• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film*

    2021-05-24 02:23:36YuSongZhi支鈺崧WeiYuJiang江為宇ZengLiu劉增YuanYuanLiu劉媛媛XuLongChu褚旭龍JiaHangLiu劉佳航ShanLi李山ZuYongYan晏祖勇YueHuiWang王月暉PeiGangLi李培剛ZhenPingWu吳真平andWeiHuaTang唐為華
    Chinese Physics B 2021年5期
    關鍵詞:劉媛媛李山

    Yu-Song Zhi(支鈺崧), Wei-Yu Jiang(江為宇), Zeng Liu(劉增),5, Yuan-Yuan Liu(劉媛媛),Xu-Long Chu(褚旭龍),4, Jia-Hang Liu(劉佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇),Yue-Hui Wang(王月暉), Pei-Gang Li(李培剛),?, Zhen-Ping Wu(吳真平), and Wei-Hua Tang(唐為華),5,?

    1Laboratory of Information Functional Materials and Devices,School of Science&State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,Beijing 100876,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3The Engineering Research Center for Semiconductor Integrated Technology,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    4China Aerospace System Simulation Technology Co.,Ltd. (Beijing),Beijing 100195,China

    5College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: Si-doped β-Ga2O3,metal-organic chemical vapor deposition(MOCVD),solar-blind,high responsivity

    1. Introduction

    Since ultraviolet (UV) radiation was discovered by Johann Ritter in 1801, it has received extensive research for its influence on the survival and development of humankind.[1,2]According to the International Commission on Illumination,the ultraviolet spectrum could be divided into three bands:UVA, UVB, and UVC.[3]Due to the strong absorption of the protective ozone layer, the UVC region is also called as the solar-blind region, which means the noise signal of the UVC radiation in natural background is very weak and the radiation signal could be very accurately detected.[4]Thus, solar-blind photodetectors (PDs) have plenty of applications in flame sensing, information communication, chemical/biological analysis, etc.[5,6]Among various solar-blind photodetectors, Ga2O3is deemed as a promising candidate for UVC detection because of its proper bandgap(~4.9 eV),good reliability,and availability.[7,8]Up to now,various kinds of Ga2O3based PDs are extensively investigated.[9]Metal–semiconductor–metal(MSM)structured devices are fabricated on β, α, and ε phase Ga2O3films to study their photodetective abilities.[10–14]Schottky junction, heterojunction,and van der walls junction between various materials and Ga2O3films are also exploited to explore the relevant photoconductive and photovoltaic properties.[15–21]Metal–oxide–semiconductor field effect transistor structured Ga2O3PDs are also fabricated to investigate their behaviors as solar-blind phototransistors.[22,23]In addition, as the defects and doped elements affect the carrier transport properties significantly,doping could also be an effective way to enhance the performance of PDs.[24–26]For instance,Zhao et al. investigated the photoelectric characteristics of Sn-doped Ga2O3.[27]Kokubun et al.[28]and Tian et al.[29]studied the behaviors of In-doped Ga2O3based photodetector. Grundmann et al. demonstrated UV PDs based on a Si-doped(InxGa1?x)2O3thin film by PLD methods.[30]Cui et al.[31]and Wuu et al.[32]investigated the photodetector characteristics of Al-doped Ga2O3. Zhao et al.[33]and Alema et al.[34]observed the improved photoelectric performance in Zn-doped β-Ga2O3films. Guo et al. investigated the Mg-doped p-type β-Ga2O3thin film for solarblind ultraviolet photodetector.[35]Moreover,Fang et al. fabricated high quality p-type β-Ga2O3films by doping N elements and paved a novel way to fabricate super sensitive oxide semiconductor photodetectors.[36]However, although doping Si elements is as an effective way to enhance the conductivity of Ga2O3,reports about Si-doped Ga2O3PDs are limited.Currently, Kim et al.[37]and Pearton et al.[38]have studied the photoresponse properties of the Si-implanted Ga2O3. The metalorganic chemical vapor deposition (MOCVD) is an effective way to deposit Si-doped Ga2O3films.[39]More investigation about the Si-doped Ga2O3PDs is still required.

    Thus,in this paper,Si-doped Ga2O3films were deposited on sapphire substrate by MOCVD methods. An MSM structured PDs device was fabricated and the electric behaviors of the device were measured under dark and 254 nm illumination. With I–V and I–t measurements,the results indicate that Si-doped Ga2O3films have great potential in solar-blind photodetector fields.

    2. Experimental details

    Si-doped Ga2O3films were deposited on (0 0 0 1) sapphire substrate by MOCVD methods and obtained from Beijing Gallium Family Technology Co., Ltd. Triethylgallium(TEGa), tetraethyl orthosilicate (TEOS), and high purity O2were used as metalorganic precursors for Ga elements, Si elements,and oxidation,respectively,while high purity Ar was used as the carrier gas. During the deposition, the flow rates of the TEGa and TEOS were fixed at 490 sccm and 15 sccm,respectively. The pressure of the chamber was kept at 25 Torr and the deposition temperature was set at 590°C.

