• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor

    2021-05-24 02:23:28MeryemGrariCifAllahZoheirYasserYousfiandAbdelhakBenbrik
    Chinese Physics B 2021年5期

    Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik

    1University Mohamed First,Department of Physics,LETSER Laboratory,Oujda,Morocco

    2University Mohamed First,Department of Mathematics,LANO Laboratory,Oujda,Morocco

    Keywords: fluid model,numerical simulation,SiNxHy,capacitively coupled plasma reactor

    1. Introduction

    The development of semiconductor materials and devices is a powerful driver of many revolutionary changes and innovations in the semiconductor industry. Thin films on silicon (Si) alone have an unsatisfactory performance due to the inherent properties of the material, which motivated researchers to consider introducing a gas mixture. In the literature,the gas mixtures often used are hydrogenated silicon nitride(SiNxHy),[1–4]silicon oxide(SiOx),[5]silicon oxynitride(SiOxNy),[6]and amorphous carbon(a-C:H).[7,8]

    Hydrogenated silicon nitride(SiNxHy)has a band gap of~4.6 eV and a permittivity of ~6,[8]making it more suitable for the production of memory elements and charge carrier injectors. Indeed, silicon nitride has a higher density of states at the interface with silicon compared to other gas mixtures.The SiNxHythin film is prepared by the capacitively coupled plasma(CCP)process, comprising the mixture of silane(SiH4), ammonia (NH3), and hydrogen (H2). Other reagents can also be added to this mixture.

    Modeling and simulation of plasma discharges are considered as an indispensable tool to improve the knowledge about the physico-chemical processes produced in plasma,[9–11]which helps understand the complex spatiotemporal dynamics of plasma, and also assists in the design of new reactors or the optimization of existing reactors.

    The mechanisms of low pressure and low temperature plasma discharges are more complex to study.This complexity is due to the important interactions between particles, which give rise to non-linear phenomena; it is also caused by the presence of very rich chemical kinetics consisting of many reaction processes which are difficult to study quantitatively.

    The deposition rate,the uniformity,and the film composition are strongly influenced by the physico-chemical parameters of the reactor,essentially the power,the RF frequency,the pressure, the distance between electrodes, and the gas mixture. Many researchers investigated the effect of varying the physico-chemical parameters of the reactor. For instance,the effect of varying the electrode spacing for SiH4/NH3/N2/He mixture was considered in Ref. [3]; the effect of varying the pressure for SiH4/He mixture was investigated in Ref. [12],many other studies of varying physico-chemical parameters can be found in Refs.[13,14].

    In this work, we are interested in the evolution of the fundamental characteristics of hydrogenated silicon nitride RF plasma,in a low pressure and a low temperature CCP reactor,by varying the pressure and space between electrodes.Our objective is to discuss the influence of the latter parameters on the fundamental characteristics of the RF plasma discharge,where the focus is on the pressure-distance product that allows a high deposition rate of the SiNxHythin film and a reduced surface temperature.

    2. Plasma discharge

    The electrons naturally present in the gas will be accelerated by the external field applied towards the anode,and they collide with the neutral particles and lose energy due to inelastic collisions (excitation, dissociation, and ionization of the gas). Each ionizing collision allows the formation of a new electron, which is in his turn accelerated and comes into colliding with the neutral particles(Fig.1). The repetition of this process allows the number of electrons and positive ions to grow.

    Fig.1. Secondary electron generation.

    The creation of secondary electrons is influenced by the variation of operational parameters, such as frequency and potential,[15–17]the type of gas,[4,5,18]and especially the influence of pressure and reactor geometry.[3,14,19]

    2.1. Equations

    The general equations of a plasma discharge are resolved to take into account the following hypotheses:

    ? The gas is weakly ionized.

    ? The pressure is low.

    ? No magnetic field is applied.

    ? The electrons are supposed to have a Maxwellian energy distribution function.

    ? Mobility and diffusion coefficient satisfy Einstein’s relation.

    Equations(1)–(7)represent a set of equations solved in a lowtemperature plasma simulation.

    ? Electron and ion transport

    ? Electron and ion flux

    ? Electron energy

    ? Energy flux

    ? Electric field

    Here e is the elementary charge, neand niare respectively the electron and ion densities, μe= e/(meveN) andμi=Zie/(miviN)are respectively the electron and ion mobilities, and De=KBTe/(meveN)and Di=KBTi/(miviN)are respectively the electron and ion diffusivity, meis the electron masse, veNand viNare the electron and ion-neutral collision frequencies, nε=neε and Dε=neDeare the electron energy density and electron energy diffusivity where ε is the electron energy,E=??φ is the electric field where φ is the electrical potential, Teand Tiare respectively the electronic and ionic temperatures.

