• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First–principles calculations*

    2021-05-24 02:27:36ChunZhou周淳JunchaoHuang黃俊超andXiangmeiDuan段香梅
    Chinese Physics B 2021年5期

    Chun Zhou(周淳), Junchao Huang(黃俊超), and Xiangmei Duan(段香梅)

    School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    Keywords: two-dimensional materials,potassium-ion batteries,first-principles

    1. Introduction

    In recent years, with the rapid development of the electronic market, the demand for innovative batteries with excellent performance has been increasing. So far, lithium-ion batteries(LIBs)are the most widely used batteries,with high power density, great charge–discharge efficiency, and long life cycle. However, the lithium resources on the earth are limited and its stocks are falling, which poses a challenge to the development of LIBs. With the growing interest in LIBs alternatives, it is urgent to find suitable new electrode materials.[1]Since the outer electronic structure and electrical properties are similar to LIBs,sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)have been proposed to resolve this crisis. Compared with LIBs, they have the advantages of low cost, high safety, and abundant reserves on the earth.Meanwhile, the mature theoretical knowledge and technical experience of LIBs can be applied to SIBs and PIBs to a certain extent. Compared with SIBs, LIBs have higher voltage and energy density due to lower standard electrode potential.However,the standard electrode potential of K+/K is comparable to, or even lower than, that of Li+/Li, which indicates that PIBs have higher voltage and energy density.[2]Taking these factors into consideration,we regard PIBs as a more appropriate choice. However,the lack of suitable anode materials hindered the development of PIBs.

    Since the successful exfoliation of graphene in 2004,two-dimensional(2D)materials have received widespread attention due to their excellent physical and chemical properties. As anode materials of ion batteries, 2D materials have also shown outstanding performance. For instance, graphene nanosheet families exhibit excellent behavior in rechargeable LIBs.[3]Phosphorene has attracted much attention due to its remarkably high theoretical capacity (2596 mAh·g?1) in SIBs.[4]Phosphorene and graphene heterostructure have also been investigated as the anode for LIBs.[5]However,these materials are not suitable for PIBs,partly because potassium has a larger atomic radius. Several 2D materials have been proposed as anode for PIBs, such as FeSe2,[6]GeSe,[7]YN2,[8]and T-NiSe2.[9]However, as an emerging novel ion battery,PIBs choice is far from enough. Therefore, it is necessary to explore high-performance anode materials for PIBs.

    It has been reported that metallic P3C and PC3monolayer can be used as anode for SIBs,and 2D PC6sheet is a promising anode material for PIBs.[10–12]Due to the excellent conductivity and stability of the material composed of C elements and the high specific capacity of P-based materials, we focus on the 2D binary materials of P and C. Similarly, 2D binary materials g-SiC2and g-SiC3have been used as anode materials for LIBs. And they have shown excellent performance by combining the good qualities of both elements Si and C.[13]After a series of screening and testing, we finally choose the PC3monolayer, which is a stable hexagonal structure similar to graphene, with high theoretical capacity and low voltage,and is very suitable to be anode material for PIBs.

    2. Computational method

    All calculations are performed using density functional theory (DFT) as implemented in the Vienna ab initio simulation package (VASP).[14,15]The Perdew–Burke–Ernzerhof(PBE) functional of the generalized gradient approximation (GGA) is used to describe the exchange–correlation interactions.[16]The Brillouin zones are sampled using a 3×3×1 k-point grid according to the Monkhorste–Pack scheme for a 2×2 supercell.[17]The kinetic energy cutoff of 700 eV is used for all calculations. To avoid periodic image interactions,a vacuum space of 20 ?A is set along the z direction to the PC3monolayer. The projector augmented wave (PAW) method is adopted to describe interactions among ion cores and valence electrons.[18]The DFT-D3 method for van der Waals interaction description is adopted.[19]All the structures are thoroughly relaxed until the forces are less than 10?2eV/?A, and the energy convergence is below 10?5eV between two consecutive self-consistent steps. The migration pathways and diffusion barriers for K atoms on the PC3monolayer are calculated using the climbing image nudged elastic band(CI-NEB)method. To verify the stability of PC3monolayer, ab initio molecular dynamics (AIMD) simulations using a statistical ensemble with a fixed particle number, volume, and temperature (NVT) are performed at room temperature (300 K) for 5 ps with a time step of 1 fs.

