• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet*

    2021-05-24 02:27:38BoChen陳波XiangQianLi李向前LinXue薛林YanHan韓燕ZhiYang楊致andLongLongZhang張龍龍
    Chinese Physics B 2021年5期
    關鍵詞:陳波

    Bo Chen(陳波), Xiang-Qian Li(李向前), Lin Xue(薛林),Yan Han(韓燕), Zhi Yang(楊致), and Long-Long Zhang(張龍龍)

    College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    Keywords: first-principles calculations, α-graphyne like structures, valleytronic materials, wide band gap semiconductors

    1. Introduction

    Valleytronics, a new field beyond electronics and spintronics, are based on exploiting and manipulating the electron valley degree of freedom, which is the energy extrema in momentum space.[1,2]The most representative valleytronic materials are monolayers of semiconducting transition metal dichalcogenides MX2(M =Mo, W; X =S, Se), which have two degenerate yet inequivalent valleys at the corners of their hexagonal Brillouin zones (the K and K′points). And these two inequivalent valleys are connected by time-reversal symmetry. Due to the lack of the inversion symmetry, carriers in these two inequivalent valleys are subject to opposite Berry curvatures,[3]which are gauge-independent pseudovectors that reflect the handedness and geometries of Bloch waves and act like effective magnetic fields in momentum space.[4–6]The opposite Berry curvatures, direct band gap,and angular momentum of the atomic orbitals together contribute to the different optical selection rules for the two valleys, thus permitting the generation of valley polarization by controlling the helicity of light.[7–9]However, the low carrier mobilities (about 200 cm2·V?1·s?1for MoS2monolayer) and direct-to-indirect band gap transition induced by strain in MX2monolayers restrict their practical applications in valleytronics.[10,11]In addition,the restored inversion symmetry in MX2bilayers makes Berry curvature zero at any point in the entire Brillouin zone, which prohibits valley polarization in MX2bilayers via the circularly polarized light. Therefore new two-dimensional(2D)valleytronic materials with moderate and robust direct band gaps,high carrier mobilities,and inversion asymmetry independent of layer number are remained to be found.

    Owing to the inversion asymmetry and direct band gap of about 6.0 eV,[12]honeycomb boron nitride (h-BN) monolayer is an ideal material to realize valleytronics in the ultraviolet region, but its carrier mobility at room temperature is as low as 0.01 cm2·V?1·s?1.[13]The carrier mobility of h-BN monolayer may be enhanced by carbon doping,[14]along with a tunable band gap from deep ultraviolet to far-infrared spectra,depending on the carbon doping concentration.[15]Like h-BN monolayer,the inversion asymmetric boron nitride analog of α-graphyne (labeled as α-BNyne) monolayer has a direct band gap of 5.428 eV and a low electron mobility of about 132.04 cm2·V?1·s?1, as shown in Figs. A1, A2 and Table A1 in supplement material. So we wonder if it is possible that carbon doping could increase the carrier mobilities of α-BNyne while maintaining its direct band gap nature and inversion asymmetry,which is worthy of exploration. In this paper,we predict two valleytronic materials,B3C2N3and BC6N,through ab initio density functional theory(DFT)calculations.We show that both B3C2N3and BC6N monolayers are energetically more stable than α-BNyne, and have direct band gaps of 3.143 eV and 2.683 eV,respectively. The direct band gap feature is robust against the biaxial strain. Further calculations demonstrate that B3C2N3and BC6N monolayers exhibit relatively high carrier mobilities,and inversion asymmetry is reserved in the energetically most favorable B3C2N3and BC6N bilayers.Finally,the capacity of BC6N monolayer to be a photocatalyst for water splitting and the separation of photogenerated electrons and holes in B3C2N3-BC6N van der Waals heterostructure are revealed.

    2. Computational methods

    Our DFT calculations are performed by using Vienna ab initio simulation package (VASP).[16]Ion–electron interaction is described by the projector augmented wave(PAW) potentials.[17,18]Exchange–correlation between electrons is treated using the generalized gradient approximation(GGA) in Perdew–Burke–Ernzerhof (PBE) form.[19]Threedimensional periodic boundary conditions are applied, and a vacuum region of 30 ?A is incorporated to avoid interactions between neighboring layers. Geometry optimization is done using the conjugated gradient method[20]with a 3×3 supercell (72 atoms) to avoid possible artifacts of single cell calculations.[21]The energy cutoff of the plane waves is set to 700 eV, with an energy precision of 10?6eV. A 3×3×1 Γ centered Monkhorst–Pack grid is used to sample the Brillouin zone (the convergence tests of energy cutoff and number of k-points are shown in Fig.B1 in supplement material).The atomic positions are fully relaxed until the force on each atom is less than 10?2eV/?A.Considering that the GGA usually underestimates the band gap, Heyd–Scuseria–Ernzerhof(HSE06) hybrid functional[22]is adopted to correct the band structures and optical absorption coefficients. Phonon spectra are calculated using a 3×3 supercell approach within the Phonopy code[23]interfaced with density functional perturbation theory[24]implemented in VASP. Ab initio molecular dynamics (AIMD) simulations are carried out at room temperature by using canonical ensemble (NVT) with a 4×4 supercell (128 atoms). Each simulation lasts for 6 ps with a time step of 1.0 fs, and the temperature is controlled by applying the Nos′e–Hoover algorithm.[25,26]For the B3C2N3and BC6N bilayers and vertical heterostructures formed by stacking B3C2N3and BC6N monolayers, van der Waals interaction is included by employing DFT-D3 method.[27,28]The maximally localized Wannier functions are constructed by Wannier90 code,[29]and the Berry curvatures are calculated through WannierTools package.[30]VASPKIT program is used for data post-processing.[31]

