费女性裸体啪啪无遮挡网站| 十八禁网站网址无遮挡| 乱码一卡2卡4卡精品| 免费不卡的大黄色大毛片视频在线观看| 日本黄大片高清| 久久久久久久久久成人| 秋霞伦理黄片| 老司机亚洲免费影院| 国产一区二区三区av在线| 亚洲av电影在线进入| av视频免费观看在线观看| 亚洲精品国产av蜜桃| 国产亚洲精品久久久com| 制服人妻中文乱码| 国产一区二区在线观看av| 免费高清在线观看视频在线观看| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 亚洲av中文av极速乱| 精品人妻熟女毛片av久久网站| 久久精品国产鲁丝片午夜精品| 99久久精品国产国产毛片| 在线观看国产h片| 亚洲伊人久久精品综合| av网站免费在线观看视频| 亚洲精品美女久久av网站| 日本欧美视频一区| 丰满饥渴人妻一区二区三| 最近手机中文字幕大全| 免费大片18禁| 免费久久久久久久精品成人欧美视频 | 久久97久久精品| 视频在线观看一区二区三区| 99精国产麻豆久久婷婷| 久久国产精品大桥未久av| 丝瓜视频免费看黄片| 国语对白做爰xxxⅹ性视频网站| 高清av免费在线| 日本色播在线视频| 波多野结衣一区麻豆| 亚洲精品视频女| 亚洲国产日韩一区二区| 成年av动漫网址| 久久精品夜色国产| av国产久精品久网站免费入址| 亚洲内射少妇av| 黑人高潮一二区| 精品久久蜜臀av无| 国产一区二区三区av在线| 亚洲av欧美aⅴ国产| 成人毛片60女人毛片免费| 国产探花极品一区二区| 亚洲三级黄色毛片| 一级爰片在线观看| 亚洲国产看品久久| 婷婷色av中文字幕| 99久久综合免费| 精品一区在线观看国产| 国国产精品蜜臀av免费| av一本久久久久| 婷婷色综合大香蕉| 亚洲人成77777在线视频| 97超碰精品成人国产| tube8黄色片| 18禁动态无遮挡网站| 精品一区二区三区视频在线| 国精品久久久久久国模美| 国产精品免费大片| 一级片'在线观看视频| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 精品第一国产精品| 国产成人免费观看mmmm| 丝袜人妻中文字幕| 免费女性裸体啪啪无遮挡网站| 免费看光身美女| 考比视频在线观看| 免费少妇av软件| 精品亚洲乱码少妇综合久久| 超碰97精品在线观看| 欧美日韩av久久| 亚洲综合精品二区| 国产在视频线精品| 国产在视频线精品| 亚洲国产色片| 久久人人爽人人片av| a级毛色黄片| 黄色 视频免费看| 一区二区三区乱码不卡18| 免费大片18禁| 一二三四中文在线观看免费高清| 毛片一级片免费看久久久久| 看免费av毛片| 国产亚洲欧美精品永久| 看非洲黑人一级黄片| 超色免费av| 亚洲精品久久久久久婷婷小说| 欧美精品一区二区免费开放| 超色免费av| 亚洲国产精品一区二区三区在线| 久久鲁丝午夜福利片| 欧美老熟妇乱子伦牲交| 久久国产精品男人的天堂亚洲 | 人人妻人人爽人人添夜夜欢视频| 熟女av电影| 日本欧美视频一区| 精品少妇内射三级| 天堂8中文在线网| 两个人看的免费小视频| 国产成人a∨麻豆精品| 欧美国产精品va在线观看不卡| 亚洲欧美清纯卡通| 99久久中文字幕三级久久日本| 亚洲美女黄色视频免费看| 日本与韩国留学比较| 日韩精品有码人妻一区| 国产精品人妻久久久影院| 一区二区三区精品91| 捣出白浆h1v1| 中文字幕制服av| 青春草国产在线视频| 国产成人aa在线观看| 国产精品久久久久久精品电影小说| 免费日韩欧美在线观看| 黄色视频在线播放观看不卡| 免费黄色在线免费观看| 亚洲美女搞黄在线观看| 国产一级毛片在线| 韩国av在线不卡| 少妇人妻精品综合一区二区| 亚洲欧美中文字幕日韩二区| 精品久久久精品久久久| 免费观看性生交大片5| 久久综合国产亚洲精品| 狂野欧美激情性xxxx在线观看| 色哟哟·www| 亚洲av福利一区| 我的女老师完整版在线观看| 国产一区二区在线观看av| 日韩精品有码人妻一区| av福利片在线| 国产精品无大码| 午夜日本视频在线| 天堂中文最新版在线下载| 久久女婷五月综合色啪小说| 久久久久久久久久人人人人人人| 免费大片黄手机在线观看| 成年人免费黄色播放视频| 