    3. Results and discussion

    3.1. Structure and stability of PC3

    A rationally designed 2D material PC3has a graphene–like hexagonal structure, and each unit cell contains six carbon atoms and two phosphorus atoms. It can be seen from the side view in Fig.1(a),adjacent phosphorus atoms are distributed on different sides, making PC3a buckled material with an up–and–down thickness of 1.19 ?A.The optimized lattice parameters of the PC3monolayer are a = b = 5.42 ?A,α =β =90°and γ =120°. The average C–C bond length is 1.42 ?A,the same as in graphene,and the average P–C bond length is 1.81 ?A, comparable to the values of 1.80–1.83 ?A in phosphorus carbide.[20]

    To verify PC3monolayer can be synthesized experimentally, we calculate its cohesive energy, Ecoh, which is defined as

    where EC,EP,and ECP3are the energy of the isolated C atom,P atom,and PC3unit cell,respectively. The value of the cohesive energy is 6.41 eV,which is much higher than that of phosphorene (3.45 eV) and closer to that of graphene (7.98 eV).Such a high cohesive energy indicates that the structure of PC3is stable and could be synthesized. We use AIMD simulation to study the thermal stability of the PC3monolayer at room temperature. And after 5 ps, no structural deformation or bond fracture occurs,proving its high thermal stability[see Fig.1(b)].

    Now, we calculate the electron local density along the plane of monolayer PC3to find the essence of its chemical bonding by using the electron localization function.[21]In Fig.1(c),the red region between C–C and C–P represents the strong covalent bond. Consistently, the Bader charge analysis shows that each P atom transferred 1.5|e|to the bonded C atoms,which is attributed to the fact that the electronegativity of C(2.55)is larger than that of P(2.19). It can be seen from Fig.1(d),PC3is an indirect band gap semiconductor(the gap is 0.75 eV). The valence band maximum is located at the M point,and the conduction band minimum is at the Γ point.

    Fig.1.(a)The top and side view of optimized atomic configurations for PC3 and different adsorption sites for K ions. (b)The AIMD simulation of PC3 at 300 K for 5 ps. (c)Localization charge density and(d)band structure of PC3 monolayer.

    3.2. Adsorption and diffusion of K atoms on PC3

    The preference for K adsorption is characterized by the adsorption energy,Ead. The lower the energy,the more stable the adsorption configuration. For the K atom on PC3monolayer, there are six possible adsorption sites, as marked in Fig.1(a). The adsorption energy is defined as

    where EK@PC3and EPC3are the total energy of the K-adsorbed and pristine PC3monolayers,respectively. And EKis the energy per atom in bulk K.After the optimization,S1,above the center of the C6 ring,has the largest Eadof ?0.83 eV.The second stable site is S6,which is on the top of the hollow P atom,with an adsorption energy of ?0.79 eV.In contrast to S6, S5 is on the top of the protruding P atom, Eadis ?0.74 eV. The vertical distances between the K atom and the PC3plane are 2.54 ?A,2.66 ?A,and 2.53 ?A at S1,S5,and S6 sites.We then focus on the most stable site S1 to study the electrical properties and diffusion barriers.

    The charge density difference of K adsorbed PC3is shown in Fig. 2(a), where charge accumulates on the surface of PC3,while charge deletion is around the K atom,indicating that the charge is transferred from the K atom to PC3. The charge transferring can be understood by the fact that the electronegativity of C (2.55) is significantly larger than that of K (0.82). The Bader charge analysis manifests that 0.87 |e|transfers from the K atom to the substrate. For other K atoms adsorbed on S5 and S6 sites,the transferred electron is 0.88|e|.Upon potassium adsorption,the system becomes metallic,and the density of states (DOS) is shown in Fig. 2(b). The DOS at the Fermi level is greatly enhanced, and the contribution mainly comes from the substrate PC3, suggesting that more carriers are generated in the system. Therefore,the electronic conduction becomes better,which is beneficial for PIBs.