    3. Results and discussion

    3.1. Structures and stabilities

    Like carbon-doped γ-BNyne,[32]two carbon-doped α-BNyne structures are studied here. As shown in Fig. 1,B3C2N3is composed of hexagonal carbon rings linked by BN chains, while BC6N is composed of BN hexagons connected by carbon chains. There are eight atoms in one primitive unit cell. Atoms at the corners of the hexagonal honeycomb are sp2-hybridized, because the angle of two neighboring bonds of the atoms is 120°;while atoms at the sides of the hexagonal lattice are sp-hybridized, because they are located in a strict straight line with the atoms at the corners. The lattice constants and bond lengths of the optimized geometric structures for B3C2N3and BC6N monolayers are summarized in Table 1,with α-BNyne included as a control sample(see Fig.A1(a)in supplement material).

    Fig. 1. Top view of B3C2N3 and BC6N monolayers. The dashed line delineates the primitive unit cell.

    Table 1. Lattice constant a0, bond lengths l1, l2, and l3, cohesive energy Ecoh, calculated elastic constants Cij, Young’s modulus Y, and Poisson’s ratio ν for B3C2N3 and BC6N monolayers. α-BNyne(B4N4)is included for comparison.

    Cohesive energies are calculated to evaluate the energetic stabilities of B3C2N3and BC6N monolayers using the expression Ecoh=(mEB+nEC+tEN?Etot)/(m+n+t),where EB/EC/ENand Etotare the total energies of an isolated B/C/N atom and a primitive unit cell,respectively. m/n/t is the number of B/C/N atoms in the primitive unit cell. As displayed in Table 1,the cohesive energies of B3C2N3and BC6N monolayers are higher than that of α-BNyne, indicating that B3C2N3and BC6N monolayers are substantially more stable than α-BNyne. The mechanical stabilities of B3C2N3and BC6N monolayers are assessed on the basis of Born criteria.[33]Due to the added relation C66=(C11?C12)/2, there are five independent elastic constants in the hexagonal crystal system,and the necessary and sufficient conditions for elastic stability can be derived by calculating the eigenvalues of the stiffness matrix. For mechanically stable 2D hexagonal materials,the following conditions must be met: C11>|C12|, 2C213<C33×(C11+C12),C44>0. According to our results shown in Table 1,the computed elastic constants satisfy the Born criteria,which indicates that both the B3C2N3and BC6N monolayers are mechanically stable. Furthermore,2D Young’s modulus(in-plane stiffness)Y and Poisson’s ratio ν can be deduced as Y =(C211?C212)/C11and ν =C12/C11.[34]The calculated Young’s modulus for graphene is 338.609 N/m, which is in accordance with the experimental result of 340 N/m.[35]This supports the reliability of the procedure we employed. As reported in Table 1, it seems that the Young’s modulus and Poisson’s ratio of α-BNyne are more affected when doping carbon atoms at sp2-positions,which may be attributed to the one more bond of sp2-site compared to sp-site. Similar to α-BNyne,[36]B3C2N3and BC6N monolayers are also soft materials and may have a large deformation under a low stress.The dynamic stabilities of B3C2N3and BC6N monolayers are evaluated by calculating the phonon spectra displayed in Figs. 2(a) and 2(b). Because of the neglectable contribution of imaginary phonon frequencies in the entire Brillouin zone,B3C2N3and BC6N monolayers are confirmed to be dynamically stable. Additionally, AIMD simulations at room temperature are performed to investigate the thermal stability of B3C2N3and BC6N monolayers. As seen from Figs.2(c)and 2(d), structural integrity could be maintained well at the end of the simulation, demonstrating the promising thermal stability of B3C2N3and BC6N monolayers. Atoms of B3C2N3or BC6N monolayer at room temperature are not on the same plane, which is a common characteristic for 2D materials to resist the thermal perturbation via fluctuation.

    Fig. 2. Phonon dispersions of (a) B3C2N3 and (b) BC6N monolayers,as well as snapshots for the final configurations of(c)B3C2N3 and(d)BC6N monolayers at room temperature.