免费高清在线观看日韩| 在线看a的网站| 国产 一区精品| 日韩大片免费观看网站| 国产精品免费大片| 国产精品久久久久久av不卡| 大片免费播放器 马上看| 精品少妇内射三级| a级毛片黄视频| 国产亚洲一区二区精品| 韩国精品一区二区三区 | 成人亚洲精品一区在线观看| 免费看光身美女| 香蕉丝袜av| 亚洲av日韩在线播放| 国产一区二区在线观看日韩| av片东京热男人的天堂| 777米奇影视久久| 观看美女的网站| 国产日韩一区二区三区精品不卡| 久久午夜综合久久蜜桃| 欧美性感艳星| 精品久久久精品久久久| 亚洲国产欧美日韩在线播放| 国产精品麻豆人妻色哟哟久久| 久热这里只有精品99| 亚洲,欧美,日韩| 亚洲一码二码三码区别大吗| 国产精品 国内视频| 亚洲精品自拍成人| 国产熟女午夜一区二区三区| 99热网站在线观看| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 欧美 亚洲 国产 日韩一| 午夜激情av网站| a 毛片基地| 精品一区在线观看国产| 久久综合国产亚洲精品| 精品一区二区免费观看| 1024视频免费在线观看| 国产成人精品福利久久| 成年动漫av网址| 狠狠精品人妻久久久久久综合| 少妇人妻精品综合一区二区| 99热这里只有是精品在线观看| 亚洲人与动物交配视频| 大香蕉97超碰在线| 国产视频首页在线观看| 亚洲国产精品专区欧美| 最黄视频免费看| 日本黄大片高清| 欧美日本中文国产一区发布| 色婷婷久久久亚洲欧美| 日本爱情动作片www.在线观看| 亚洲内射少妇av| 成人国语在线视频| av在线观看视频网站免费| 伊人亚洲综合成人网| av.在线天堂| 欧美日韩一区二区视频在线观看视频在线| 精品酒店卫生间| 欧美激情极品国产一区二区三区 | 国产白丝娇喘喷水9色精品| 亚洲欧美成人精品一区二区| 免费大片黄手机在线观看| 久久久久久人人人人人| 国产黄色视频一区二区在线观看| 老司机影院成人| 黄色视频在线播放观看不卡| 国内精品宾馆在线| 亚洲高清免费不卡视频| 亚洲av电影在线观看一区二区三区| 午夜久久久在线观看| 又大又黄又爽视频免费| 中国三级夫妇交换| xxxhd国产人妻xxx| 精品一区在线观看国产| 亚洲国产精品专区欧美| 草草在线视频免费看| 成人亚洲精品一区在线观看| 欧美老熟妇乱子伦牲交| 少妇被粗大的猛进出69影院 | 亚洲综合精品二区| av电影中文网址| 成人18禁高潮啪啪吃奶动态图| 大片电影免费在线观看免费| 少妇的逼好多水| 精品一区在线观看国产| 精品久久蜜臀av无| 22中文网久久字幕| 全区人妻精品视频| 91精品三级在线观看| 欧美老熟妇乱子伦牲交| 午夜影院在线不卡| 亚洲精品456在线播放app| 亚洲五月色婷婷综合| 曰老女人黄片| 我要看黄色一级片免费的| 有码 亚洲区| 亚洲美女视频黄频| www.av在线官网国产| 男女午夜视频在线观看 | av播播在线观看一区| 日韩av不卡免费在线播放| av免费观看日本| 中文字幕最新亚洲高清| 久久久国产一区二区| 免费av中文字幕在线| 国产精品一区二区在线不卡| 91久久精品国产一区二区三区| 久久人人爽人人爽人人片va| 少妇的逼好多水| 久久人人爽av亚洲精品天堂| 91精品国产国语对白视频| 亚洲,一卡二卡三卡| 黄色毛片三级朝国网站| 一级毛片我不卡| 在现免费观看毛片| 午夜激情av网站| 女人被躁到高潮嗷嗷叫费观| 午夜影院在线不卡| 极品少妇高潮喷水抽搐| 亚洲精品一区蜜桃| 老女人水多毛片| 伦理电影大哥的女人| 人成视频在线观看免费观看| 永久免费av网站大全| 免费高清在线观看日韩| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女欧美一区二区| 大话2 男鬼变身卡| 亚洲av中文av极速乱| 观看av在线不卡| 国产精品女同一区二区软件| 国产精品99久久99久久久不卡 | av.