    To characterize the crystal structure of the deposited films, x-ray diffraction (XRD) was executed by a Bruker D8 Advance x-ray diffractometer with Cu Kα (λ ~1.5405 ?A)radiation. Furthermore, the element contents of the deposited films were analyzed by secondary ion mass spectrometry(SIMS,TOF-SIMS,IONTOF 5)and x-ray photoelectron spectroscopy(XPS)measurements(ESCALAB 250Xi, ThermoFisher Scientific). Moreover, ultraviolet visible (UV-vis)absorption spectrum was utilized to investigate the absorbance and calculate the optical bandgap of the Si-doped Ga2O3films.Spectroscopic ellipsometry (SE) (SE-VE, Eoptics) was performed to estimate the thickness of the deposited films, and the ellipsometry measurement was performed with a wavelength ranging from 400 nm to 800 nm at an incidence angle of 65°. To further study the photoelectric behavior of the deposited films,an interdigital Ti/Au electrode was grown on the Si-doped Ga2O3films through standard photolithography,magnetron sputtering deposition, and lift-off process successively. As shown in Fig. 4(a), the interdigital electrode was composed of 54 pairs of electrode fingers, and the length,width, and space gap of the electrode fingers were designed as 3300 μm, 10 μm, and 20 μm, respectively. The Ti/Au electrode was grown by magnetron sputtering and the thickness of Ti/Au was around 20 nm/70 nm. After the device was fabricated,Keithley 4200 semiconductor characterization system was employed to investigate the electric and photoelectric properties, while a UV lamp was placed over the device to provide 254 nm illumination.

    3. Results and discussion

    As shown in Fig. 1(a), Si-doped Ga2O3films grown on(0001) Al2O3substrates have a monoclinic β phase crystal structure as determined by XRD θ–2θ scan (JCPDS card No. 43-1012). In addition to the diffraction peak of the sapphire substrate, three main peaks located at around 18.90°,38.32°, 59.0°are observed and can be assigned as (ˉ2 0 1),(ˉ4 0 2), (ˉ6 0 3)planes of β-Ga2O3.[40]Moreover, peaks with relatively low intensity are found at around 44.59°and 60.4°,which can be ascribed to the(ˉ6 0 1)and(ˉ8 0 1)planes of β-Ga2O3,indicating that the films grown by MOCVD under this deposition condition mainly are poly-crystalline with the doping of Si elements.Figure 1(b)displays the UV-vis absorbance of the Si-doped Ga2O3films.From the profiles,it can be found that the sample shows a significant absorption edge at around 268 nm while exhibiting no obvious absorbance in UV-B,UVA, and visible regions. Hence, (αhν)2is plotted against the photon energy(hν)in the inset and the optical band gap is extracted to be 4.75 eV by fitting the linear region. The results imply that the doped Si element does not significantly change the absorption edge and the optical band gap of the Ga2O3films. Moreover,XPS and SIMS measurements were utilized to further identify the chemical components of the films. Before analyzing the XPS results, the charge shift spectrum is calibrated through the core level energy of C 1s from the surface absorbate.

    Fig. 1. (a) XRD scan and (b) UV-vis absorbance spectrum of the deposited Si-doped Ga2O3 films. The corresponding plot of(αhν)2 versus hν for the sample is shown in the inset.

    To find of the Si signal in XPS spectra, a fine scan was carried out in the range of 90–173 eV with a measuring step of 0.05 eV,and the results are displayed in Fig.2(a).As shown in this figure, the black line-symbol plot represents the original measured data,while the red line and the green line represent the fitting curve and the background, respectively. From the fitting curve,it can be found that the XPS peaks at ~105.7 eV and ~109.3 eV could be divided into three components: Ga 3p 1/2(109.2 eV),Ga 3p 3/2(105.7 eV),and Si 2p(102.7 eV).The peak at around 161.1 eV is deduced to be Ga 3s(161 eV).In addition, a small peak at around 153.7 eV is derived from Si 2s (153.7 eV) from the XPS fitting results. Furthermore,compositions as a function of the film thickness are presented in the SIMS depth profile in Fig. 2(b), intensities of both Si and Ga ion counts remain almost constant, indicating that Si is actually uniformly distributed in the Si-doped Ga2O3film.Combined with the XRD results,it can be concluded that the deposited films are mainly composed of Ga2O3components and Si dopant instead of other element forms.

    Fig.2. (a)XPS spectra fine scan of the Si-doped Ga2O3 films ranging from 90 eV to 173 eV.(b)SIMS depth profiles of Si and Ga elements in the Si-doped Ga2O3 thin films.

