• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries:A molecular dynamics simulation study?

    2021-05-24 02:23:28QiXinXiao肖啟鑫ZhaoYangHou侯兆陽ChangLi李昌andYuanNiu牛媛
    Chinese Physics B 2021年5期

    Qi-Xin Xiao(肖啟鑫), Zhao-Yang Hou(侯兆陽), Chang Li(李昌), and Yuan Niu(牛媛)

    School of Science,Chang’an University,Xi’an 710064,China

    Keywords: twin nanowire,gold,non-uniform distribution,mechanical property,molecular dynamics simulation

    1. Introduction

    Metallic nanowires have been widely studied due to their unique physicochemical and mechanical behaviors.[1,2]Particularly,gold nanowire usually displays excellent chemical stability and good biocompatibility,which makes it possess some potential applications in biosensor,nanoscale electric and mechanical devices,and energy conversion.[3–5]One special type of grain boundary, twin boundary (TB), is a kind of planar stacking fault whose lattice structure exhibits a mirror symmetry across the boundary. The metallic nanowires with high density of TBs always display a remarkable enhancement of strength and considerable plasticity.[6–9]

    The metallic nanowires with uniform distribution of TBs have been studied extensively.[10–18]Some studies[10–13]showed that the TBs can lead the nanowire to be strengthened.Furthermore, it has been revealed that the TBs provide a repulsive force for dislocation nucleation and it increases with twin boundary spacing (TBS) decreasing, so that the yielding stress is enhanced with TBS decreasing.[10,14]Meanwhile,some studies[15–18]have shown that the TBs provide a dislocation source,which gives rise to the softening effect of TBs.

    The nanowires with non-uniform distribution of TBs are often obtained experimentally.[19–21]Wang et al.[19]observed the plastic deformation and fracture of twinned gold nanowires by the in-situ tensile tests. They claimed that the nanowire with ultrahigh-density twin (UDT) has better strength than that with low-density twin(LDT),but the UDT nanowire has worse plasticity. Moreover,the bimodal twin distribution with a mixture of UDT and LDT spacings was often observed experimentally. The bimodal structure leads to a compromise in strength and semibrittle fracture. However, the effects of the distributions of different TBSs on the mechanical property and deformation mechanism of twinned gold nanowire have not been systematically studied. Recently,the distribution effects of different TBSs in twinned Cu nanofilms were studied by Sun et al.[22]using the MD method. They found that the distributions of different TBSs remarkably affect the ductility of Cu nanofilms but have almost no contribution to strengthening. The initial dislocations always appear in the larger TBS region. The failure usually occurs at or near the TBs adjacent to the larger TBS. While many researches have shown that the mechanical property and deformation mechanism of two-dimensional nanofilms are quite different from those of the one-dimensional nanowires.[1,23,24]

    Accordingly, the mechanical property and deformation mechanism of twinned gold nanowires with non-uniform TBs are investigated by the MD method in this work. Meanwhile,these results are compared with those of the twinned gold nanowires with the uniform distribution of TBs.

    2. Computational method

    The MD method is used to simulate the tensile process of twinned gold nanowires by using the large-scale atomistic/molecular massively parallel simulator (LAMMPS).[25]The embedded atom model (EAM) potential developed by Sheng et al.[26]for gold is used in this study. The velocity-Verlet integrator in time steps of 2 fs is used in the entire simulations.

    To investigate the effect of TBS, the cylindrical gold nanowires with uniform distribution of TBs are constructed as shown in Fig.1. Three types of nanowires with ultrahighdensity twin (UDT, λ = 1.41 nm), medium-density twin(MDT, λ =2.82 nm), low-density twin (LDT, λ =4.23 nm)are constructed to compare with the experimental results by Wang et al.[19]The initial configuration of cylindrical Au twinned nanowires is constructed by repeating Σ3 coherent twins along the[111]axis orientation. The length and diameter of each nanowire are 20.65 nm and 5.46 nm,respectively.

    Fig.1. Configurations of cylindrical twinned gold nanowires with uniform distributions of TBSs,showing(a)twinned nanowire with TBS λ =1.41 nm,(b)twinned nanowire with TBS λ =2.82 nm,(c)twinned nanowire with TBS λ =4.23 nm,and(d)close-up view of the configuration of a TB,where TBs(HCP atoms)are shown in red color, FCC atoms are shown in green color, black color represents the fixed atoms, and cross-section diameter of nanowire is D=5.46 nm.