    ? Source terms

    where xris the molar fraction of species r,Nnis the total density of the neutrals, kris the kinetic coefficient, σr(ε)are the cross sections of elastic and inelastic collisions, f(ε) is the Maxwellian electronic energy distribution function.

    2.2. Chemical reactions

    Our model considers elastic and inelastic excitation and ionization collisions. From the radicals formed, a multitude of reactions can take place within the plasma giving compounds that will intervene in the deposition. The calculation of the source term (Eqs. (8)–(10)) is crucial for the selection of effective sections of the different reactions taken into account.[1,2,16]Thus, a wide range of energy was considered for the most reactive collisions.

    The predominant reactions occurring in plasma are shown in Tables 1 and 2.

    Table 1. Energy of reactions NH3 and SiH4.

    The cross sections data used in simulation, SiH4, NH3,and H2collisions are given by Hayashi.[20]

    Table 2. Kinetic coefficient of reactions NH3,SiH4,and H2.

    2.3. Boundary conditions

    The boundary conditions used in this section are similar to those presented in Refs.[1,2,14].

    The limit condition for the Poisson equation is the amount of potential on the electrodes: V = 0 electrical potential at the cathode. Vrf=V0sin(ωt)electrical potential at the anode.Here, ω and Vrfare respectively the pulsation and the amplitude of the alternative voltages.

    The limit condition of electrons has a proportional flux to their thermal velocity,whereas ions have a zero gradient near the walls

    where vthis the thermal velocity of electrons, and γpis the secondary electron emission coefficient that is initiated by the collision of ions with the surface.

    Quantities vthand qeare calculated by

    3. Results and discussion

    The CCP reactor is driven by a sinusoidal voltage with a frequency of 13.56 MHz at a temperature of 500 K. A silane mixture diluted with hydrogen and ammonia is used as a deposition precursor in this simulation. The RF voltage taken is 130 V, applied to the anode at pressure p and inter-electrode distance d. The results are presented at a final computation time of the order of 7.37μs.

    Figures 2–5 show the variation of electron density, temperature, electric field, and electron velocity as a function of pressure, taking a pressure margin between 0.3 and 1.2 Torr for an inter-electrode distance of 2.7 cm. Keeping the pressure at 0.3 Torr and varying the distance between 2.7 and 7 cm,Figures 6–10 respectively show the variation of electron density, temperature, electric field, and velocity as a function of the distance between the electrodes. Finally, figures 11 and 12 show the electron density and temperature for a pressuredistance product noted p×d.

    Fig.2. Variation of electron density(cm?3)as a function of pressure.

    Fig.3. Electronic temperature variation(eV)as a function of pressure.

    Fig.4. Electric field variation(V/cm)as a function of pressure.

    Fig.5. Electronic velocity variation(cm/s)as a function of pressure.

    By increasing the pressure in the deposition system up to 0.7 Torr, the radical density rises as the precursor density grows (Fig. 2). Another effect of increasing the pressure in the deposition chamber is that it leads to the accumulation of radicals in the region between sheaths, which reduces the temperature in this region (Fig. 3). According to Bavafa,[14]the typical pressure in a capacitively coupled PECVD process mostly varies between 0.05 and 1 Torr. Therefore, when we exceed the limits of the physical parameters(0.05 and 1 Torr),we should expect anomalies. Indeed, the simulation results(Fig.2)show that the electron density becomes less important and almost bipolar once the pressure reaches 1.2 Torr, which does not present the characteristics of RF plasma discharge.

    An electric field is introduced and added to the field created by the charges in the plasma. Figure 4 shows that it becomes large (in absolute value) when the pressure increases,causing a large displacement of electrons and ions. In the cathode region, the electrons are strongly accelerated, which explains the high speed (Fig. 5) as well as the high temperature in this region (Fig. 3). As we get closer to the anode region, we notice that there is an inversion of the field; as a consequence, the electrons gain energy which accelerates the electrons towards the electrode(Fig.5).

    The influence of the distance between electrodes on the discharge is shown in Figs. 6–10. For a small distance between 2.7 and 4 cm,the electron density increases even as the distance increases(Fig.6).This means that this range gives the electrons enough space for the creation of secondary electrons,which leads to a large migration of electrons to the cathode,which explains the high temperature shown in Fig. 8. When the distance becomes larger(between 5 and 7 cm,Fig.7),the collisions between electrons will be small, and consequently the creation of secondary electrons will be low. Also, when the distance increases,the plasma density region moves closer to the anode (Figs. 6 and 7). Figure 9 shows that the electric field decreases (in absolute values) as the distance between electrodes increases, which explains the decrease in electron velocity(Fig.10).