    Figure 3 presents the spectroscopic ellipsometry data for the grown films. In SE measurement,as the light reflects from the sample, its polarization changes, which can be described by an amplitude ratio (Ψ) and a phase difference (?). They are investigated by the equipment,and the film thickness and refractive index(n)could be deduced through a model fitting of the measured data.[41]As shown in Fig. 3(a),Ψ (red line)and ?(blue line)are measured for a light wavelength ranging from 400 nm to 800 nm. Due to the excellent transparency of the Ga2O3films in the measured wavelength range, Cauchy relation is used as the ellipsometric analysis model to simulate the SE results[42]

    where λ is the wavelength,and A,B,and C are the correlated coefficients. As seen in Fig. 3(a), a nonlinear curve simulation (black short dash curve) is performed perfectly when A,B, and C are equal to 1.916, 0.007, and 0.0005, respectively.Moreover,the variations of the refractive index(n)and extinction coefficient (k) with wavelength are obtained during the SE analysis. As shown in Fig.3(b),the extinction coefficients of the Si-doped Ga2O3films are set to zero and the refractive index n decreases slightly from 1.98 to 1.92, which are in agreement with the reported results.[41,43]With the SE measurement and analysis,the thickness of the deposited Si-doped Ga2O3films is estimated to be 532.4 nm. The thickness of the films suggests that the device could efficiently absorb the illumination in the UVC range.[44]

    Fig.3. (a)SE signals Ψ (red line)and ?(blue line)for β-Ga2O3 films at an incidence angle of 65.48°. The black short dash curve represents the simulated data produced by Cauchy model. (b)Refractive index n and extinction coefficient k of the β-Ga2O3 thin films.

    As for the photoelectric properties, the carrier transport behavior of the device is measured by 4200 sourcemeter instrument under various illumination environments,and the results are plotted in Fig. 4. Figure 4(b) displays the current–voltage correlations under dark, 365 nm, and 254 nm radiation. It can be seen in the inset of Fig.4(b)that the dark current (Idark) of the device increases linearly with the voltage,suggesting good Ohmic contact between Ti/Au electrode and Si-doped Ga2O3films. The resistivity of the device is calculated to be 0.55 M?, which is smaller than the majority of undoped Ga2O3films(~T?). Hence it can be concluded that the dopant Si elements have efficiently enhanced the electric conductivity of the Ga2O3films. Moreover,the device shows slight photo-response under 365 nm illumination with a phototo-dark current ratio of ~6. When the films are exposed under 254 nm radiation, the photo-current approaches 16 mA under 20 V bias, which is two orders of magnitude larger than that measured in dark. Figure 4(c)illustrates the detailed photo-electrical characteristics of the device under different illumination intensities. As the light intensity increases from 200 μW/cm2to 2000 μW/cm2, the photo-current Iphotoincreases gradually from 11.2 mA to 21.7 mA at the bias of 20 V.In order to quantitatively gauge the optoelectrical properties of the photodetector,the responsivity of the device is calculated,and the results are drawn in Fig.4(d). The responsivity,which is a basic parameter to evaluate how well the photo-generated electron–hole pairs are generated, can be figured out by the following equation:[15]

    where P is the light intensity and S is the effective irradiated section of the device. According to the schematic diagram of the device, the effective area is calculated to be 3.57×10?2cm2. As seen in Fig. 4(d), when the device is exposed under 254 nm UV illumination with a light intensity of 200μW/cm2,the responsivity ranges from 5.6 A/W to 788.9 A/W with the increase of the voltage. As the responsivity results are compared under the same applied voltage, it is found that the responsivity declines slightly with the increase of the light intensity. This phenomenon could be ascribed to the larger phonon–electron scattering and higher electron–hole recombination possibility induced by the self-heating behavior at the higher light intensity and the larger concentration of non-equilibrium carriers.[20,45]From these phenomena,it can be concluded that the Si-doped Ga2O3films exhibit excellent photo-response properties in the solar-blind region.

    To assess the transient response time of the device, the time-dependent photo-response of the device is investigated with on/off switching of 254 nm light under various conditions,and the results are present in Fig.5.

    Figure 5(a)illustrates the current of the device under varied light intensities at the forward voltage of 1 V. When the 200 μW/cm2254 nm radiation is turned on, the current goes up instantaneously to 0.39 mA. After the light is turned off,the current descends immediately. With the increase of the 254 nm light intensity, the photo-current of the detector rises monotonically from 0.39 mA to 0.94 mA.Moreover,when the films are exposed to 254 nm illumination with the light intensity of 1000 μW/cm2, the time-dependent photo-response diagram with various applied voltage is depicted in Fig.5(b).