    Fig. 2. (a) Charge density difference and (b) band structure of the Kadsorbed PC3. The yellow and blue regions represent charge accumulation and depletion,respectively. The isosurface level is set to 0.005 e·?A?3.

    The diffusion rate is a critical parameter for ion batteries. It is partly determined by the adsorption energy between the K atoms and the substrate. On the other hand, the diffusion rate of K atoms on the surface of the anode affects the performance and efficiency of the charging/discharging process to a great extent. To obtain the diffusion energy barrier of the potassium, we consider two possible diffusion pathways for the K atom (denoted as path I and path II) on PC3,as shown in Fig. 3(a). Via path I, the potassium goes from site S1 to the neighboring S1 directly, across the P2C4ring.Along path II, K moves zigzag from S1 to S6, then to the adjacent S1. The energy barriers via path I and path II are 0.92 eV and 0.16 eV,respectively. Note the energy barrier of 0.16 eV is significantly smaller than the Li diffusion barriers for pristine graphene(~0.28 eV),graphene with a point defect(~0.366 eV to 0.538 eV),[22]and graphite (~0.47 eV),[23]promising a fast K diffusion.

    Fig.3. (a)The diffusion paths and(b)corresponding diffusion energy barriers of K atom transfer on PC3 surface.

    3.3. Theoretical capacity and open-circuit voltage of PIBs with the anode of PC3

    The performance of ion batteries strongly depends on the storage capacity of metal atoms on anode materials, which is directly related to the number of adsorbed metal atoms on the substrate. To this end,K atoms can be absorbed layer by layer on both surfaces of the PC3. The average adsorption energy of K atoms is obtained by

    where n is the total number of adsorbed K atoms,EnK@PC3is the total energy of the K adsorbed PC3,and EPC3is the energy of pristine PC3. The negative adsorption energy indicates K atoms can be adsorbed stably.

    Since K atoms have a tendency to form bulk spontaneously,we calculate the continuous adsorption energy of the additional layer Econby the formula

    where L is the number of adsorbed layers, EKL/PC3and EK(L?1)/PC3are the total energy of L and L?1 layers K atoms adsorbed PC3,respectively.So Econshould always be negative to make sure it is favorable of loading extra K layer on PC3.

    We load the first layer of K atoms at S1 on both sides of the substrate [see Fig. 4(a)]. After the optimization, all K atoms are steadily adsorbed.Eaveis calculated to be ?0.50 eV,and the vertical distance between K atoms and the sheet is 2.64 ?A.Since S1 sites are fully occupied by the first K layer,there are two possible positions for depositing the second K layer (PC3K2), namely S5 and S6 sites. It turns out that K atoms prefer to occupy the S5 sites [see Fig. 4(b)]. With adsorbing two potassium layers on both sides of PC3, Eavedecreases to ?0.25 eV. The system remains energetically stable. To put the third K layer on,all the possible sites are considered, and S6 is the most favorable position; the optimized structure is shown in Fig.4(c). The average adsorption energy is ?0.19 eV.When connected with the cathode,a weak binding with anode is desired to enhance the voltage.[1]For the fourth K layer,the value of layer-by-layer average adsorption energy is positive,indicating that the adsorption becomes energetically unfavorable. For L=3 to L=4,Econis ?0.69 eV and 1.80 eV,respectively. Therefore,the limitation of loading K atoms is three layers on both sides,while the system maintains structural stability.The average adsorption energy ranges from ?0.50 eV to ?0.19 eV,which meets the requirement of ion batteries specifically.

    Fig.4. Crystal structures of(a)PC3K1,(b)PC3K2,(c)PC3K3 from the side and top view. The violet balls indicate the K atoms. (d)Calculated OCV and theoretical capacity with different K adsorption concentrations.

    Our electronic structural results show that,as the concentration of K atoms increases from one layer to three layers,the systems exhibit metallic characteristics and the subgaps below the Fermi level shrink. Correspondingly, the electronic conductivity of the PC3monolayer is enhanced with the increase of the concentration of K ions. The projected density of states(PDOS) is shown in Fig. 5; one can see the distinct overlap between the K-s orbital and the p orbitals of P and C at and around the Fermi level. Such significant s–p hybridization indicates notable interactions between potassium atoms and the PC3monolayer.