    3.2. Electronic and valley-related physical properties of B3C2N3 and BC6N monolayers

    After confirming the excellent stabilities of B3C2N3and BC6N monolayers, we wonder whether they have a sizeable direct band gap just like α-BNyne. As exhibited in Figs.3(a)and 3(b), both B3C2N3and BC6N monolayers are nonmagnetic semiconductors with direct band gaps of 3.143 eV and 2.683 eV, respectively, calculated at the HSE06 level of theory. The valence band maximum(VBM)and conduction band minimum(CBM)of B3C2N3/BC6N monolayer are located at the K point in the Brillouin zone. For B3C2N3monolayer,the partial density of states(PDOS)shows that the valence bands near the Fermi level are predominantly composed of pzorbitals of N atoms and the C atoms surrounded by B atoms,while the conduction bands close to the Fermi level are mainly consisted of pzorbitals of B atoms and the C atoms surrounded by N atoms. This is further confirmed by the isosurfaces of charge densities of VBM and CBM as illustrated in Fig. 3(c). For BC6N monolayer, PDOS and isosurfaces of charge densities of VBM and CBM (Fig. 3(d)) reveal that the valence bands around the Fermi level are predominantly composed of pzorbitals of N atoms and C atoms at the carbon chains,while the conduction bands in the vicinity of the Fermi level are mainly consisted of pzorbitals of B atoms and the C atoms that surround the N atoms. So B3C2N3and BC6N monolayers are two-dimensional direct wide band gap semiconductors. The larger band gap of B3C2N3monolayer compared to that of BC6N monolayer may due to the larger electronegativity difference between B and N in B3C2N3than that between B and C or between N and C in BC6N.[37,38]Interestingly,the charge density of VBM/CBM of B3C2N3monolayer looks like that of CBM/VBM of BC6N monolayer. This possibly leads to opposite responses of band gaps to biaxial strain,which we will discuss later.

    Similar to semiconducting MX2monolayers, the timereversal symmetry and the inversion asymmetry make B3C2N3/BC6N monolayer have two energy-degenerate but inequivalent valleys at the corners of the first Brillouin zone,namely, the K and K′valleys, and these two valleys have opposite Berry curvatures. According to Kubo formula,[39–41]Berry curvature ?(k)can be written as

    where |ψnk〉 is the Bloch function with eigenvalue En, fnis the Fermi–Dirac distribution function, and vx(y)are the velocity operators. The Berry curvatures of the occupied states for B3C2N3and BC6N monolayers are obtained through constructing the maximally localized Wannier functions, as seen in Fig.4(a).

    Fig. 3. Band structures and PDOSs obtained within the HSE06 scheme for (a) B3C2N3 and (b) BC6N monolayers, the VBM is set to 0 eV.Charge densities of VBM and CBM states for(c)B3C2N3 and(d)BC6N monolayers.

    Fig. 4. (a) Berry curvatures, (b) absorption coefficients, and (c) TDOSs of B3C2N3 and BC6N monolayers, where the absorption coefficients and TDOSs are calculated with the HSE06 hybrid functional.

    Obviously, the Berry curvatures at K and K′valleys exhibit obvious peaks but with opposite signs, and the distribution of Berry curvatures shows C3vsymmetry. So although the electrons in the neighboring valleys have the same energy,they can be distinguished by their opposite Berry curvatures.Meanwhile, for the incident light with the electric field (E)polarized along the x, y (E⊥z), and z (E ‖z) directions, absorption coefficients α(ω)can be calculated according to the formula:[42]

    where ε1(ω) and iε2(ω) are the real and imaginary parts of the dielectric function ε(ω) (ε(ω) = ε1(ω)+iε2(ω)), c is the magnitude of light velocity in vacuum, and ω is the circular frequency of the incident light. As depicted in Fig.4(b),we find that the absorption coefficients are the same for polarization along the x and y directions, which may indicate the isotropic in-plane optical properties. Both the B3C2N3and BC6N monolayers have two high in-plane absorption peaks in the 300–450 nm region, which may be caused by the transitions between the corresponding peaks in the total density of states (TDOS) displayed in Fig. 4(c), as the transition probability of electrons is proportional to the TDOS.[43]Hence,the direct band gaps,valley-contrasting Berry curvatures,together with the large absorption coefficients make valley polarization in B3C2N3and BC6N monolayers achievable via valleyselective circular dichroism.[9]

    For B3C2N3and BC6N monolayers utilized in valleytronics, two requirements must be met. One is that B3C2N3and BC6N monolayers should have relatively high carrier mobilities. The other is that the direct band gap nature can be maintained under strain, because B3C2N3and BC6N monolayers are soft materials and may have a large deformation under a low stress,as mentioned above. The carrier mobilities of electrons and holes for B3C2N3and BC6N monolayers are calculated based on the deformation potential theory,[44]which has been extensively used to evaluate the carrier mobilities of 2D materials.[45,46]For inorganic semiconductors, the coherent wavelength of thermally activated electrons or holes is comparable to the wavelength of acoustic phonon and is much longer than the typical bond length,so the scattering of a thermal electron or hole is dominated by the electron–acoustic phonon coupling. On the basis of effective mass approximation,the carrier mobility in 2D materials can be expressed as