    The evolution of these characteristics corresponds well to the theory of an RF plasma discharge given the density and energy equations.[21,22]Indeed,these results are in accordance with the electron temperature and electric field distributions shown in the literature.[14,19,23]

    Fig.6. Electron density variation(cm?3)as a function of the distance between 2.7 and 3.5 cm.

    Fig.7. Electron density variation(cm?3)as a function of the distance between 5 and 7 cm.

    Fig.8. Electronic temperature variation(eV)as a function of distance.

    Fig.9. Electric field variation(V/cm)as a function of distance.

    In order to determine an optimal pressure-electrode distance p×d product, we will vary both the pressure(between 0.3 and 0.7 Torr) and the inter-electrode distance (between 2.7 and 4 cm) at the same time. The optimal p×d choice is the best compromise between a high electron density and a low surface temperature. Figures 11 and 12 show the variation in electron density and temperature for different pressuredistance p×d products.

    Fig.10. Electronic velocity variation(cm/s)as a function of distance.

    Fig.11. Electronic density distribution in cm?3 for the product p×d.

    Fig.12. Electronic temperature distribution in eV for the product p×d.

    Figure 11 shows that the product 0.7 Torr 2.7 cm surpasses all other electronic densities; it has the highest estimated density of about 5.5×109cm?3,followed by the product 0.5 Torr 3cm with a density close to 4.7×109cm?3and the product 0.5 Torr 4cm with a density close to 4.2×109cm?3.The product 0.7 Torr 4 cm shows an electron density less important with a bipolar shape, which is inadequate in our context. Finally, the lowest of the products is the 0.3 Torr 2.7 cm, which barely reaches 2.3×109cm?3. By examining Fig. 12, we find that the products have almost the same anode temperature with a value close to 3.5 eV. Based on the two criteria of electron density and surface temperature, we can deduce that the product 0.7 Torr 2.7 cm is the optimal choice with respect to all products considered in this simulation.Therefore,this product will allow a better deposition rate,which improves the uniformity of the hydrogenated silicon nitride thin film.

    4. Conclusion and perspectives

    Understanding the RF discharges used in the processing of electronic materials requires a valuable study of the various parameters of discharge reactors. In our work,we were interested in modeling a thin film deposit in a CCP reactor driven by a sinusoidal voltage of 130 V and a frequency of 13.56 MHz at a temperature of 500 K.We used a silane mixture diluted with hydrogen and ammonia for a variable electrode distance d and pressure p. The fluid model used is solved using the one-dimensional finite element method.

    The results of the numerical simulation that we performed by varying the pressure and the distance between electrodes have revealed the importance of these factors in the variation of the fundamental characteristics of the discharge and consequently influencing the quality of the deposit in the reactor.Moreover, by considering the criteria of electron density and surface temperature and examining a wide range of products,we were able to select an optimal pressure-distance product that is 0.7 Torr 2.7 cm. The use of this product will result in the creation of a more reactive plasma volume, which allows an increase in deposition speed and a more conformal surface treatment. Consequently,enhance the quality of the deposit in the CCP reactor.