    Fig.4. (a)Schematic diagram of the MSM structured Si-doped Ga2O3 photodetectors. (b)Semi-logarithmic I–V characteristics of the device under dark,365 nm,and 254 nm illumination,the inset shows the corresponding I–V curve under the dark condition in linear scale. (c)Linear scale I–V behaviors of the device under 254 nm illumination with the intensity increased from 200 μW/cm2 to 2000 μW/cm2. (d) Detailed responsivity of the photodetector to 254 nm radiation under various light intensities.

    Fig.5. The time-dependent photo-response of the detector(a)at 1 V bias under 254 nm illuminations with various light intensities,(b)under 1 mW/cm2 254 nm UV light illumination at various biases. (c) The original transient response data and nonlinear fitting about the rise and decay time of the device. (d) Response time of the device under various light intensities at a bias of 1 V. (e) Response time of the device under various voltages under 1000μW/cm2 254 nm illumination. (f)Schematic diagram illustrating the photoelectric mechanism in Si-doped Ga2O3 films.

    With the increase of the applied voltage, the photo-current of the Si-doped Ga2O3films increases from 1.5 mA to 17.9 mA correspondingly. Stable photo-response characteristic in Figs.5(a)and 5(b)shows that the device exposed under various light intensities can be switched between on and off states with good reproducibility. Furthermore, the response time could be deduced by the fitting rise and decay edges of the time-dependent photo-response curve with a biexponential relaxation equation[10]

    where I represents the stable photo-current, A and B are constants, τ1and τ2are two relaxation time constants. The rise time and decay time of the photodetector are denoted by τrand τd, respectively. To quantitatively extrapolate the response time in rise edge and decay edge, one cycle of the time-dependent photo-response of the device at 1 V bias and 1000 μW/cm2circumstance is extracted, and the fitting results are shown in Fig.5(c). It is clear that the rise time(τr1)and decay time (τd1) of the Si-doped Ga2O3films are 0.63 s and 0.44 s,respectively,indicating the decent response speed in UV detection. In addition, the response time of the device under various voltage and light intensity is figured out,and the results are plotted in Figs. 5(d) and 5(e). It can be found that the response time (τd1and τr1) decreases slowly with the increase of the light intensity,which may be attributed to the large carrier transport velocity.[46]Furthermore,the response time(τd1and τr1)increases gradually with the increase of the applied voltage, which could be ascribed to the persistent photoconductivity effect of the Si-doped Ga2O3films under high voltage.[47]To further elucidate the excellent photoresponse performance of the device, a schematic diagram is illustrated in Fig. 5(f). As Si elements are doped to Ga2O3films,Si prefers substituting to the tetrahedral coordination of the Ga1 site, leading to systematical increase of free electron density.[48]Moreover,Si dopants also behave as efficient shallow donor levels (less than 50 meV) in the energy band diagram. In Fig. 5(d), the upward solid arrows represent the generation of non-equilibrium carriers, while the downward dashed arrows denote the pathway for the carriers’ recombination. As the 254 nm UV illuminate on the Si-doped Ga2O3films,electron–hole pairs are generated and drifted to the electrode by the outside voltage. During this process,some photogenerated electrons jump from the valence band to the conduction band(process(1)),some electrons jump to the donor level (process (2)) and then transit to the conduction band(process (2)) because of the relatively low activation energy(≤50 meV). Hence more electron–hole pairs could be more easily generated. Meanwhile, doping Si elements may effectively reduce the contact resistance,and more photo-generated carriers could be transferred to the outside electrode before recombination again. Thus,the device exhibits a larger photocurrent and responsivity. Ga2O3film-based PDs are summarized in Table 1.[27,30,31,34,35,37,49]Compared with pure Ga2O3and Ga2O3doped with various impurities, Si-doped Ga2O3films in this work give decent response time and large photocurrent(up to mA order of magnitude), leading to large responsivity (up to 788 A/W). It is noted that the performance of the Si-doped Ga2O3based photodetector may also be enhanced by optimizing the fabrication parameters of the films or the structure of the photodetector.

    Table 1. A brief summary of film-based Ga2O3 photodetectors.

    4. Conclusion

    The Si-doped Ga2O3films based MSM structured solarblind photodetector is demonstrated. The refractive index of the grown films is extracted to be 1.98–1.92 by spectroscopic ellipsometry measurement. The device gives large photocurrent ranging from 11.2 mA to 21.7 mA at 20 V bias and high photo-responsivity of 788 A·W?1under the illumination of 200 μW·cm?2intensity. Moreover, the rise and decay relaxation times are found to be 0.63 s and 0.44 s,indicating a decent response to UV illumination.All these results suggest the promising future in solar-blind photodetectors.