    With the maximum K adsorption concentration on the PC3,we evaluate its storage capacity using the following equation:

    Here x is the number of electrons transferred, F is the Faraday constant, and M is the molecular mass of PC3.[24]The storage capacity for the PC3monolayer is as large as 1200 mAh·g?1,significantly larger than that of the black phosphorus anode for PIBs (617–843 mAh·g?1),[25]and PC6in PIBs(781 mAh·g?1).[26]Such a high storage capacity can be attributed to the variety of adsorption sites on both sides and the light atomic weight of P and C.

    Fig.5. Density of states for(a)PC3,(b)PC3K1,(c)PC3K2,and(d)PC3K3.The Fermi level is set to 0 eV and labeled with vertical dashed lines.

    Another significant parameter of ion batteries is opencircuit voltage (OCV), which can characterize the performance of anode materials for PIBs. The average open-circuit voltage can be calculated by where c is the concentration of the adsorbed K atoms. The OCV decreases from 0.50 V, 0.25 V to 0.19 V with the increased number of adsorption layers. When the number of adsorbed K atoms reaches its limitation,we can obtain a fairly low OCV of 0.19 V.Such a low OCV can provide a large operating voltage with a higher energy density as applied in PIBs.Now we want to emphasize that the range of OCV is 0.19–0.50 V,which can avoid the formation of dendritic during the charge–discharge process.[27]This appropriate range of OCV values makes PC3an ideal candidate for anode material for PIBs.

    4. Conclusion

    By using first–principle calculations, we systematically investigate the structure stability and electronic property of the PC3monolayer,and find that the diffusion barrier of potassium on PC3is as low as 0.16 eV, ensuring the efficiency of the charging/discharging process. As an anode material, the PC3sheet has an ultra-high theoretical capacity of 1200 mAh·g?1,which could guarantee the long-term durability of the battery.The value of OCV is between 0.19 V and 0.5 V,which can ensure the safety of the charging/discharging process. With low diffusion barrier,high capacity,and suitable OCV,we predict that PC3is an ideal choice for PIBs anode materials.