    久热久热在线精品观看| 国产成人免费无遮挡视频| 中文字幕av电影在线播放| 成人无遮挡网站| 在线 av 中文字幕| 亚洲精品成人av观看孕妇| 纯流量卡能插随身wifi吗| 国产又爽黄色视频| 热99久久久久精品小说推荐| 少妇高潮的动态图| 亚洲av欧美aⅴ国产| 国产精品无大码| 免费观看a级毛片全部| 成人国产麻豆网| 男女国产视频网站| 国产亚洲最大av| 成人18禁高潮啪啪吃奶动态图| 99九九在线精品视频| 三级国产精品片| 欧美亚洲日本最大视频资源| 最近手机中文字幕大全| 国产精品嫩草影院av在线观看| 欧美人与性动交α欧美软件 | 亚洲丝袜综合中文字幕| 亚洲,欧美精品.| 精品99又大又爽又粗少妇毛片| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 免费黄网站久久成人精品| 久久狼人影院| 亚洲欧美成人精品一区二区| 亚洲久久久国产精品| 日本免费在线观看一区| 久久久亚洲精品成人影院| 男女下面插进去视频免费观看 | 久久99热这里只频精品6学生| 多毛熟女@视频| √禁漫天堂资源中文www| 黑人猛操日本美女一级片| 欧美国产精品一级二级三级| 国产亚洲最大av| √禁漫天堂资源中文www| 成人影院久久| 伦理电影免费视频| 黑人猛操日本美女一级片| 人人澡人人妻人| 免费观看性生交大片5| 久久精品国产综合久久久 | 日韩中文字幕视频在线看片| 久久久久精品性色| 熟女av电影| 最新的欧美精品一区二区| 91久久精品国产一区二区三区| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 一区二区av电影网| 大香蕉97超碰在线| 成年女人在线观看亚洲视频| 亚洲精品aⅴ在线观看| 久久久国产一区二区| 在线 av 中文字幕| 久久婷婷青草| 国产精品偷伦视频观看了| 中国国产av一级| 国产日韩欧美视频二区| 成年人免费黄色播放视频| 一区在线观看完整版| 观看美女的网站| 另类精品久久| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看日韩| 午夜91福利影院| 精品人妻一区二区三区麻豆| av网站免费在线观看视频| 国产男女内射视频| 啦啦啦啦在线视频资源| 久久精品人人爽人人爽视色| 国产精品人妻久久久影院| 国产老妇伦熟女老妇高清| 亚洲三级黄色毛片| 大香蕉久久成人网| 国产免费视频播放在线视频| 黑人巨大精品欧美一区二区蜜桃 | 黄色视频在线播放观看不卡| 深夜精品福利| 日本wwww免费看| 午夜福利影视在线免费观看| 国产又色又爽无遮挡免| 日本午夜av视频| 亚洲 欧美一区二区三区| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 国产亚洲欧美精品永久| 免费日韩欧美在线观看| 熟女av电影| 亚洲天堂av无毛| 国精品久久久久久国模美| 久久久久久人妻| 五月开心婷婷网| 美女国产视频在线观看| 人妻少妇偷人精品九色| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 亚洲高清免费不卡视频| 国产成人精品一,二区| 午夜福利网站1000一区二区三区| 亚洲情色 制服丝袜| 国产无遮挡羞羞视频在线观看| 国产一区二区三区综合在线观看 | 精品一品国产午夜福利视频| 国产 一区精品| 在线观看免费高清a一片| 亚洲精品一区蜜桃| 亚洲精品乱码久久久久久按摩| 久久影院123| 免费看av在线观看网站| 插逼视频在线观看| 欧美精品av麻豆av| 国产深夜福利视频在线观看| 中文天堂在线官网| 久久99热这里只频精品6学生| 高清毛片免费看| 你懂的网址亚洲精品在线观看| 亚洲av福利一区| 一二三四在线观看免费中文在 | 日韩av免费高清视频| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 日韩伦理黄色片| 成人无遮挡网站| 久久狼人影院| 精品国产乱码久久久久久小说| 人妻人人澡人人爽人人| 日韩一区二区视频免费看| 久久99精品国语久久久| 一区二区三区乱码不卡18| 精品一区二区三卡| 制服诱惑二区| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 国产成人精品婷婷| 国产欧美日韩一区二区三区在线| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 久久久久久人人人人人| 在线天堂最新版资源| 国产男女内射视频| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 中国国产av一级| 久久久久久人妻| 成年美女黄网站色视频大全免费| 青青草视频在线视频观看| 性色av一级| 日本vs欧美在线观看视频| 一级片'在线观看视频| 美国免费a级毛片| 免费黄网站久久成人精品| 秋霞伦理黄片| 成人免费观看视频高清| 免费高清在线观看视频在线观看| 亚洲av.av天堂| 最近中文字幕高清免费大全6| 久久久久网色| 久久精品国产亚洲av天美| 亚洲少妇的诱惑av| 免费在线观看完整版高清| 久久久久久久久久久久大奶| 又大又黄又爽视频免费| 国产综合精华液| 美女内射精品一级片tv| 免费看av在线观看网站| 日韩视频在线欧美| 久久国产精品大桥未久av| 欧美人与性动交α欧美精品济南到 | 亚洲精品中文字幕在线视频| 国产成人精品在线电影| 久久午夜综合久久蜜桃| 免费黄网站久久成人精品| 寂寞人妻少妇视频99o| 国产日韩一区二区三区精品不卡| 久久精品国产a三级三级三级| 满18在线观看网站| av卡一久久| 青春草视频在线免费观看| 欧美日韩视频精品一区| 熟女人妻精品中文字幕| 久久久久国产网址| 大码成人一级视频| 亚洲精品国产av蜜桃| 永久网站在线| 亚洲 欧美一区二区三区| 免费少妇av软件| 亚洲色图 男人天堂 中文字幕 | 成年人免费黄色播放视频| 精品久久蜜臀av无| 免费黄网站久久成人精品| 