    To investigate the effects of distributions of different TBSs, cylindrical gold nanowires with non-uniform twin(NUT) are constructed as shown in Fig. 2. Non-uniform distributions of three TBSs in the LDT (λ = 4.23 nm), MDT(λ =2.82 nm), and UDT (λ =1.41 nm), marked as A, B,and C respectively,are constructed. There are six distribution models of the three TBSs,and they are denoted as ABCCBA,ACBBCA, BACCAB, BCAACB, CABBAC, and CBAABC.The diameter of each NUT nanowire is 5.46 nm,which is the same as that in the uniform case. The length of each NUT nanowire is 20.41 nm, which is very close to that of the uniform cases. To characterize the degree of non-uniform of TBs in the NUT nanowires,the non-uniform parameter introduced in the Ref.[22]is used in this work. The degree of local asymmetry is defined as the ratio between the TBSs on both sides of a TB,and the smaller TBS is often divided by the larger one.The smaller local symmetry ratio means the larger degree of local asymmetry. In the following analysis of the plastic deformation mechanism,it is found that the plastic deformations and fractures of the six NUT samples all occur in the second or third TBS regions,thus the local symmetry ratio for the second TBs is considered in this work.

    Fig.2. Six structural models of twinned gold nanowires with different spatial distributions of three TBSs. A,B,C refer to TBS of λ =1.41 nm,TBS of λ =2.82 nm, and TBS of λ =4.23 nm, respectively. (a)–(f)Samples are labelled as ABCCBA,ACBBCA,BACCAB,BCAACB,CABBAC,and CBAABC,respectively.

    The crystallographic orientation of each nanowire in the x, y, and z axes are taken to be in the direction of [11ˉ2],[ˉ110], and [111], respectively. Free boundary conditions are imposed in the x, y, and z axes. Firstly, each sample is relaxed at 273 K for 100 ps to reach equilibrium state under a Nose–Hoover thermostat.[27,28]Then,these nanowire samples are axially tensioned at a constant velocity of 0.056 ?A·ps?1along the [111] direction at 273 K under the NVT ensemble.The resulting strain rate is 1.0×108s?1. This strain rate is higher than those in usual experiments,and serves as the limitation of computational ability. To make the simulation close to the tensile loading process in experiment,[19]both ends of nanowires are fixed in this work, consisting of five atom layers. Virial stress is used to calculate the atomic stress.[29]

    The microstructures of the nanowires are identified by the common neighbor analysis (CNA).[30,31]In this work, FCC and HCP are colored in green and red, respectively. Other atoms which are often located at the surface of nanowire or dislocation core are colored in grey.The TB is a single layer of HCP atoms.Two adjacent layers of HCP atoms are regarded as an intrinsic stacking fault (ISF). Two adjacent layers of HCP atoms with one layer of FCC atoms are identified as an extrinsic stacking fault (ESF).[32]The visualization software of OVITO is used to visualize the microstructure of nanowire.

    3. Results and discussion

    3.1. Mechanical property of twinned gold nanowire

    The mechanical properties of gold nanowires with different distributions of TBs are presented in Fig. 3. And some mechanical parameters obtained from the stress–strain curves are shown in Table 1. As shown in Fig. 3(a), the slopes of different stress–strain curves are the same in the elastic stage.This means that the effects of TBS and its distribution on the Young’s modulus of twinned gold nanowire are very slight.While many reports have shown that the TBS has little effect on the Young’s modulus of nanowires.[18,19,32]

    From Fig. 3(a) and Table 1, it can be found the UDT nanowire has the largest yield stress but the lowest fracture strain; while the LDT nanowire shows the lowest yield stress but the largest fracture strain. This means that the strength of nanowire is enhanced with the decrease of TBS, but the plasticity is reduced. This relationship is consistent with some experimental and simulation results.[12,19]

    From Fig. 3(b) and Table 1, it can be seen that six NUT nanowires change in a narrow range of 2.51 GPa–2.71 GPa,which is between the minimum value(2.47 Gpa in LDT)and the maximum value (3.07 GPa in UDT) of nanowires with uniform distribution of TBs. This indicates that the compromise in strength appears in the NUT nanowires, comparing with the case of uniform distribution of TBs. The strength of the twinned gold nanowire is mainly determined by the TBS,but the effect of its distribution is very weak. This strength compromise in NUT nanowires has also been found in the experiment on twinned gold nanowire,[19]and the simulation of twinned Cu nanofilm.[22,33]

    Fig.3.(a)Stress–strain curves(a)for nanowires with UDT,MDT,and LDT,and (b) for NUT nanowires with different TBS distributions of ABCCBA,ACBBCA,BACCAB,BCAACB,CABBAC,and CBAABC,with insets indicating magnified segment of the stress–strain curves for clarity.