    where e,kB,T, ˉh,and m*are the electron charge,Boltzmann constant,temperature,reduced Planck constant,and carrier effective mass,respectively. C2Dis the elastic modulus defined as C2D=(?2E2D/?δ2)/S0,in which E2Dis the total energy of the system, S0represents the area of the optimized structure.δ is the applied biaxial strain and is defined by (a ?a0)/a0,here a0and a are the optimized lattice constant and the lattice length along the strain direction, respectively. Negative and positive values of strain stand for the compression and elongation, respectively. Edis the deformation potential constant denoting the shift of the band edges (CBM for electrons and VBM for holes)induced by the strain. For B3C2N3and BC6N monolayers,the changes of total energies and band edges with biaxial strain are illustrated in Fig.C1 in supplement material,and the obtained C2D, Ed, m*, μ at 300 K for B3C2N3and BC6N monolayers are compiled in Table 2. It should be noted that the shift of the VBM for B3C2N3monolayer is small and is not linear with the biaxial strain,as shown in Fig.C1(a).The reason is unclear now, which needs further research. Compared to the electron mobility of 132.04 cm2·V?1·s?1and hole mobility of 1527.16 cm2·V?1·s?1for α-BNyne, doping carbon atoms at the corner could increase the electron mobility by about four times,while doping carbon atoms at the side of hexagonal lattice could greatly enhance the electron mobility and maintain the hole mobility. So doping carbon atoms in α-BNyne would increase the carrier mobilities. B3C2N3and BC6N monolayers exhibit relatively high carrier mobilities.

    Table 2. Calculated elastic modulus C2D, deformation potential constant Ed, effective mass m*, carrier mobility μ at 300 K for B3C2N3 and BC6N monolayers. m0 is the mass of free electron. Ed and m* are obtained by the HSE06 method.

    Fig.5.Electron localization function maps for h-BN,α-BNyne(B4N4),B3C2N3,and BC6N.

    Why carbon doping can increase the electron mobility of α-BNyne? For h-BN, the large electronegativity difference between B and N makes the B–N bond ionic.[47,48]So electrons are bound to the N atoms, as demonstrated by the electron localization function(ELF)map of h-BN shown in Fig.5.This causes the low electron mobility and large band gap in h-BN. Like h-BN, electrons are also bound to the N atoms in α-BNyne, hence its electron mobility is low and its band gap is large. Furthermore, from ELF map of α-BNyne we can find that the sp-hybridized N atoms at the sides of hexagonal lattice have stronger ionic nature compared to the sp2-hybridized N atoms at the corners of hexagonal honeycomb.When doping carbon atoms into α-BNyne, its intermediate electronegativity between those of B and N atoms makes the B–C and C–N bonds have stronger covalent nature and weaker ionic properties than the B–N bond, as verified by the ELF maps of B3C2N3and BC6N monolayers in Fig. 5. So electrons in B3C2N3and BC6N monolayers are less bound and more mobile compared with the electrons in α-BNyne. More significantly, there are no sp-hybridized N atoms in BC6N monolayer,thus it has high electron mobility over the B3C2N3monolayer.

    Interestingly, from Table 2 and Fig. C1 we can find that in B3C2N3monolayer,the shift of CBM is quit dependent on the biaxial strain, contrary to the basically independence of VBM on biaxial strain. But in BC6N monolayer,the absolute value of Edfor VBM is little larger than that for CBM.So with the increase of biaxial strain,band gap for B3C2N3monolayer should decrease while band gap for BC6N monolayer should increase, and the rangeability of band gap of B3C2N3monolayer is larger than that of band gap of BC6N monolayer. To prove our deduction, biaxial strain dependent band structures and band gaps of B3C2N3and BC6N monolayers are calculated by using the HSE06 functional,as presented in Figs.C2,C3 and 6. It can be seen that the locations of VBM and CBM are at K point in the Brillouin zone and do not move within a strain range from ?2%to 2%, indicating that the direct band gap feature of B3C2N3and BC6N monolayers is robust against the biaxial strain. Changes of band gaps for B3C2N3and BC6N monolayers are opposite and agree with our inference.We attribute this to the fact that B3C2N3and BC6N monolayers have inverse charge density distributions at the band edges,which may result in the opposite responses of the band gaps to biaxial strain.

    In addition, band edges of B3C2N3and BC6N monolayers can straddle the redox potentials of water (at pH=0, the standard oxidation potential of H2O/O2is ?5.67 eV, and reduction potential of H+/H2is ?4.44 eV.Vacuum level is set to zero for reference),[49]but the band gap of B3C2N3monolayer is too large for efficient solar energy absorption. So BC6N monolayer might be a promising candidate photocatalyst for practical applications in visible-light-driven water splitting.

    Fig.6. Band gaps as a function of biaxial strain for B3C2N3 and BC6N monolayers.

    3.3. Bilayers and heterostructures

    Since B3C2N3and BC6N monolayers are valleytronic materials, we address the question of whether B3C2N3and BC6N bilayers can also be utilized in valleytronics, or not.Like α-BNyne bilayer,[50]five different high symmetry stacking configurations are proposed and investigated for B3C2N3and BC6N bilayers,as shown in Fig.7.

    Fig.7. Top and side views for the different stacking configurations of B3C2N3 and BC6N bilayers.

    Fig. 8. (a)/(b) Band structure (HSE06) and (c)/(d) Berry curvature for B3C2N3/BC6N bilayer with AB-III configuration.

    Fig.9. Top and side views for the B3C2N3–BC6N van der Waals heterostructures in six different stacking orders.

    Fig. 10. (a) Band structure and charge densities of (b) VBM and(c) CBM states for AB-I stacking B3C2N3-BC6N van der Waals heterostructure.