    岛国在线免费视频观看| 国产亚洲av嫩草精品影院| 欧美3d第一页| 午夜精品一区二区三区免费看| av专区在线播放| 少妇人妻一区二区三区视频| 在线观看免费视频日本深夜| 中文字幕人妻熟人妻熟丝袜美| 在线看三级毛片| 桃色一区二区三区在线观看| 97超级碰碰碰精品色视频在线观看| 国产淫片久久久久久久久| 韩国av在线不卡| 人妻久久中文字幕网| 国产综合懂色| 看片在线看免费视频| 搞女人的毛片| 亚洲经典国产精华液单| 国产一区二区三区视频了| 精品人妻1区二区| 一区福利在线观看| 精品久久久久久久久av| 亚洲七黄色美女视频| 国产淫片久久久久久久久| 久久久久久久亚洲中文字幕| 悠悠久久av| 99热只有精品国产| 欧美色视频一区免费| 99热这里只有是精品50| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 亚洲国产欧洲综合997久久,| 色精品久久人妻99蜜桃| 老师上课跳d突然被开到最大视频| 亚洲最大成人中文| 一级a爱片免费观看的视频| av在线天堂中文字幕| 精品欧美国产一区二区三| av在线老鸭窝| 成人毛片a级毛片在线播放| 国产成年人精品一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播| 黄色配什么色好看| 高清日韩中文字幕在线| 精品欧美国产一区二区三| 精品久久久噜噜| 亚洲中文字幕日韩| 亚洲自偷自拍三级| 人妻少妇偷人精品九色| 在线观看舔阴道视频| 波多野结衣高清无吗| 欧美一区二区国产精品久久精品| 欧美色欧美亚洲另类二区| 18+在线观看网站| 亚洲av中文av极速乱 | 99热这里只有精品一区| 在线天堂最新版资源| 国产精品,欧美在线| 国模一区二区三区四区视频| 天堂网av新在线| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 国产又黄又爽又无遮挡在线| 精品一区二区三区人妻视频| 狂野欧美激情性xxxx在线观看| 三级毛片av免费| 午夜视频国产福利| 亚洲第一区二区三区不卡| 999久久久精品免费观看国产| bbb黄色大片| 国产人妻一区二区三区在| 国产麻豆成人av免费视频| 简卡轻食公司| 内地一区二区视频在线| a级一级毛片免费在线观看| 看十八女毛片水多多多| 欧美+亚洲+日韩+国产| 黄片wwwwww| 亚洲内射少妇av| 免费搜索国产男女视频| 精品人妻熟女av久视频| 99久久成人亚洲精品观看| av在线亚洲专区| 我的老师免费观看完整版| 精品国产三级普通话版| 狂野欧美激情性xxxx在线观看| 人妻少妇偷人精品九色| 久久精品国产鲁丝片午夜精品 | 我要看日韩黄色一级片| 国产精品久久电影中文字幕| 亚洲电影在线观看av| 国产成年人精品一区二区| 亚洲国产色片| 国产伦一二天堂av在线观看| 日韩欧美一区二区三区在线观看| 国产人妻一区二区三区在| 国产亚洲精品综合一区在线观看| 精品国产三级普通话版| 国产真实乱freesex| 国产av麻豆久久久久久久| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 免费黄网站久久成人精品| .国产精品久久| 亚洲av免费在线观看| 国产人妻一区二区三区在| 国产亚洲精品综合一区在线观看| 久久国产乱子免费精品| 午夜老司机福利剧场| 国产色婷婷99| 91午夜精品亚洲一区二区三区 | 免费av不卡在线播放| 国产私拍福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 禁无遮挡网站| 日日摸夜夜添夜夜添av毛片 | 十八禁国产超污无遮挡网站| av中文乱码字幕在线| 精品免费久久久久久久清纯| 国产久久久一区二区三区| 免费观看在线日韩| av在线天堂中文字幕| 亚洲av不卡在线观看| 国产高清不卡午夜福利| 长腿黑丝高跟| 99久国产av精品| 婷婷精品国产亚洲av| 国产精品国产三级国产av玫瑰| 亚洲国产色片| 99久久九九国产精品国产免费| 亚洲一级一片aⅴ在线观看| 欧美色视频一区免费| 国产精品不卡视频一区二区| 他把我摸到了高潮在线观看| 国产麻豆成人av免费视频| 国产探花极品一区二区| 久久精品国产清高在天天线| 久久99热6这里只有精品| 成人高潮视频无遮挡免费网站| 他把我摸到了高潮在线观看| 在线免费十八禁| 亚洲成av人片在线播放无| eeuss影院久久| 日本一二三区视频观看| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 国内精品宾馆在线| 日本熟妇午夜| 我的女老师完整版在线观看| 两人在一起打扑克的视频| 黄色一级大片看看| 亚洲18禁久久av| 午夜激情福利司机影院| 