    Table 1. Yielding stress–strains and fracture strains of twinned gold nanowires.

    From Fig.3(b)and Table 1,it can also be found that the fracture strain of six NUT nanowires is in a large range of 36.9%–59.3%.The fracture strain of ABCCBA and ACBBCA nanowires with local symmetry ratio 2/3 are higher than the maximum value (55.7% in LDT) of the nanowires with uniform distribution of TBs. The fracture strain of BACCAB and BCAACB nanowires with a local symmetry ratio 1/3 are lowest, but still higher than the minimum value (35.9% in UDT)of the nanowires with uniform distribution of TBs. The fracture strain of CABBAC and CBAABC nanowires with a local symmetry ratio 1/2 are moderate among these NUT nanowires.These results indicate that the spatial distributions of different TBSs remarkably affect the plasticity of nanowires. The higher the local symmetry ratio of TBS,the better the plasticity of the nanowires will be. This is different from the case of twinned Cu nanofilm,[22]where the samples with uniform distribution of TBs have the best ductility,and the brittle fracture occurs in the NUT nanofilm.

    3.2. Deformation mechanism of twinned gold nanowire

    3.2.1. Effect of TBS on the deformation mechanism of gold nanowires

    Figure 4 shows the evolution of microstructures of twinned gold nanowire with LDT (λ = 4.23 nm) in the uniaxial tensile process. As shown in Fig. 4(a), a dislocation nucleates at the intersection between the free surface and TBs at a strain of 2.58%, accompanied by an ISF behind, which has been observed in earlier experiments and simulations.[10–13,15,19]This dislocation spreads in the nanowire with the increase of strain and is hindered by the TBs at a strain of 2.74%as shown in Fig.4(b). At the same time,some new dislocations nucleate.When the strain is 3.01%[see Fig.4(c)],the stacking faults slide and the ISF transforms into an ESF.Due to the interaction between dislocations and TBs,the TBs are distorted and many disordered atoms form near the TBs [see Fig. 4(c)], in which the nanowire breaks when the strain reaches 55.7%.

    Figure 5 shows the evolution of microstructures of gold with UDT (λ =1.41 nm) in the uniaxial tensile process. As shown in Fig.5(a),some dislocations form at a strain of 3.9%.During the interaction between dislocations and TBs,shear localization forms at a strain of 4.2% [see Fig. 5(b)], in which the nanowire breaks when the strain reaches 35.9%.

    According to the above microstructure analysis of gold nanowires with LDT and UDT, it can be found that the dislocations can propagate and annihilate in the LDT nanowire and the stacking faults glide in it,due to the large space to accommodate their movement. However, there is limited space for the movement of dislocations and stacking faults in the UDT nanowire,thus resulting in the shear localization. So the twinned gold nanowire with larger TBS has better plasticity.

    Fig.4. Microstructures of gold nanowire with LDT(λ =4.23 nm)in deformation and fracture process at different strains of(a)2.58%,(b)2.74%,(c)3.01%,(d)55.7%.

    Fig. 5. Microstructures of gold nanowire with LDT (λ =1.41 nm) in deformation and fracture process at different strains of (a) 3.9%, (b) 4.2%, (c)35.9%,with part of Fig.5(b)magnified for displaying distribution of the shear strain.

    3.2.2. Effect of distribution of TBs on deformation mechanism of gold nanowire

    As the above analyses, the six NUT nanowires can be classified as three categories according to their mechanical properties and local symmetry ratios,respectively. Moreover,the nanowires belong in the same category have similar mechanical properties and deformation mechanisms, so we discuss only one case in each category to clarify their deformation mechanisms for clarity.That is,the ACBBCA,BACCAB,and CBAABC nanowires are selected. Figure 6 shows the microstructural evolutions of the three typical NUT nanowires.For the ACBBCA nanowire as shown in Fig. 6(a), the dislocation first forms in the TBS of C, and then some new dislocations form in the TBS of B. During the interaction of dislocations and TBs,many disordered atoms form near the TBs between the TBS of C and TBS of A at a strain of 15.2%. Finally,the nanowire breaks near the TBs between the TBS of C and the TBS of A.