    4. Conclusions

    Using first-principles calculations, we demonstrate that carbon doping can increase the carrier mobilities of α-BNyne while maintain its direct band gap nature and inversion asymmetry,which make the two carbon-doped α-BNyne structures,namely, the B3C2N3and BC6N monolayers, potential valleytronic materials. More importantly, unlike the MoS2bilayer, optical pumping with circularly polarized light might achieve valley polarization in the energetically most favorable B3C2N3and BC6N bilayers. Besides, the promising photocatalytic activity of BC6N monolayer for efficient solar water splitting and the type-II energy band alignment between B3C2N3and BC6N monolayers are revealed.

    We should note that except for α-BNyne, β-, γ-, and 6,6,12-BNyne are all direct wide band gap semiconductors with inversion asymmetry,[51]and the valley properties are affected by temperature and magnetic field.[52,53]So do these materials have relatively high carrier mobilities? If not, can carbon doping increase their carrier mobilities and make them suitable for applications in valleytronics? What is the influence of temperature and magnetic field on the valley properties of B3C2N3and BC6N monolayers? Can valley splitting be realized in the heterostructure formed by stacking B3C2N3/BC6N monolayer with a ferromagnetic material? These are worthy of exploration. Further researches are in progress.

    猜你喜歡
    陳波
    大嗓門的爸爸寶貝呀!
    雨中的旋律
    青蛙找工作
    一個失敗的蛋
    老鼠家來了一位大客人
    踔厲奮發(fā)向未來
    浙江人大(2022年4期)2022-04-28 21:37:09
    Particle captured by a field-modulating vortex through dielectrophoresis force
    Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field*
    小兔蘭琪想要自己的臥室
    送你一個家
    孩子(2021年2期)2021-02-25 07:49:51
    亚洲真实伦在线观看| 老司机影院成人| 国产高清有码在线观看视频| 亚洲精品久久午夜乱码| 卡戴珊不雅视频在线播放| 激情 狠狠 欧美| 国产精品爽爽va在线观看网站| 美女国产视频在线观看| 黄色一级大片看看| 一级毛片aaaaaa免费看小| 国产高清三级在线| 亚洲精品国产av蜜桃| 别揉我奶头 嗯啊视频| 麻豆乱淫一区二区| 国产精品爽爽va在线观看网站| 色吧在线观看| 色5月婷婷丁香| 亚洲av成人精品一区久久| 国产美女午夜福利| 色婷婷久久久亚洲欧美| 老女人水多毛片| 国产毛片a区久久久久| 国产成人一区二区在线| 大话2 男鬼变身卡| 国产亚洲91精品色在线| 亚洲精品国产av成人精品| 在线亚洲精品国产二区图片欧美 | 嫩草影院入口| 夫妻午夜视频| 一级毛片电影观看| 91精品伊人久久大香线蕉| 最后的刺客免费高清国语| av卡一久久| 免费观看性生交大片5| 国产亚洲av嫩草精品影院| 最后的刺客免费高清国语| 久久97久久精品| 精品少妇久久久久久888优播| 亚洲美女视频黄频| 少妇丰满av| 亚洲成人中文字幕在线播放| 久久99精品国语久久久| 午夜免费观看性视频| 中文字幕久久专区| 国产高清三级在线| 一级av片app| 啦啦啦啦在线视频资源| 国产精品熟女久久久久浪| 亚洲,一卡二卡三卡| 久久人人爽av亚洲精品天堂 | 观看免费一级毛片| 亚洲精品成人av观看孕妇| 久久久久久久亚洲中文字幕| 亚洲第一区二区三区不卡| 日韩大片免费观看网站| 春色校园在线视频观看| 99热全是精品| 最近的中文字幕免费完整| 91在线精品国自产拍蜜月| 高清av免费在线| 