色综合色国产| 床上黄色一级片| 日本撒尿小便嘘嘘汇集6| 国产毛片a区久久久久| 久久中文看片网| 国产精品美女特级片免费视频播放器| 黄色配什么色好看| 国产精品一区二区三区四区久久| 国产v大片淫在线免费观看| 真实男女啪啪啪动态图| av天堂在线播放| 免费人成视频x8x8入口观看| 亚洲中文日韩欧美视频| 久久99热这里只有精品18| 最近在线观看免费完整版| 韩国av一区二区三区四区| 精品久久久久久久久亚洲 | 最好的美女福利视频网| 亚洲va在线va天堂va国产| 小蜜桃在线观看免费完整版高清| 久久精品国产清高在天天线| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 午夜福利18| 97热精品久久久久久| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 精品一区二区三区视频在线| 国语自产精品视频在线第100页| 亚洲精品色激情综合| 在线看三级毛片| 日本成人三级电影网站| 亚洲精品国产成人久久av| 国产精品久久电影中文字幕| av在线观看视频网站免费| 国模一区二区三区四区视频| 天天一区二区日本电影三级| 成年女人永久免费观看视频| 国产av一区在线观看免费| 国产三级中文精品| 一个人观看的视频www高清免费观看| 欧美潮喷喷水| 人人妻人人澡欧美一区二区| 制服丝袜大香蕉在线| 又黄又爽又刺激的免费视频.| 亚洲专区国产一区二区| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 成人国产一区最新在线观看| 日本爱情动作片www.在线观看 | 两个人的视频大全免费| 免费人成视频x8x8入口观看| 窝窝影院91人妻| 日韩中字成人| 亚洲人成伊人成综合网2020| av在线蜜桃| 欧美激情在线99| 国产欧美日韩精品一区二区| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片 | 亚洲欧美精品综合久久99| 午夜福利在线观看免费完整高清在 | 亚洲av中文字字幕乱码综合| 久久中文看片网| 欧美3d第一页| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 色5月婷婷丁香| 99热只有精品国产| 国产精品永久免费网站| 欧美日韩精品成人综合77777| 毛片女人毛片| av天堂中文字幕网| 日日干狠狠操夜夜爽| 大又大粗又爽又黄少妇毛片口| eeuss影院久久| 国产精品美女特级片免费视频播放器| 999久久久精品免费观看国产| 成人午夜高清在线视频| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品 | 乱码一卡2卡4卡精品| av天堂在线播放| 亚洲最大成人手机在线| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 啦啦啦韩国在线观看视频| 在线观看一区二区三区| 国产69精品久久久久777片| 动漫黄色视频在线观看| 性插视频无遮挡在线免费观看| 欧美高清成人免费视频www| 久久中文看片网| 91麻豆av在线| 亚洲乱码一区二区免费版| 亚洲四区av| 久久久久国产精品人妻aⅴ院| 久久久久久国产a免费观看| 日韩欧美在线二视频| 波多野结衣高清无吗| 国产精华一区二区三区| .国产精品久久| 我要搜黄色片| 国产亚洲精品av在线| 长腿黑丝高跟| 99热这里只有是精品50| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 国产乱人视频| 麻豆成人午夜福利视频| 熟女电影av网| 日韩高清综合在线| 色综合色国产| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱 | 亚洲精品色激情综合| 精品99又大又爽又粗少妇毛片 | 日韩欧美国产在线观看| 黄色女人牲交| 久久精品国产亚洲av天美| 无遮挡黄片免费观看| 亚洲国产色片| 亚洲成人久久性| 欧美成人一区二区免费高清观看| 网址你懂的国产日韩在线| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 美女高潮喷水抽搐中文字幕| 一级av片app| 中文字幕av成人在线电影| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 欧美最黄视频在线播放免费| 国产精品人妻久久久影院| 99热这里只有精品一区| 最新中文字幕久久久久| 又爽又黄无遮挡网站| 又粗又爽又猛毛片免费看| 亚洲av免费高清在线观看| 欧美最新免费一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品av在线| 