    For the BACCAB nanowire as shown in Fig.6(b),all dislocations nucleate and spread in the TBS of C. At a strain of 14.3%, many disordered atoms are formed near the TBs between the TBS of C and the TBS of A,and remarkable necking appears in the TBS of C.Finally,the nanowire breaks near the TBs between the TBS of C and the TBS of A at a strain of 38.5%.

    For the CBAABC nanowire as shown in Fig. 6(c), some dislocations first form in the TBS of C,and then they gradually annihilate at a strain of 15.5%.Meanwhile,many new dislocations form in the TBS of B,and many disordered atoms form near the TBs between the TBS of B and the TBS of A.Finally,the nanowire breaks near the TBs between the TBS of B and the TBS of A at a strain of 44.8%.

    Fig. 6. Microstructures of gold nanowires with NUT in deformation and fracture process, showing (a) ACBBCA nanowire at different strains, (b)BACCAB nanowire at different strains,and(c)CBAABC nanowire at different strains.

    According to the above microstructure analysis of gold nanowires with NUT, it can be found that the initial dislocation always forms in the largest TBS of C. This is due to the smaller nucleation stress required to form the dislocation in the larger TBS of C.[10,17]This result is in agreement with the experimental result of twinned gold nanowire[19]and simulation result of twinned Cu nanofilm.[22,33]

    A comparison of the dislocation characteristics among the three NUT nanowires shows that the dislocations move in the TBS of C and the TBS of B for the ACBBCA nanowire with a local symmetry ratio of 2/3,in the TBS of B and the TBS of C for the CBAABC nanowire with a local symmetry ratio of 1/2,and only in the TBS of C for the BACCAB nanowire with a local symmetry ratio of 1/3. And most of dislocations appear in the second or third TBS region in the plastic deformation and fracture process. The NUT nanowires with higher local symmetry ratio have larger space to accommodate the dislocation motion, so the plasticity of ACBBCA, CBAABC, and BACCAB nanowires decrease in turn.

    It can also be found that the fractures of three NUT nanowires always appear at or near the TBs adjacent to the smallest TBS of A.This may be due to the larger resistance to the propagation of dislocations when they spread toward the TBs with smaller TBS.[14,22]So many disordered atoms form at or near the TBs adjacent to the smallest TBS of A,thus the necking always appears in this region.

    4. Conclusions

    The mechanical property and deformation mechanism of twinned gold nanowires with non-uniform TBs are investigated by the MD method. The evolutions of dislocations in the deformation process are analyzed by the structural characterization method of CNA.

    It is found that both the TBS and its spacing distribution have little effect on the Young’s modulus of twinned gold nanowire. The TBS has a great effect on the strength and plasticity of nanowires, while the distribution of TBs has little effect on the strength of nanowire,but it has a remarkable effect on its plasticity. For gold nanowire with uniform distribution of TBs, its strength is enhanced with the decrease of TBS,while its plasticity declines,which is consistent with the experimental and simulation results. For twinned gold nanowire with non-uniform distribution of TBs, the compromise in strength appears,which is also consistent with the experimental and simulation results. Moreover, the nanowire with higher local symmetry ratio has better plasticity, which is different from Cu nanofilm.

    It is also found that the initial dislocation always forms in the largest TBS of non-uniform twin gold nanowires,which is in agreement with the experimental result of twinned gold nanowire. The fracture always appears at or near the TBs adjacent to the smallest TBS. Few dislocations appear in the second or third TBS region of NUT nanowires in plastic deformation and fracture process. The non-uniform twin gold nanowires with higher local symmetry ratio have larger space to accommodate the dislocation motion,thus they have better plasticity.