    猜你喜歡
    劉媛媛李山
    Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
    驢殤
    驢殤
    短篇小說(2021年2期)2021-04-29 11:22:36
    草叢音樂會
    二年級上冊第四單元檢測題
    我不是乞丐
    熊媽媽有辦法
    我愛中國
    冰摧霜折傲骨在 漫天風雪寫梅花——評賞李山所作風雪紅梅水墨畫
    華人時刊(2016年3期)2016-04-05 05:56:33
    疑惑
    文藝論壇(2015年1期)2015-05-25 08:03:19
    精品国产亚洲在线| 美女视频免费永久观看网站| 丁香六月天网| 考比视频在线观看| 黄片小视频在线播放| 亚洲性夜色夜夜综合| 精品国产乱码久久久久久男人| 老汉色av国产亚洲站长工具| 桃红色精品国产亚洲av| 欧美日韩成人在线一区二区| 精品久久蜜臀av无| 免费在线观看视频国产中文字幕亚洲| 久久精品国产a三级三级三级| 高清视频免费观看一区二区| 1024视频免费在线观看| 正在播放国产对白刺激| 亚洲五月色婷婷综合| 在线亚洲精品国产二区图片欧美| 国产一区二区三区综合在线观看| 免费人妻精品一区二区三区视频| 丰满迷人的少妇在线观看| 成年版毛片免费区| 久热这里只有精品99| 90打野战视频偷拍视频| 亚洲天堂av无毛| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久成人av| 亚洲精品中文字幕在线视频| 亚洲熟妇熟女久久| 18在线观看网站| 国产精品成人在线| 精品国产乱子伦一区二区三区| 国产精品一区二区精品视频观看| 国产高清激情床上av| 国产亚洲精品久久久久5区| 两性夫妻黄色片| 夫妻午夜视频| 女同久久另类99精品国产91| 日韩欧美三级三区| 最新的欧美精品一区二区| 国产男女内射视频| 一二三四在线观看免费中文在| 久久国产精品男人的天堂亚洲| 免费高清在线观看日韩| 99热网站在线观看| av不卡在线播放| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 精品欧美一区二区三区在线| 国产成+人综合+亚洲专区| 亚洲伊人色综图| 久久久国产精品麻豆| 午夜精品久久久久久毛片777| 亚洲情色 制服丝袜| 黄色成人免费大全| 欧美激情 高清一区二区三区| 日韩人妻精品一区2区三区| 91麻豆av在线| 757午夜福利合集在线观看| 免费黄频网站在线观看国产| 叶爱在线成人免费视频播放| 亚洲国产欧美在线一区| 国产精品国产高清国产av | 成人特级黄色片久久久久久久 | e午夜精品久久久久久久| 久久国产亚洲av麻豆专区| 国产亚洲一区二区精品| 在线天堂中文资源库| 欧美日韩视频精品一区| 国产99久久九九免费精品| 妹子高潮喷水视频| av有码第一页| 免费不卡黄色视频| 99国产精品一区二区三区| 午夜免费成人在线视频| 狠狠婷婷综合久久久久久88av| e午夜精品久久久久久久| 久久精品国产综合久久久| 18禁观看日本| 丝袜美腿诱惑在线| av网站在线播放免费| 一边摸一边抽搐一进一出视频| 天天影视国产精品| 最近最新免费中文字幕在线| 最近最新中文字幕大全电影3 | 欧美成人午夜精品| 99re6热这里在线精品视频| 嫁个100分男人电影在线观看| 搡老乐熟女国产| 少妇 在线观看| av视频免费观看在线观看| a级毛片在线看网站| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 99热国产这里只有精品6| xxxhd国产人妻xxx| 97在线人人人人妻| 日韩欧美免费精品| √禁漫天堂资源中文www| 老司机在亚洲福利影院| 亚洲国产毛片av蜜桃av| 日韩人妻精品一区2区三区| 国产高清videossex| 黄色视频在线播放观看不卡| 女性被躁到高潮视频| 少妇粗大呻吟视频| 精品人妻熟女毛片av久久网站| 麻豆av在线久日| 丰满迷人的少妇在线观看| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| 首页视频小说图片口味搜索| 一边摸一边做爽爽视频免费| 亚洲av美国av| 人人妻人人澡人人看| 精品国产国语对白av| tube8黄色片| 久久精品国产亚洲av高清一级| www.精华液| 亚洲精品成人av观看孕妇| 蜜桃在线观看..