在线天堂| 又黄又粗又硬又大视频| 91午夜精品亚洲一区二区三区| 成人午夜精彩视频在线观看| 免费少妇av软件| 精品少妇黑人巨大在线播放| 成人毛片a级毛片在线播放| 久久久久精品久久久久真实原创| 国产精品成人在线| 日韩中字成人| 欧美成人午夜精品| 2021少妇久久久久久久久久久| 91国产中文字幕| 大片免费播放器 马上看| 精品久久蜜臀av无| 在线观看www视频免费| 欧美国产精品一级二级三级| 午夜av观看不卡| 国产xxxxx性猛交| 久久久欧美国产精品| 国产高清国产精品国产三级| 久久久久视频综合| 亚洲精品国产色婷婷电影| 免费不卡的大黄色大毛片视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲精品国产av蜜桃| 18禁在线无遮挡免费观看视频| av线在线观看网站| 免费久久久久久久精品成人欧美视频 | 欧美日韩亚洲高清精品| 九九爱精品视频在线观看| 婷婷色av中文字幕| 在线亚洲精品国产二区图片欧美| 夜夜爽夜夜爽视频| h视频一区二区三区| 久久久精品免费免费高清| 日韩欧美一区视频在线观看| 一级爰片在线观看| 少妇精品久久久久久久| 精品99又大又爽又粗少妇毛片| 国产色爽女视频免费观看| 精品国产国语对白av| √禁漫天堂资源中文www| 菩萨蛮人人尽说江南好唐韦庄| 十分钟在线观看高清视频www| 男女边吃奶边做爰视频| 欧美性感艳星| 亚洲精品久久午夜乱码| 久久韩国三级中文字幕| 欧美 亚洲 国产 日韩一| 国产免费又黄又爽又色| 中文乱码字字幕精品一区二区三区| 男女啪啪激烈高潮av片| 国产一区二区激情短视频 | 国产欧美另类精品又又久久亚洲欧美| 精品午夜福利在线看| 青青草视频在线视频观看| 国产精品女同一区二区软件| av卡一久久| 女性被躁到高潮视频| 老熟女久久久| 人人妻人人爽人人添夜夜欢视频| 天堂中文最新版在线下载| 国产极品天堂在线| 成人手机av| 日本色播在线视频| 国产精品欧美亚洲77777| 久久综合国产亚洲精品| 伦理电影免费视频| 国产精品国产三级国产av玫瑰| 青春草视频在线免费观看| 黄色毛片三级朝国网站| 成人无遮挡网站| 免费av中文字幕在线| 黄片无遮挡物在线观看| 这个男人来自地球电影免费观看 | 日本av手机在线免费观看| av一本久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕最新亚洲高清| 最近手机中文字幕大全| 亚洲av综合色区一区| 日本欧美视频一区| 欧美激情极品国产一区二区三区 | 亚洲精品aⅴ在线观看| 观看av在线不卡| √禁漫天堂资源中文www| 美女内射精品一级片tv| 少妇人妻精品综合一区二区| 国产亚洲av片在线观看秒播厂| 午夜视频国产福利| 亚洲经典国产精华液单| 观看av在线不卡| 这个男人来自地球电影免费观看 | 亚洲精品一区蜜桃| 亚洲人与动物交配视频| 午夜老司机福利剧场| 中文字幕av电影在线播放| 国产精品久久久久成人av| 久久久久久人妻| 国产精品久久久久久久久免| 国产深夜福利视频在线观看| 午夜福利乱码中文字幕| 高清视频免费观看一区二区| 成人毛片60女人毛片免费| 欧美bdsm另类| 草草在线视频免费看| 欧美日韩视频高清一区二区三区二| www日本在线高清视频| 亚洲成人一二三区av| 国产精品麻豆人妻色哟哟久久| 熟女av电影| 亚洲第一区二区三区不卡| 久久精品久久久久久噜噜老黄| av天堂久久9| 午夜91福利影院| 国产精品久久久久久久久免| 在线观看免费视频网站a站| 欧美日韩综合久久久久久| 99精国产麻豆久久婷婷| 1024视频免费在线观看| 中文字幕最新亚洲高清| 91精品国产国语对白视频| 婷婷成人精品国产| 人妻系列 视频| 日本91视频免费播放| 黄色一级大片看看| 国产永久视频网站| 各种免费的搞黄视频| 亚洲国产最新在线播放| 一级黄片播放器| 精品亚洲成a人片在线观看| 看免费成人av毛片| av网站免费在线观看视频| 美女内射精品一级片tv| 久久久久久久久久久免费av| 人成视频在线观看免费观看| 菩萨蛮人人尽说江南好唐韦庄| 青青草视频在线视频观看| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 日本免费在线观看一区| 亚洲国产av影院在线观看| 天美传媒精品一区二区| 欧美成人午夜精品| 赤兔流量卡办理| av网站免费在线观看视频| 亚洲精品aⅴ在线观看| 69精品国产乱码久久久| 久久午夜综合久久蜜桃| 