日韩av免费高清视频| 国产一区二区亚洲精品在线观看| 国产男女内射视频| 高清日韩中文字幕在线| 97在线视频观看| 日韩 亚洲 欧美在线| 成人综合一区亚洲| 日本熟妇午夜| 99精国产麻豆久久婷婷| 天堂网av新在线| 国产伦理片在线播放av一区| 欧美变态另类bdsm刘玥| 三级经典国产精品| 三级国产精品欧美在线观看| 国产精品久久久久久久电影| 久久鲁丝午夜福利片| 黄色欧美视频在线观看| 另类亚洲欧美激情| 日韩视频在线欧美| 日韩一区二区视频免费看| 午夜免费男女啪啪视频观看| 一级毛片黄色毛片免费观看视频| 久久女婷五月综合色啪小说 | 在线观看一区二区三区激情| 国产色爽女视频免费观看| av在线老鸭窝| 黄色配什么色好看| 男女边摸边吃奶| 少妇人妻久久综合中文| 精品酒店卫生间| 精品久久久精品久久久| 亚洲国产最新在线播放| 狂野欧美白嫩少妇大欣赏| 久久99热6这里只有精品| 男人狂女人下面高潮的视频| av网站免费在线观看视频| 欧美激情久久久久久爽电影| 免费大片黄手机在线观看| 色5月婷婷丁香| 免费大片黄手机在线观看| 99精国产麻豆久久婷婷| 日韩人妻高清精品专区| 国产精品av视频在线免费观看| 卡戴珊不雅视频在线播放| av在线app专区| 全区人妻精品视频| 久久久精品欧美日韩精品| 在线 av 中文字幕| 精品99又大又爽又粗少妇毛片| 男女那种视频在线观看| 又黄又爽又刺激的免费视频.| 国产日韩欧美在线精品| 波多野结衣巨乳人妻| 欧美日本视频| 特级一级黄色大片| 久久久久久久久久久免费av| 亚洲欧美精品自产自拍| 婷婷色麻豆天堂久久| 久久久成人免费电影| 欧美激情在线99| 亚洲久久久久久中文字幕| 三级经典国产精品| 97人妻精品一区二区三区麻豆| 麻豆国产97在线/欧美| 欧美精品国产亚洲| 久久99热这里只有精品18| 久久精品久久久久久噜噜老黄| 五月玫瑰六月丁香| 国产成人福利小说| 一区二区三区四区激情视频| 大片免费播放器 马上看| 国产美女午夜福利| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 日韩大片免费观看网站| 亚洲最大成人av| 免费观看性生交大片5| 男男h啪啪无遮挡| 欧美日韩视频高清一区二区三区二| 欧美精品国产亚洲| 97在线视频观看| 欧美一区二区亚洲| 一二三四中文在线观看免费高清| 精品人妻熟女av久视频| 久久国内精品自在自线图片| 人妻少妇偷人精品九色| 国产 精品1| 丝瓜视频免费看黄片| 亚洲无线观看免费| 七月丁香在线播放| 亚洲欧美日韩另类电影网站 | 好男人视频免费观看在线| 女人被狂操c到高潮| 亚洲国产精品成人久久小说| 18禁动态无遮挡网站| 免费看不卡的av| 大陆偷拍与自拍| 成人黄色视频免费在线看| 王馨瑶露胸无遮挡在线观看| 成人美女网站在线观看视频| 麻豆久久精品国产亚洲av| 在线观看三级黄色| 国产免费一区二区三区四区乱码| 麻豆乱淫一区二区| 少妇人妻精品综合一区二区| 极品教师在线视频| 国产在线男女| 搞女人的毛片| 国产成人精品久久久久久| 国产乱人视频| 各种免费的搞黄视频| 18禁裸乳无遮挡免费网站照片| 成人午夜精彩视频在线观看| 国产精品一区二区性色av| 久久精品久久久久久噜噜老黄| 欧美性猛交╳xxx乱大交人| 久久久精品欧美日韩精品| 免费大片18禁| 好男人在线观看高清免费视频| 亚洲不卡免费看| 国产毛片在线视频| 久久女婷五月综合色啪小说 | 又粗又硬又长又爽又黄的视频| xxx大片免费视频| 激情五月婷婷亚洲| 日本爱情动作片www.在线观看| a级毛色黄片| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久精品电影| 日韩伦理黄色片| 色哟哟·www| 欧美性感艳星| 亚洲人与动物交配视频| 有码 亚洲区| 欧美国产精品一级二级三级 | 性色av一级| 国产成人精品一,二区| 人人妻人人看人人澡| av福利片在线观看| 中国国产av一级| 色婷婷久久久亚洲欧美| 狠狠精品人妻久久久久久综合| 日韩国内少妇激情av| 熟女电影av网| 搡女人真爽免费视频火全软件| 美女内射精品一级片tv| 丝瓜视频免费看黄片| 国产av码专区亚洲av| 国产成年人精品一区二区| 91久久精品国产一区二区成人| 成年人午夜在线观看视频| 男插女下体视频免费在线播放| 女人被狂操c到高潮| 91精品一卡2卡3卡4卡| 两个人的视频大全免费| 国产黄a三级三级三级人| 青春草国产在线视频| 精品国产露脸久久av麻豆| 噜噜噜噜噜久久久久久91| 亚洲精品一区蜜桃| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 伦精品一区二区三区| 日韩伦理黄色片| 国产成人aa在线观看| 亚洲欧美成人精品一区二区| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 如何舔出高潮| 日韩电影二区| av.在线天堂| 精品久久久久久久久亚洲| 精品少妇久久久久久888优播| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 天天躁夜夜躁狠狠久久av| 久久久久久伊人网av| 能在线免费看毛片的网站| 亚洲av中文字字幕乱码综合| 免费不卡的大黄色大毛片视频在线观看| 成人鲁丝片一二三区免费| 你懂的网址亚洲精品在线观看| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 高清在线视频一区二区三区| 欧美激情国产日韩精品一区| 神马国产精品三级电影在线观看| 在线观看国产h片| 人妻少妇偷人精品九色| 小蜜桃在线观看免费完整版高清| 少妇高潮的动态图| 亚洲精品视频女| 亚洲欧美成人综合另类久久久| 久久午夜福利片| 成年av动漫网址| .