| 亚洲色图 男人天堂 中文字幕| 国产在线免费精品| 色婷婷av一区二区三区视频| 黄色视频在线播放观看不卡| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区 | 天天添夜夜摸| 91麻豆av在线| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| av一本久久久久| 亚洲精品成人av观看孕妇| 国产精品二区激情视频| 成人国产av品久久久| 成在线人永久免费视频| 亚洲avbb在线观看| 久久久久久人人人人人| 亚洲av第一区精品v没综合| 国产精品免费大片| 午夜视频精品福利| 国产一区二区三区在线臀色熟女 | 麻豆国产av国片精品| 亚洲中文日韩欧美视频| av在线播放免费不卡| 又大又爽又粗| 99九九在线精品视频| 在线观看一区二区三区激情| 亚洲一区二区三区欧美精品| 午夜日韩欧美国产| 日韩欧美一区二区三区在线观看 | 三级毛片av免费| 美国免费a级毛片| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 日本av手机在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 免费观看av网站的网址| 制服人妻中文乱码| av线在线观看网站| 久久久久国内视频| 亚洲欧美一区二区三区久久| 久久天堂一区二区三区四区| 操美女的视频在线观看| 又紧又爽又黄一区二区| www.999成人在线观看| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网| 亚洲中文av在线| 国产精品亚洲av一区麻豆| 国产精品99久久99久久久不卡| 亚洲成av片中文字幕在线观看| 一进一出抽搐动态| 五月天丁香电影| 国产一卡二卡三卡精品| 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区精品视频观看| 午夜福利在线免费观看网站| 美女扒开内裤让男人捅视频| 乱人伦中国视频| 国产成人精品无人区| 欧美久久黑人一区二区| 中文字幕制服av| 精品免费久久久久久久清纯 | 亚洲成人免费电影在线观看| 国产有黄有色有爽视频| 成人影院久久| 国产一区有黄有色的免费视频| 中国美女看黄片| 国产1区2区3区精品| 在线观看一区二区三区激情| 美女主播在线视频| 国产精品98久久久久久宅男小说| 午夜福利免费观看在线| 夫妻午夜视频| 亚洲成人免费av在线播放| 国产精品久久久久久人妻精品电影 | 亚洲综合色网址| 另类精品久久| 久久久久久久精品吃奶| 真人做人爱边吃奶动态| 久久精品aⅴ一区二区三区四区| tocl精华| 老司机在亚洲福利影院| 99国产综合亚洲精品| 免费av中文字幕在线| 狠狠精品人妻久久久久久综合| 国产亚洲精品久久久久5区| 欧美大码av| 日韩制服丝袜自拍偷拍| 国产精品偷伦视频观看了| 亚洲av片天天在线观看| 国产精品免费一区二区三区在线 | 精品久久久久久电影网| 国产精品免费一区二区三区在线 | 免费人妻精品一区二区三区视频| 在线十欧美十亚洲十日本专区| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 午夜视频精品福利| 欧美日韩成人在线一区二区| 曰老女人黄片| 欧美日韩亚洲综合一区二区三区_| 国产高清videossex| 99国产极品粉嫩在线观看| 亚洲精品自拍成人| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 18在线观看网站| av电影中文网址| 欧美老熟妇乱子伦牲交| 精品一区二区三区av网在线观看 | 精品国产乱码久久久久久小说| 手机成人av网站| 国产精品九九99| 国产精品久久电影中文字幕 | 国产淫语在线视频| aaaaa片日本免费| 日韩一区二区三区影片| 精品福利永久在线观看| 欧美人与性动交α欧美软件| 午夜福利一区二区在线看| 日本wwww免费看| 亚洲熟女毛片儿| 免费观看av网站的网址| 9191精品国产免费久久| 国产在线免费精品| 国产成人av激情在线播放| 国产在线观看jvid| av片东京热男人的天堂| 蜜桃国产av成人99| 高清毛片免费观看视频网站 | 一本色道久久久久久精品综合| 999久久久精品免费观看国产| 在线看a的网站| 黄色毛片三级朝国网站| 日韩欧美三级三区| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 美女主播在线视频| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 亚洲 欧美一区二区三区| 精品人妻在线不人妻| 99热网站在线观看| 国产成人欧美| av超薄肉色丝袜交足视频| 9191精品国产免费久久| 女性生殖器流出的白浆| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 亚洲一码二码三码区别大吗| 丰满少妇做爰视频| 久久久国产精品麻豆| 久久热在线av| 欧美午夜高清在线| 亚洲欧洲日产国产| 国产不卡一卡二| 精品一区二区三区四区五区乱码| 久久久久久人人人人人| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 一级,二级,三级黄色视频| 亚洲自偷自拍图片 自拍| 日本黄色日本黄色录像| 国产成人av激情在线播放| 80岁老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 