久久久久国产精品人妻一区二区| 少妇精品久久久久久久| videosex国产| 婷婷色综合大香蕉| 青青草视频在线视频观看| 午夜精品国产一区二区电影| 高清视频免费观看一区二区| 2022亚洲国产成人精品| 在线观看国产h片| 秋霞在线观看毛片| 18禁国产床啪视频网站| 免费人妻精品一区二区三区视频| 伦理电影免费视频| 美女国产高潮福利片在线看| 少妇的逼水好多| 国产极品天堂在线| av片东京热男人的天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99精品国语久久久| av免费在线看不卡| 精品少妇内射三级| 三上悠亚av全集在线观看| 免费大片黄手机在线观看| 最新中文字幕久久久久| 91精品国产国语对白视频| 久热久热在线精品观看| 在线精品无人区一区二区三| 国产极品天堂在线| 亚洲内射少妇av| 国产精品一区www在线观看| 亚洲丝袜综合中文字幕| 男的添女的下面高潮视频| 丰满乱子伦码专区| 国产精品久久久久久精品电影小说| 欧美成人午夜免费资源| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 成人漫画全彩无遮挡| 热re99久久精品国产66热6| 不卡视频在线观看欧美| 国产欧美日韩综合在线一区二区| 综合色丁香网| 欧美日韩亚洲高清精品| 久久精品人人爽人人爽视色| 亚洲国产av影院在线观看| 亚洲国产最新在线播放| 精品人妻在线不人妻| 亚洲av男天堂| 在线 av 中文字幕| 久久婷婷青草| 久久免费观看电影| 精品第一国产精品| 三上悠亚av全集在线观看| 免费观看av网站的网址| 久久青草综合色| 亚洲人与动物交配视频| 成年动漫av网址| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 在线观看三级黄色| 九色亚洲精品在线播放| 国产又色又爽无遮挡免| 两性夫妻黄色片 | 国产精品秋霞免费鲁丝片| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂| 亚洲一码二码三码区别大吗| 国产精品三级大全| 新久久久久国产一级毛片| 精品熟女少妇av免费看| 亚洲精品,欧美精品| 欧美bdsm另类| 久久午夜福利片| 乱码一卡2卡4卡精品| 高清黄色对白视频在线免费看| 欧美国产精品一级二级三级| 少妇 在线观看| 亚洲,欧美,日韩| 最新中文字幕久久久久| 亚洲欧美清纯卡通| 日韩视频在线欧美| 精品人妻熟女毛片av久久网站| 国产国语露脸激情在线看| av电影中文网址| 高清在线视频一区二区三区| 日本免费在线观看一区| 色哟哟·www| 51国产日韩欧美| 免费看不卡的av| 国产熟女午夜一区二区三区| 国产免费一区二区三区四区乱码| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 搡老乐熟女国产| 亚洲伊人色综图| 寂寞人妻少妇视频99o| 国产亚洲午夜精品一区二区久久| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 精品国产一区二区三区四区第35| 国产精品久久久久久久电影| 国产亚洲欧美精品永久| 少妇熟女欧美另类| 五月开心婷婷网| av福利片在线| 国产亚洲精品久久久com| 人妻 亚洲 视频| 国产精品久久久久久久电影| 国产精品欧美亚洲77777| 18禁动态无遮挡网站| 狠狠婷婷综合久久久久久88av| 日本av免费视频播放| xxxhd国产人妻xxx| 精品一区二区三卡| 国产精品一国产av| 一级毛片我不卡| h视频一区二区三区| 中文天堂在线官网| 亚洲色图综合在线观看| 亚洲欧美色中文字幕在线| 亚洲av国产av综合av卡| 国产激情久久老熟女| 飞空精品影院首页| 熟女电影av网| 欧美另类一区| 亚洲五月色婷婷综合| 成年av动漫网址| 中文字幕人妻丝袜制服| 久久人人爽av亚洲精品天堂| 国产亚洲精品第一综合不卡 | 精品熟女少妇av免费看| 五月玫瑰六月丁香| 在线观看www视频免费| 老司机影院毛片| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品|