变态另类丝袜制服| 日日夜夜操网爽| 亚洲av.av天堂| 91麻豆av在线| eeuss影院久久| 国产69精品久久久久777片| 嫩草影视91久久| 亚洲四区av| 在线观看免费视频日本深夜| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 亚洲黑人精品在线| 成年版毛片免费区| 91久久精品国产一区二区成人| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 欧美绝顶高潮抽搐喷水| 最近中文字幕高清免费大全6 | 少妇的逼好多水| 老女人水多毛片| www.色视频.com| 婷婷丁香在线五月| 免费看a级黄色片| 国产精华一区二区三区| 成年女人看的毛片在线观看| 亚洲精品久久国产高清桃花| 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 久久久久久久久久成人| 国内毛片毛片毛片毛片毛片| 久久久久久久久久成人| 最近中文字幕高清免费大全6 | 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 深夜精品福利| 成人美女网站在线观看视频| 日本精品一区二区三区蜜桃| 天堂网av新在线| 草草在线视频免费看| 午夜福利成人在线免费观看| 一a级毛片在线观看| 中出人妻视频一区二区| av国产免费在线观看| 成年女人毛片免费观看观看9| 日本与韩国留学比较| 在线免费观看不下载黄p国产 | 人妻久久中文字幕网| 亚洲精品日韩av片在线观看| 婷婷丁香在线五月| 久久这里只有精品中国| 直男gayav资源| 搡女人真爽免费视频火全软件 | 日韩大尺度精品在线看网址| 精品久久国产蜜桃| 免费av观看视频| 成人特级av手机在线观看| 日韩一区二区视频免费看| 免费高清视频大片| 麻豆一二三区av精品| 国产成人福利小说| 赤兔流量卡办理| 有码 亚洲区| 美女被艹到高潮喷水动态| 长腿黑丝高跟| 少妇的逼水好多| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精华国产精华液的使用体验 | 波多野结衣高清作品| 黄色欧美视频在线观看| 久久精品影院6| 窝窝影院91人妻| 色哟哟·www| 波多野结衣巨乳人妻| 九九热线精品视视频播放| 中文字幕av在线有码专区| 露出奶头的视频| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 欧美日韩国产亚洲二区| 欧美zozozo另类| 免费无遮挡裸体视频| 嫩草影院入口| 亚洲国产高清在线一区二区三| 久久九九热精品免费| 永久网站在线| 国产成人av教育| 成人国产一区最新在线观看| 女人被狂操c到高潮| 一级a爱片免费观看的视频| 女的被弄到高潮叫床怎么办 | 免费在线观看日本一区| 色综合站精品国产| 中文资源天堂在线| 男女之事视频高清在线观看| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 久久精品91蜜桃| 给我免费播放毛片高清在线观看| 精品人妻偷拍中文字幕| 国产亚洲欧美98| 日本色播在线视频| 国产av一区在线观看免费| 丰满人妻一区二区三区视频av| 真实男女啪啪啪动态图| 成年女人永久免费观看视频| 国产精品亚洲美女久久久| 日本a在线网址| 老熟妇乱子伦视频在线观看| 日韩欧美精品免费久久| 国内精品美女久久久久久| 可以在线观看的亚洲视频| 午夜福利在线在线| 成人亚洲精品av一区二区| 一区福利在线观看| 久久久久久久亚洲中文字幕| 色综合站精品国产| 日本熟妇午夜| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 午夜精品久久久久久毛片777| 波多野结衣高清无吗| 性欧美人与动物交配| 最新中文字幕久久久久| 久久久久久久亚洲中文字幕| 色哟哟·www| 尾随美女入室| 毛片一级片免费看久久久久 | 啪啪无遮挡十八禁网站| 亚洲中文字幕日韩| 51国产日韩欧美| 人人妻人人澡欧美一区二区| 蜜桃久久精品国产亚洲av| 国产91精品成人一区二区三区| 国产精品一区二区免费欧美| a级毛片免费高清观看在线播放| 亚洲性久久影院| 91久久精品国产一区二区成人| 亚洲人成网站在线播放欧美日韩| 国产精品一区www在线观看 | 真实男女啪啪啪动态图| 欧美日韩中文字幕国产精品一区二区三区| 久久国内精品自在自线图片| 永久网站在线| 在线看三级毛片| 少妇被粗大猛烈的视频| 国产精品一区二区免费欧美| or卡值多少钱| 精品福利观看| 午夜精品在线福利| 国产av在哪里看| 亚洲欧美精品综合久久99| 