涩涩av久久男人的天堂| 国产精品美女特级片免费视频播放器 | 午夜福利在线免费观看网站| 91精品国产国语对白视频| 国产精品免费一区二区三区在线 | 我的亚洲天堂| 黄片小视频在线播放| 国产男女内射视频| 男女无遮挡免费网站观看| 操美女的视频在线观看| 精品人妻1区二区| 欧美人与性动交α欧美精品济南到| 少妇 在线观看| 在线看a的网站| 亚洲欧美一区二区三区久久| 亚洲人成77777在线视频| 黄片播放在线免费| 欧美午夜高清在线| 亚洲精品国产色婷婷电影| 亚洲美女黄片视频| 国产成人精品无人区| 亚洲精品久久午夜乱码| 亚洲三区欧美一区| 一区二区三区国产精品乱码| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 最新美女视频免费是黄的| 丝袜喷水一区| tocl精华| 在线十欧美十亚洲十日本专区| 蜜桃在线观看..| 中文字幕人妻熟女乱码| av电影中文网址| 亚洲 欧美一区二区三区| 亚洲欧美色中文字幕在线| 一边摸一边抽搐一进一小说 | 99久久精品国产亚洲精品| 在线 av 中文字幕| 国产不卡av网站在线观看| 别揉我奶头~嗯~啊~动态视频| 热re99久久国产66热| 成年女人毛片免费观看观看9 | 免费人妻精品一区二区三区视频| 日日爽夜夜爽网站| 亚洲国产欧美日韩在线播放| kizo精华| 久久久精品国产亚洲av高清涩受| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院| 国产av又大| 咕卡用的链子| 日韩欧美一区二区三区在线观看 | 电影成人av| 窝窝影院91人妻| 国产一区有黄有色的免费视频| 欧美日韩成人在线一区二区| 黑人操中国人逼视频| 欧美黑人精品巨大| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 免费在线观看完整版高清| 久久这里只有精品19| 美女国产高潮福利片在线看| 亚洲九九香蕉| 日韩免费高清中文字幕av| 老司机影院毛片| 我的亚洲天堂| 欧美激情极品国产一区二区三区| 在线观看免费高清a一片| 在线天堂中文资源库| 午夜免费鲁丝| 亚洲精品国产精品久久久不卡| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 天堂8中文在线网| 欧美老熟妇乱子伦牲交| 搡老乐熟女国产| 欧美午夜高清在线| 人人澡人人妻人| 一本一本久久a久久精品综合妖精| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院| 成人18禁高潮啪啪吃奶动态图| 国产免费av片在线观看野外av| 免费av中文字幕在线| 久久精品国产亚洲av香蕉五月 | 亚洲午夜精品一区,二区,三区| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 精品久久久精品久久久| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品影院| 日韩人妻精品一区2区三区| av免费在线观看网站| 午夜福利在线观看吧| 亚洲专区国产一区二区| 成人手机av| 精品国产国语对白av| 俄罗斯特黄特色一大片| 免费日韩欧美在线观看| cao死你这个sao货| 国产精品免费视频内射| 青草久久国产| 建设人人有责人人尽责人人享有的| 亚洲五月婷婷丁香| 悠悠久久av| 午夜精品久久久久久毛片777| 中文字幕制服av| 国产成人一区二区三区免费视频网站| 久久久国产欧美日韩av| 免费久久久久久久精品成人欧美视频| 亚洲视频免费观看视频| 人人妻人人添人人爽欧美一区卜| 国产精品.久久久| 丝袜美足系列| 性色av乱码一区二区三区2| 欧美精品啪啪一区二区三区| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 最近最新免费中文字幕在线| 丰满饥渴人妻一区二区三| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 一本色道久久久久久精品综合| 国产真人三级小视频在线观看| 免费久久久久久久精品成人欧美视频| 18禁国产床啪视频网站| 亚洲精品av麻豆狂野| 视频区欧美日本亚洲| 91九色精品人成在线观看| 精品免费久久久久久久清纯 | 精品人妻在线不人妻| 搡老乐熟女国产| 99国产精品免费福利视频| 国精品久久久久久国模美| 久久精品人人爽人人爽视色| 夜夜骑夜夜射夜夜干| 亚洲国产精品一区二区三区在线| 又紧又爽又黄一区二区| 久9热在线精品视频| 日韩制服丝袜自拍偷拍| 久久久久国产一级毛片高清牌| 日韩精品免费视频一区二区三区| 制服人妻中文乱码| 国产精品九九99| 搡老熟女国产l中国老女人| 中文字幕精品免费在线观看视频| 国产有黄有色有爽视频| 成年版毛片免费区| 两性夫妻黄色片| 18禁观看日本| 日韩中文字幕视频在线看片| 久久久欧美国产精品| 91老司机精品| 国产精品一区二区在线观看99| 9191精品国产免费久久| 人成视频在线观看免费观看| 一级黄色大片毛片| 亚洲熟女精品中文字幕| 女人高潮潮喷娇喘18禁视频| www.