国产精品久久| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 91精品国产九色| 在线精品无人区一区二区三 | 九九在线视频观看精品| 亚洲激情五月婷婷啪啪| 五月玫瑰六月丁香| 18禁在线无遮挡免费观看视频| 狠狠精品人妻久久久久久综合| 欧美变态另类bdsm刘玥| 精品人妻偷拍中文字幕| 国产精品久久久久久精品电影| 国产综合精华液| 国产视频内射| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看| 一级毛片aaaaaa免费看小| 日日撸夜夜添| 久热久热在线精品观看| 亚洲成色77777| 久久久久久伊人网av| 高清欧美精品videossex| 亚洲天堂国产精品一区在线| av天堂中文字幕网| 在线观看一区二区三区| 欧美激情在线99| 久久精品久久久久久久性| 成年女人在线观看亚洲视频 | av一本久久久久| 日韩欧美精品免费久久| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩国产mv在线观看视频 | 免费看av在线观看网站| 国产在线男女| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看| 韩国av在线不卡| 国产综合懂色| 成人亚洲欧美一区二区av| 亚洲av男天堂| 亚洲高清免费不卡视频| 特大巨黑吊av在线直播| 在线观看一区二区三区激情| 日本免费在线观看一区| 免费av毛片视频| 国产亚洲av嫩草精品影院| tube8黄色片| 国产老妇女一区| 国产精品国产三级国产av玫瑰| av国产久精品久网站免费入址| 精品久久久噜噜| 免费高清在线观看视频在线观看| 国产综合精华液| av线在线观看网站| 成人亚洲欧美一区二区av| 国产伦精品一区二区三区视频9| 欧美xxxx黑人xx丫x性爽| 99久久人妻综合| 成人亚洲精品一区在线观看 | 91精品一卡2卡3卡4卡| 男女下面进入的视频免费午夜| videossex国产| 人妻 亚洲 视频| 男女边摸边吃奶| 久久ye,这里只有精品| 97精品久久久久久久久久精品| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| av国产久精品久网站免费入址| 性色av一级| 熟女av电影| 99久久精品热视频| 国产亚洲精品久久久com| 欧美潮喷喷水| 只有这里有精品99| 91在线精品国自产拍蜜月| 99久久人妻综合| 一个人看的www免费观看视频| 亚洲精品,欧美精品| 国产精品精品国产色婷婷| 九九爱精品视频在线观看| 精品熟女少妇av免费看| 国产一区亚洲一区在线观看| 色婷婷久久久亚洲欧美| 午夜视频国产福利| 免费观看a级毛片全部| 一区二区三区免费毛片| 尤物成人国产欧美一区二区三区| 久久久久国产网址| 日本wwww免费看| 国产亚洲精品久久久com| av在线app专区| 两个人的视频大全免费| 国产成人精品婷婷| 亚洲精品成人av观看孕妇| 国产精品国产av在线观看| 亚洲av国产av综合av卡| 午夜福利视频精品| 精品人妻一区二区三区麻豆| 美女脱内裤让男人舔精品视频| 国产av不卡久久| 成年免费大片在线观看| 夫妻性生交免费视频一级片| 国产亚洲91精品色在线| 国产v大片淫在线免费观看| 国产老妇女一区| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 搞女人的毛片| 久久久久精品久久久久真实原创| 免费观看性生交大片5| 别揉我奶头 嗯啊视频| 国产午夜福利久久久久久| av在线天堂中文字幕| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 最近中文字幕高清免费大全6| 久久精品国产鲁丝片午夜精品| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美在线一区| 亚洲精品日本国产第一区| 国产精品人妻久久久久久| 精品国产三级普通话版| 精品一区二区三区视频在线| 十八禁网站网址无遮挡 | 成人二区视频| 十八禁网站网址无遮挡 | 成人二区视频| 国产精品久久久久久久电影| 久久久精品欧美日韩精品| 亚洲国产精品国产精品| 国内少妇人妻偷人精品xxx网站| 偷拍熟女少妇极品色| 欧美丝袜亚洲另类| 看黄色毛片网站| 少妇人妻一区二区三区视频| 欧美zozozo另类| 国产 一区 欧美 日韩| 天天躁夜夜躁狠狠久久av| 国产黄片视频在线免费观看| 成人美女网站在线观看视频| 国产精品福利在线免费观看| 高清欧美精品videossex| kizo精华| 亚洲国产av新网站| 18禁裸乳无遮挡免费网站照片| 国产淫语在线视频| 少妇人妻 视频| 禁无遮挡网站| 人妻 亚洲 视频| 街头女战士在线观看网站| 久久韩国三级中文字幕| 国产免费又黄又爽又色| 亚洲天堂av无毛| 国产精品一区www在线观看| 久久久久久久久久久免费av| 丰满乱子伦码专区| 又爽又黄无遮挡网站| 精品国产一区二区三区久久久樱花 | 天天躁日日操中文字幕| 国产欧美日韩一区二区三区在线 | 深夜a级毛片| 亚洲精品日本国产第一区| 看免费成人av毛片| 国产精品爽爽va在线观看网站| 亚洲美女搞黄在线观看| 一级毛片黄色毛片免费观看视频| 久久精品综合一区二区三区| av黄色大香蕉| 亚洲激情五月婷婷啪啪| 69人妻影院| av在线老鸭窝| 国产真实伦视频高清在线观看| 精品久久久久久久末码| 