    国产精品,欧美在线| 99久久精品热视频| 亚洲av.av天堂| 乱人视频在线观看| 精品无人区乱码1区二区| 国产 一区 欧美 日韩| 欧美+日韩+精品| 精品一区二区三区人妻视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产淫片久久久久久久久| 蜜桃久久精品国产亚洲av| 免费一级毛片在线播放高清视频| 国产极品精品免费视频能看的| 国产午夜精品久久久久久一区二区三区| 床上黄色一级片| 在线观看美女被高潮喷水网站| 日韩亚洲欧美综合| 久久久久久久久久久丰满| 成人永久免费在线观看视频| 中文欧美无线码| 国国产精品蜜臀av免费| 亚洲四区av| 99久久成人亚洲精品观看| 国产探花极品一区二区| 成人三级黄色视频| 一区二区三区四区激情视频 | 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站| 久久精品国产亚洲网站| 欧美日韩国产亚洲二区| av免费观看日本| 国产精品爽爽va在线观看网站| 成人性生交大片免费视频hd| 国产av麻豆久久久久久久| 不卡一级毛片| 99热只有精品国产| 一个人观看的视频www高清免费观看| 又爽又黄无遮挡网站| 国产精品麻豆人妻色哟哟久久 | 天天一区二区日本电影三级| eeuss影院久久| 综合色丁香网| 男人和女人高潮做爰伦理| 国产精华一区二区三区| 国产不卡一卡二| 免费av毛片视频| 国产精品精品国产色婷婷| 男女视频在线观看网站免费| 热99re8久久精品国产| 精品久久久久久成人av| 国产精品野战在线观看| 欧美日韩综合久久久久久| 国产三级中文精品| 国内精品美女久久久久久| 久久亚洲精品不卡| 狂野欧美激情性xxxx在线观看| 久久综合国产亚洲精品| 亚洲精品国产av成人精品| 国产精品久久久久久久久免| 日韩大尺度精品在线看网址| 亚洲中文字幕日韩| 日韩精品有码人妻一区| 有码 亚洲区| 最近视频中文字幕2019在线8| 久久综合国产亚洲精品| 午夜免费激情av| 51国产日韩欧美| 国产中年淑女户外野战色| 亚洲一级一片aⅴ在线观看| 日日啪夜夜撸| 亚洲精品成人久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲在线自拍视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产色片| 成人性生交大片免费视频hd| 中文字幕免费在线视频6| 国产在线精品亚洲第一网站| 色5月婷婷丁香| 国产精品久久久久久久电影| 欧美日韩在线观看h| 久久精品综合一区二区三区| 男人的好看免费观看在线视频| a级毛色黄片| 乱码一卡2卡4卡精品| 成人综合一区亚洲| 久久精品国产亚洲av涩爱 | 美女国产视频在线观看| 91久久精品国产一区二区三区| 18禁在线无遮挡免费观看视频| 给我免费播放毛片高清在线观看| 精品日产1卡2卡| 精品久久久噜噜| 国产欧美日韩精品一区二区| 欧美不卡视频在线免费观看| 麻豆久久精品国产亚洲av| 亚洲欧美精品专区久久| 精品久久国产蜜桃| 青青草视频在线视频观看| 男插女下体视频免费在线播放| 久久久久性生活片| 中文字幕人妻熟人妻熟丝袜美| 日日摸夜夜添夜夜添av毛片| 日本色播在线视频| 国产精品久久视频播放| 日韩大尺度精品在线看网址| 国产一区二区三区av在线 | 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 国产三级中文精品| 欧美性猛交黑人性爽| 久久韩国三级中文字幕| 中文字幕久久专区| 日产精品乱码卡一卡2卡三| 免费大片18禁| av女优亚洲男人天堂| 久久草成人影院| 青春草视频在线免费观看| 国产成人一区二区在线| 精品不卡国产一区二区三区| 久久99蜜桃精品久久| 国产精品一区二区三区四区久久| 99久久无色码亚洲精品果冻| 亚洲最大成人手机在线| 99在线人妻在线中文字幕| 丝袜美腿在线中文| 久久久国产成人精品二区| 亚洲欧美成人精品一区二区| 国产极品精品免费视频能看的| 国产精品久久久久久精品电影| 日本av手机在线免费观看| 我要看日韩黄色一级片| 老司机影院成人| 久久精品国产亚洲网站| 波多野结衣巨乳人妻| 亚洲中文字幕一区二区三区有码在线看| 国产不卡一卡二| 国产高清有码在线观看视频| 欧美成人免费av一区二区三区| 尾随美女入室| 国内少妇人妻偷人精品xxx网站| 深夜a级毛片| www.