精华液| 美女高潮喷水抽搐中文字幕| 一区二区三区国产精品乱码| 国产免费福利视频在线观看| 欧美成人午夜精品| 黄色片一级片一级黄色片| 在线观看人妻少妇| 高清av免费在线| 一进一出好大好爽视频| 一级毛片精品| 黄频高清免费视频| 亚洲五月色婷婷综合| 久9热在线精品视频| 免费看a级黄色片| 国产男女内射视频| 精品少妇黑人巨大在线播放| 丝袜美足系列| 欧美精品一区二区大全| 国产精品一区二区精品视频观看| 国产熟女午夜一区二区三区| 丝袜喷水一区| av天堂久久9| av有码第一页| 岛国在线观看网站| 在线观看免费日韩欧美大片| 国产在线一区二区三区精| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃在线观看..| 久久国产亚洲av麻豆专区| 黄频高清免费视频| 成人特级黄色片久久久久久久 | 精品国产亚洲在线| 老司机午夜十八禁免费视频| 国产精品香港三级国产av潘金莲| 黄色怎么调成土黄色| 国产精品自产拍在线观看55亚洲 | 久久精品国产亚洲av香蕉五月 | 悠悠久久av| 十分钟在线观看高清视频www| 80岁老熟妇乱子伦牲交| 丁香六月欧美| 亚洲av第一区精品v没综合| 麻豆乱淫一区二区| 国产一区二区在线观看av| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区av网在线观看 | xxxhd国产人妻xxx| 狠狠婷婷综合久久久久久88av| 精品少妇一区二区三区视频日本电影| 国产国语露脸激情在线看| 在线观看一区二区三区激情| 国产精品一区二区免费欧美| 久久人妻福利社区极品人妻图片| 又紧又爽又黄一区二区| 精品国产一区二区久久| 欧美黑人精品巨大| 国产1区2区3区精品| 亚洲一码二码三码区别大吗| 国产成人欧美| 精品午夜福利视频在线观看一区 | 国产亚洲午夜精品一区二区久久| 在线天堂中文资源库| 久久精品亚洲熟妇少妇任你| 国产精品成人在线| 午夜福利视频在线观看免费| 制服人妻中文乱码| 大陆偷拍与自拍| 在线观看66精品国产| 中文字幕人妻熟女乱码| 午夜福利欧美成人| 精品国内亚洲2022精品成人 | 青草久久国产| tube8黄色片| 国产精品一区二区在线不卡| 国产成人精品在线电影| 侵犯人妻中文字幕一二三四区| 一区二区av电影网| 国产免费av片在线观看野外av| 91精品国产国语对白视频| 人成视频在线观看免费观看| 三上悠亚av全集在线观看| 亚洲精品乱久久久久久| 中文字幕人妻丝袜一区二区| 久久精品亚洲精品国产色婷小说| 大香蕉久久成人网| 精品亚洲成a人片在线观看| 国产精品一区二区在线不卡| 久久中文字幕人妻熟女| 亚洲三区欧美一区| 成人国语在线视频| 中文字幕人妻丝袜一区二区| 在线十欧美十亚洲十日本专区| 亚洲天堂av无毛| 久久国产精品男人的天堂亚洲| 精品少妇久久久久久888优播| 免费女性裸体啪啪无遮挡网站| 超碰97精品在线观看| 成年女人毛片免费观看观看9 | 久久人妻福利社区极品人妻图片| 国产亚洲一区二区精品| 狂野欧美激情性xxxx| 91精品三级在线观看| 欧美国产精品va在线观看不卡| 欧美精品一区二区免费开放| 免费少妇av软件| 日日夜夜操网爽| 啪啪无遮挡十八禁网站| 悠悠久久av| www.精华液| 久久国产亚洲av麻豆专区| 久久亚洲真实| 99国产极品粉嫩在线观看| 最新美女视频免费是黄的| 国产亚洲精品久久久久5区| 999精品在线视频| 久久久国产一区二区| 亚洲av日韩精品久久久久久密| 亚洲欧美精品综合一区二区三区| 亚洲国产av新网站| 亚洲第一青青草原| 老司机深夜福利视频在线观看| 国产熟女午夜一区二区三区| 久久亚洲精品不卡| 热re99久久国产66热| 十八禁人妻一区二区| 国产精品麻豆人妻色哟哟久久| 精品国内亚洲2022精品成人 | 69精品国产乱码久久久| 国产高清激情床上av| 9191精品国产免费久久| 成人手机av| 国产淫语在线视频| 午夜日韩欧美国产| 桃红色精品国产亚洲av| 99国产极品粉嫩在线观看| 国产一区二区 视频在线| 狠狠狠狠99中文字幕| 18禁观看日本| 国产aⅴ精品一区二区三区波| 18禁美女被吸乳视频| 亚洲专区中文字幕在线| 国产精品一区二区在线不卡| 日本a在线网址| 亚洲全国av大片| 最新美女视频免费是黄的| 狠狠狠狠99中文字幕| www.自偷自拍.com| 黑人欧美特级aaaaaa片| 69av精品久久久久久 | 欧美日韩亚洲国产一区二区在线观看 | 热99久久久久精品小说推荐| 国产成+人综合+亚洲专区| 欧美日韩一级在线毛片| 国产精品国产av在线观看| 国产在视频线精品| 国产熟女午夜一区二区三区| 欧美变态另类bdsm刘玥| 超碰成人久久| 国产成人av教育| 人人妻人人爽人人添夜夜欢视频|