一进一出好大好爽视频| 美女被艹到高潮喷水动态| 亚洲av一区综合| 亚洲经典国产精华液单| 国产真实乱freesex| 日本与韩国留学比较| 蜜桃久久精品国产亚洲av| 深夜精品福利| 亚洲无线观看免费| 午夜福利在线观看吧| 亚洲一区二区三区色噜噜| 三级毛片av免费| 亚洲成人中文字幕在线播放| 国产色爽女视频免费观看| 色综合站精品国产| 色综合色国产| 精品一区二区三区视频在线| 少妇人妻一区二区三区视频| 老女人水多毛片| 九九热线精品视视频播放| 亚洲国产精品合色在线| 男人和女人高潮做爰伦理| 午夜福利在线在线| 日本在线视频免费播放| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 给我免费播放毛片高清在线观看| av在线观看视频网站免费| 亚洲美女搞黄在线观看 | 99在线视频只有这里精品首页| 亚洲精品一区av在线观看| 别揉我奶头 嗯啊视频| 哪里可以看免费的av片| 不卡视频在线观看欧美| 久久九九热精品免费| 免费看a级黄色片| 国内久久婷婷六月综合欲色啪| 国产av不卡久久| 亚洲性久久影院| 亚洲精品久久国产高清桃花| 97碰自拍视频| 精品久久久久久成人av| 少妇的逼好多水| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 午夜福利在线在线| 黄色丝袜av网址大全| 琪琪午夜伦伦电影理论片6080| 久久久久国产精品人妻aⅴ院| 亚洲四区av| 色在线成人网| 男女那种视频在线观看| 欧美一区二区亚洲| av.在线天堂| 亚洲人成伊人成综合网2020| 他把我摸到了高潮在线观看| 人人妻人人看人人澡| 欧美黑人巨大hd| 22中文网久久字幕| 欧美极品一区二区三区四区| 99在线人妻在线中文字幕| 国产探花极品一区二区| 国产精品嫩草影院av在线观看 | 午夜激情福利司机影院| 99久久精品热视频| 亚洲欧美日韩东京热| 给我免费播放毛片高清在线观看| 日韩欧美精品v在线| 国产在线精品亚洲第一网站| 日韩欧美免费精品| 成年女人看的毛片在线观看| 久久精品国产99精品国产亚洲性色| 精品乱码久久久久久99久播| 国产精品亚洲美女久久久| 亚洲欧美清纯卡通| 深夜a级毛片| 亚洲在线观看片| 嫩草影院新地址| 午夜福利在线观看免费完整高清在 | 噜噜噜噜噜久久久久久91| 欧美最新免费一区二区三区| 韩国av在线不卡| 久久久成人免费电影| 午夜免费男女啪啪视频观看 | 老女人水多毛片| 深爱激情五月婷婷| 午夜福利在线观看免费完整高清在 | 一夜夜www| 精品一区二区三区人妻视频| 老司机福利观看| 欧美精品国产亚洲| 伦理电影大哥的女人| bbb黄色大片| 久久这里只有精品中国| 免费av观看视频| 俺也久久电影网| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 日本a在线网址| 一进一出抽搐gif免费好疼| 欧美高清性xxxxhd video| 亚洲无线在线观看| 婷婷亚洲欧美| a在线观看视频网站| 一区二区三区高清视频在线| 男女那种视频在线观看| 欧美一区二区国产精品久久精品| 色吧在线观看| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 久久欧美精品欧美久久欧美| 91麻豆av在线| 一进一出好大好爽视频| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 不卡视频在线观看欧美| 我要搜黄色片| 天天一区二区日本电影三级| 99riav亚洲国产免费| av中文乱码字幕在线| 欧美极品一区二区三区四区| 波多野结衣高清作品| 伊人久久精品亚洲午夜| 美女cb高潮喷水在线观看| 午夜福利在线在线| 亚洲美女搞黄在线观看 | 悠悠久久av| 一级av片app| 十八禁网站免费在线| 天堂av国产一区二区熟女人妻| 两个人视频免费观看高清| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 日本熟妇午夜| 变态另类丝袜制服| 亚洲第一电影网av| 最新中文字幕久久久久| 午夜激情福利司机影院| 在线a可以看的网站| 亚洲aⅴ乱码一区二区在线播放| 99精品在免费线老司机午夜| 亚洲av美国av| 中文字幕人妻熟人妻熟丝袜美| 美女大奶头视频| 一进一出抽搐动态| 成人永久免费在线观看视频| 色吧在线观看| 久久久久久久久久久丰满 | 一区福利在线观看| 日本黄色片子视频| 国产精品av视频在线免费观看| 国产欧美日韩精品一区二区| 国产精品久久久久久av不卡| 欧美又色又爽又黄视频| 老师上课跳d突然被开到最大视频| 听说在线观看完整版免费高清| 国产亚洲精品久久久久久毛片| 麻豆精品久久久久久蜜桃|