色视频.com| 国产黄片美女视频| 18禁黄网站禁片免费观看直播| 成人国产麻豆网| 淫秽高清视频在线观看| 能在线免费看毛片的网站| 亚洲av不卡在线观看| 欧美潮喷喷水| 欧美日韩综合久久久久久| 久久精品国产自在天天线| 美女黄网站色视频| 国模一区二区三区四区视频| 免费看日本二区| 久久久久久久久久成人| av免费观看日本| 色哟哟·www| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| 欧美潮喷喷水| 成人毛片a级毛片在线播放| avwww免费| 丝袜美腿在线中文| 内地一区二区视频在线| 国产精品国产高清国产av| 菩萨蛮人人尽说江南好唐韦庄 | 99久久中文字幕三级久久日本| 亚洲av成人av| 久久久色成人| av专区在线播放| 久久欧美精品欧美久久欧美| 综合色av麻豆| 久久6这里有精品| 麻豆成人午夜福利视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线自拍视频| 天堂网av新在线| 中国美白少妇内射xxxbb| 亚洲无线观看免费| 美女脱内裤让男人舔精品视频 | 国产黄色小视频在线观看| 国产麻豆成人av免费视频| 99久久精品一区二区三区| ponron亚洲| 亚洲欧洲日产国产| 亚洲国产色片| 看黄色毛片网站| 国产三级在线视频| 午夜亚洲福利在线播放| 国产美女午夜福利| 啦啦啦韩国在线观看视频| 熟女电影av网| 日韩中字成人| 天堂√8在线中文| 一边摸一边抽搐一进一小说| 一卡2卡三卡四卡精品乱码亚洲| 搞女人的毛片| 人人妻人人澡欧美一区二区| 一级毛片久久久久久久久女| 午夜激情福利司机影院| 免费一级毛片在线播放高清视频| 两个人的视频大全免费| 国产精品一及| 午夜免费激情av| 国产精品永久免费网站| 亚洲经典国产精华液单| 男人舔女人下体高潮全视频| 日韩成人av中文字幕在线观看| 少妇熟女欧美另类| 久久这里有精品视频免费| 99久久久亚洲精品蜜臀av| 一夜夜www| 久久久精品大字幕| 久久精品国产亚洲av香蕉五月| 国产麻豆成人av免费视频| 三级经典国产精品| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 国产亚洲5aaaaa淫片| 国模一区二区三区四区视频| 日本熟妇午夜| 中文字幕熟女人妻在线| 国产探花在线观看一区二区| 亚洲av.av天堂| 久久99热6这里只有精品| 国产熟女欧美一区二区| 日日干狠狠操夜夜爽| 99热精品在线国产| 国产蜜桃级精品一区二区三区| 最近2019中文字幕mv第一页| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 国产色爽女视频免费观看| 村上凉子中文字幕在线| 久99久视频精品免费| 三级经典国产精品| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区 | 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩高清在线视频| 国产真实伦视频高清在线观看| 好男人在线观看高清免费视频| 日韩,欧美,国产一区二区三区 | 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 3wmmmm亚洲av在线观看| 91久久精品电影网| 久久精品夜夜夜夜夜久久蜜豆| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 身体一侧抽搐| 九九热线精品视视频播放| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| 亚洲av.av天堂| 毛片女人毛片| 亚洲久久久久久中文字幕| 99riav亚洲国产免费| 直男gayav资源| 小说图片视频综合网站| 99久久精品热视频| 美女xxoo啪啪120秒动态图| 国产精品三级大全| 国产日本99.免费观看| 国产精品99久久久久久久久| 国产精品久久久久久精品电影| 国产真实乱freesex| 日韩欧美在线乱码| 免费观看a级毛片全部| av卡一久久| 亚洲av成人精品一区久久| 男的添女的下面高潮视频| 中文字幕熟女人妻在线| 人妻系列 视频| 亚洲性久久影院| 26uuu在线亚洲综合色| 最后的刺客免费高清国语| 中文字幕av在线有码专区| 久久欧美精品欧美久久欧美| 亚洲av一区综合| 99久久人妻综合| 欧美日韩综合久久久久久| 亚洲av免费在线观看| 国产美女午夜福利| 赤兔流量卡办理| 亚洲国产精品sss在线观看| 97超视频在线观看视频| 最后的刺客免费高清国语| 一级毛片aaaaaa免费看小| 午夜福利在线在线| 亚洲av熟女| 午夜久久久久精精品| 日韩av不卡免费在线播放| 舔av片在线| 成年av动漫网址| 亚洲一区二区三区色噜噜| АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 