久久久精品免费免费高清| 亚洲av.av天堂| 成年av动漫网址| 亚洲一区二区三区欧美精品 | 在线播放无遮挡| 日本色播在线视频| 国产亚洲精品久久久com| 免费大片黄手机在线观看| 99久久精品热视频| 免费观看的影片在线观看| 亚洲性久久影院| 亚洲欧美成人综合另类久久久| 99热6这里只有精品| 免费av不卡在线播放| 精品少妇久久久久久888优播| 欧美潮喷喷水| 国产精品一及| 晚上一个人看的免费电影| 男女边摸边吃奶| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久人人爽人人片av| 国产熟女欧美一区二区| 日韩成人av中文字幕在线观看| 日日啪夜夜爽| 亚洲欧美一区二区三区黑人 | 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 别揉我奶头 嗯啊视频| 国产成人精品婷婷| 夜夜爽夜夜爽视频| av免费在线看不卡| 国产久久久一区二区三区| 少妇熟女欧美另类| 日韩视频在线欧美| 日韩制服骚丝袜av| 18禁动态无遮挡网站| 婷婷色麻豆天堂久久| 色婷婷久久久亚洲欧美| 精品酒店卫生间| 一级毛片电影观看| 日韩一区二区视频免费看| 97超视频在线观看视频| 国产91av在线免费观看| 亚洲精品日韩在线中文字幕| 国模一区二区三区四区视频| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 日韩一区二区视频免费看| 在线观看三级黄色| 国产精品国产av在线观看| 国产av国产精品国产| 成年女人看的毛片在线观看| 久久久久性生活片| 国产成人91sexporn| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 男人和女人高潮做爰伦理| 永久网站在线| 99久久精品国产国产毛片| 国产高清不卡午夜福利| 好男人视频免费观看在线| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 精品一区二区三卡| av免费在线看不卡| 极品教师在线视频| 成人黄色视频免费在线看| 51国产日韩欧美| 在线天堂最新版资源| 亚洲va在线va天堂va国产| 国产白丝娇喘喷水9色精品| 男男h啪啪无遮挡| 白带黄色成豆腐渣| av国产久精品久网站免费入址| 国内少妇人妻偷人精品xxx网站| 如何舔出高潮| 中国三级夫妇交换| 精品久久久噜噜| 九色成人免费人妻av| 天堂网av新在线| 2018国产大陆天天弄谢| 久久精品国产a三级三级三级| av国产免费在线观看| 女人被狂操c到高潮| 午夜福利在线在线| 免费黄色在线免费观看| 午夜福利在线观看免费完整高清在| 性插视频无遮挡在线免费观看| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 在线播放无遮挡| 一级二级三级毛片免费看| 人人妻人人看人人澡| 91久久精品国产一区二区成人| 边亲边吃奶的免费视频| 狠狠精品人妻久久久久久综合| 日韩不卡一区二区三区视频在线| 内地一区二区视频在线| 国产一区二区三区av在线| 亚洲精品456在线播放app| 日韩av不卡免费在线播放| 在线 av 中文字幕| 国产高清不卡午夜福利| 好男人视频免费观看在线| 成人高潮视频无遮挡免费网站| av在线播放精品| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 国产一区二区亚洲精品在线观看| 成年女人在线观看亚洲视频 | 国产日韩欧美亚洲二区| 亚洲内射少妇av| 国产精品国产av在线观看| 青春草亚洲视频在线观看| 欧美人与善性xxx| 久久久久久久精品精品| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 欧美一区二区亚洲| 搞女人的毛片| 亚洲aⅴ乱码一区二区在线播放| 不卡视频在线观看欧美| 激情 狠狠 欧美| 亚洲av中文字字幕乱码综合| 国产亚洲最大av| 91精品一卡2卡3卡4卡| 欧美性感艳星| 99re6热这里在线精品视频| 免费观看无遮挡的男女| 夫妻性生交免费视频一级片| 一区二区三区免费毛片| 一级毛片黄色毛片免费观看视频| 国产免费一区二区三区四区乱码| 最近中文字幕2019免费版| 毛片一级片免费看久久久久| 久久久久久久久久久免费av| 在线观看免费高清a一片| 人人妻人人澡人人爽人人夜夜| 一二三四中文在线观看免费高清| 国产黄片美女视频| 春色校园在线视频观看| 高清午夜精品一区二区三区| 99热这里只有是精品在线观看| 大码成人一级视频| 成年版毛片免费区| 日韩一区二区三区影片| 精品午夜福利在线看| 国产精品99久久久久久久久| 欧美成人一区二区免费高清观看| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| 亚洲精品亚洲一区二区| 简卡轻食公司| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 亚洲自拍偷在线| 熟妇人妻不卡中文字幕| 亚洲一级一片aⅴ在线观看| 国产成人精品一,二区| 精品午夜福利在线看| 成人一区二区视频在线观看| 麻豆国产97在线/欧美| 97超碰精品成人国产| 日本av手机在线免费观看| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 欧美日韩精品成人综合77777| 另类亚洲欧美激情| 久久国内精品自在自线图片| 免费播放大片免费观看视频在线观看| 精品视频人人做人人爽| 观看美女的网站| 欧美日韩综合久久久久久| 五月天丁香电影|