搞女人的毛片| 亚洲av.av天堂| 可以在线观看的亚洲视频| 国产伦在线观看视频一区| 日韩中字成人| 中国美女看黄片| 国产成人精品一,二区 | 久久久成人免费电影| 美女xxoo啪啪120秒动态图| 黄色视频,在线免费观看| 女人被狂操c到高潮| h日本视频在线播放| 国产成人91sexporn| 午夜爱爱视频在线播放| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| 最近中文字幕高清免费大全6| 成年av动漫网址| 欧美最新免费一区二区三区| 国产精品三级大全| 国产v大片淫在线免费观看| 亚洲人成网站在线播放欧美日韩| 99在线人妻在线中文字幕| 91精品国产九色| 国产高潮美女av| 亚洲四区av| 国产亚洲精品久久久久久毛片| 女人十人毛片免费观看3o分钟| 亚洲无线观看免费| 一级毛片久久久久久久久女| 熟妇人妻久久中文字幕3abv| 午夜亚洲福利在线播放| 久久精品国产亚洲av涩爱 | 国产久久久一区二区三区| 精品熟女少妇av免费看| 成人二区视频| 少妇的逼水好多| 91麻豆精品激情在线观看国产| 麻豆精品久久久久久蜜桃| 午夜亚洲福利在线播放| 少妇熟女欧美另类| 成人特级黄色片久久久久久久| 最近视频中文字幕2019在线8| 久久久国产成人精品二区| 网址你懂的国产日韩在线| 亚洲欧洲国产日韩| 午夜福利视频1000在线观看| 欧美高清成人免费视频www| 一区福利在线观看| 亚洲国产色片| 九草在线视频观看| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 精品久久久久久久久av| av专区在线播放| 有码 亚洲区| 欧美潮喷喷水| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 国产黄a三级三级三级人| 青春草视频在线免费观看| 亚洲国产欧美在线一区| 成人一区二区视频在线观看| 一级毛片电影观看 | 内地一区二区视频在线| 精品一区二区免费观看| 国产色爽女视频免费观看| 我的女老师完整版在线观看| 国产 一区 欧美 日韩| 国产成人91sexporn| 99久久成人亚洲精品观看| 精品一区二区免费观看| 十八禁国产超污无遮挡网站| 美女黄网站色视频| 大又大粗又爽又黄少妇毛片口| 国产成年人精品一区二区| 国产综合懂色| 国产一区亚洲一区在线观看| 国产av麻豆久久久久久久| 成年女人永久免费观看视频| 国产午夜精品一二区理论片| 日本熟妇午夜| 色播亚洲综合网| 国产毛片a区久久久久| 欧美日韩乱码在线| 白带黄色成豆腐渣| 插阴视频在线观看视频| 国内精品美女久久久久久| 午夜老司机福利剧场| 国产亚洲精品久久久久久毛片| 午夜福利视频1000在线观看| 一进一出抽搐gif免费好疼| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 午夜爱爱视频在线播放| 亚洲真实伦在线观看| 久久99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 最近2019中文字幕mv第一页| 中文欧美无线码| 99久国产av精品| 成人国产麻豆网| 99久久成人亚洲精品观看| 久久中文看片网| 亚洲av成人精品一区久久| 99在线人妻在线中文字幕| 看片在线看免费视频| 激情 狠狠 欧美| 亚洲无线观看免费| 欧美在线一区亚洲| 在线天堂最新版资源| 久久久色成人| 2022亚洲国产成人精品| 如何舔出高潮| 亚洲av男天堂| 成人欧美大片| 青青草视频在线视频观看| 久久久久国产网址| 插阴视频在线观看视频| 欧美一区二区精品小视频在线| 久久精品夜色国产| 久久国产乱子免费精品| 日本在线视频免费播放| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 综合色丁香网| h日本视频在线播放| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 热99re8久久精品国产| 国产精品福利在线免费观看| 国产久久久一区二区三区| 国产精品国产三级国产av玫瑰| 日韩大尺度精品在线看网址| 青春草亚洲视频在线观看| 国产成人freesex在线| 欧美成人a在线观看| av.在线天堂| 午夜爱爱视频在线播放| 国产真实伦视频高清在线观看| 欧美另类亚洲清纯唯美| 黑人高潮一二区| 麻豆一二三区av精品| 一级二级三级毛片免费看| 亚洲最大成人中文| 午夜免费激情av| 国产精品综合久久久久久久免费| 欧美3d第一页| 亚洲综合色惰| 日韩一区二区视频免费看| 免费看美女性在线毛片视频| 伦理电影大哥的女人| 春色校园在线视频观看| 国产三级中文精品| 成人亚洲精品av一区二区| 亚洲人成网站在线观看播放| 国产男人的电影天堂91| 日韩欧美在线乱码| 欧美在线一区亚洲| 永久网站在线| 国产淫片久久久久久久久| 全区人妻精品视频| 午夜免费激情av| ponron亚洲| 亚洲成人久久爱视频| 不卡一级毛片| 亚洲国产精品成人久久小说 | 免费看日本二区| 日韩欧美一区二区三区在线观看| 精品久久久久久久久久免费视频| 亚洲无线在线观看| 国产毛片a区久久久久| 亚洲欧美清纯卡通| 此物有八面人人有两片| 国产v大片淫在线免费观看| 久久久久久久久大av| 日韩大尺度精品在线看网址| 青青草视频在线视频观看| 国产精品1区2区在线观看.| 国产精品嫩草影院av在线观看| 91午夜精品亚洲一区二区三区| 免费看日本二区| 国产精品一及| 欧美高清成人免费视频www| 69av精品久久久久久| 日本黄色视频三级网站网址| 青春草国产在线视频 | 久久99热6这里只有精品| 久久亚洲精品不卡| 一级毛片aaaaaa免费看小| 免费观看人在逋| 精品不卡国产一区二区三区| 美女 人体艺术 gogo| av免费观看日本| av在线老鸭窝| 最近视频中文字幕2019在线8| 成年版毛片免费区| 能在线免费看毛片的网站| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 色综合色国产| 国产成人a∨麻豆精品| av天堂中文字幕网| 性色avwww在线观看| 在线天堂最新版资源| 国产精品久久久久久av不卡| .国产精品久久| 精品久久久久久久末码| 看十八女毛片水多多多| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av涩爱 | 伦精品一区二区三区| 免费看美女性在线毛片视频| 伦精品一区二区三区| 观看美女的网站| www.av在线官网国产| av卡一久久| 亚洲中文字幕日韩| 亚洲av一区综合| 能在线免费看毛片的网站| 搞女人的毛片| а√天堂www在线а√下载| 少妇熟女aⅴ在线视频| 欧美激情在线99| 一级黄色大片毛片| 天美传媒精品一区二区| 欧美高清成人免费视频www| 国产精品女同一区二区软件| 欧美激情国产日韩精品一区| 嫩草影院新地址| 婷婷亚洲欧美| 天天躁日日操中文字幕| 成人午夜精彩视频在线观看| 亚洲高清免费不卡视频| 国产极品精品免费视频能看的| 久久久久性生活片| 91麻豆精品激情在线观看国产| 18+在线观看网站| 国产精品久久久久久av不卡| 又粗又爽又猛毛片免费看| 精品99又大又爽又粗少妇毛片| 亚洲内射少妇av| 亚洲最大成人中文| 在线免费十八禁| 国产真实伦视频高清在线观看| 国产高清三级在线| 一个人免费在线观看电影| 熟女电影av网| 女人被狂操c到高潮| 亚洲av免费在线观看| 国产精品99久久久久久久久| 久久午夜亚洲精品久久| 国产一区二区三区av在线 | 亚洲成人精品中文字幕电影| 国产成人a区在线观看| 天美传媒精品一区二区| 人妻夜夜爽99麻豆av| 午夜福利成人在线免费观看| 国产一区二区激情短视频| 黄色一级大片看看| 成人性生交大片免费视频hd| 搡女人真爽免费视频火全软件| 小蜜桃在线观看免费完整版高清| 亚洲高清免费不卡视频| 99国产极品粉嫩在线观看| 国产乱人偷精品视频| 国产精品精品国产色婷婷| 亚洲电影在线观看av| 女人被狂操c到高潮| 欧美精品国产亚洲| 欧美不卡视频在线免费观看| 午夜激情福利司机影院| 我的女老师完整版在线观看| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 国产一区二区在线观看日韩| 欧美变态另类bdsm刘玥| 国模一区二区三区四区视频| 国产三级在线视频| 午夜精品一区二区三区免费看| 欧美zozozo另类| 亚洲精品亚洲一区二区| 国产 一区 欧美 日韩| 嫩草影院新地址| 国产爱豆传媒在线观看| 国产av一区在线观看免费| 国产精品女同一区二区软件| av在线蜜桃| 99热这里只有精品一区| 久久久精品94久久精品| 亚洲成人av在线免费| a级毛色黄片| 亚洲国产欧洲综合997久久,| 成年版毛片免费区| 人妻系列 视频| 亚洲国产欧美在线一区| 看十八女毛片水多多多| 国产日本99.免费观看| 五月玫瑰六月丁香| 看十八女毛片水多多多| 国产视频内射| АⅤ资源中文在线天堂| av福利片在线观看| 性欧美人与动物交配| 国产av不卡久久| 国产精品1区2区在线观看.| 日本黄色片子视频| 亚洲国产欧美在线一区| 亚洲经典国产精华液单| 久久精品久久久久久久性| 床上黄色一级片| 在线观看免费视频日本深夜| 国产单亲对白刺激| 欧美精品国产亚洲| 变态另类成人亚洲欧美熟女| 成人二区视频|