天天操日日干夜夜撸| 国产av国产精品国产| 日韩视频在线欧美| av福利片在线| 三级国产精品片| 人体艺术视频欧美日本| 成人18禁高潮啪啪吃奶动态图| 高清在线视频一区二区三区| 国产精品一国产av| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 一级毛片电影观看| 国产精品麻豆人妻色哟哟久久| 黄片无遮挡物在线观看| 久久国内精品自在自线图片| av有码第一页| 夫妻午夜视频| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 国产 精品1| 女人久久www免费人成看片| 日韩三级伦理在线观看| 黑人巨大精品欧美一区二区蜜桃 | 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 最黄视频免费看| 成年人午夜在线观看视频| 久久久久精品人妻al黑| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 91精品三级在线观看| 亚洲综合色网址| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 最后的刺客免费高清国语| 深夜精品福利| 国产视频首页在线观看| 男人添女人高潮全过程视频| 色吧在线观看| 18禁观看日本| 欧美日韩成人在线一区二区| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 中文字幕av电影在线播放| 秋霞伦理黄片| 中文精品一卡2卡3卡4更新| 晚上一个人看的免费电影| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 伦理电影大哥的女人| 精品一区在线观看国产| 青春草视频在线免费观看| 国产精品秋霞免费鲁丝片| 亚洲精品成人av观看孕妇| 日本免费在线观看一区| videossex国产| 欧美+日韩+精品| 免费久久久久久久精品成人欧美视频 | 久久久久久久久久成人| 亚洲精品国产色婷婷电影| 国产色爽女视频免费观看| 国产熟女午夜一区二区三区| 三级国产精品片| 国产欧美亚洲国产| 看非洲黑人一级黄片| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 丝袜喷水一区| 免费av不卡在线播放| 亚洲国产av新网站| 婷婷色综合www| 国产又爽黄色视频| 一级片免费观看大全| 一级毛片电影观看| 建设人人有责人人尽责人人享有的| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 天美传媒精品一区二区| 在线亚洲精品国产二区图片欧美| 国产精品.久久久| 中国三级夫妇交换| 亚洲四区av| 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 亚洲色图综合在线观看| 久久99热6这里只有精品| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 自拍欧美九色日韩亚洲蝌蚪91| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 国产精品成人在线| 青春草亚洲视频在线观看| 欧美3d第一页| 看十八女毛片水多多多| 女人精品久久久久毛片| 老司机影院成人| 赤兔流量卡办理| 日本av免费视频播放| 赤兔流量卡办理| 中文字幕人妻熟女乱码| 9色porny在线观看| 在线亚洲精品国产二区图片欧美| 伦理电影大哥的女人| 成人国产av品久久久| av不卡在线播放| 日韩视频在线欧美| 1024视频免费在线观看| 久久久久久久精品精品| 内地一区二区视频在线| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| av女优亚洲男人天堂| 高清视频免费观看一区二区| av福利片在线| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 91aial.com中文字幕在线观看| 免费观看性生交大片5| 国产xxxxx性猛交| 观看av在线不卡| 99热这里只有是精品在线观看| 母亲3免费完整高清在线观看 | 一级黄片播放器| 国产福利在线免费观看视频| 中文乱码字字幕精品一区二区三区| 亚洲成人av在线免费| 午夜福利视频精品| videosex国产| 久久午夜福利片| 久久久久国产网址| 久久 成人 亚洲| 精品人妻熟女毛片av久久网站| 丰满迷人的少妇在线观看| 久热这里只有精品99| 日韩三级伦理在线观看| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲少妇的诱惑av| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 欧美精品高潮呻吟av久久| 99热网站在线观看| 国产色爽女视频免费观看| 久久久久久伊人网av| 久久人人97超碰香蕉20202| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 婷婷色综合大香蕉| 自线自在国产av| 欧美日韩精品成人综合77777| 欧美丝袜亚洲另类| 欧美日韩精品成人综合77777| 国产一级毛片在线| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 亚洲美女视频黄频| av在线app专区| 亚洲国产精品专区欧美| 少妇精品久久久久久久| 大片电影免费在线观看免费| 久久精品aⅴ一区二区三区四区 | 国产成人a∨麻豆精品| 少妇高潮的动态图| videossex国产| 欧美日韩综合久久久久久| 咕卡用的链子| 亚洲欧美一区二区三区黑人 | 久久狼人影院| 精品一区在线观看国产| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕高清免费大全6| 国产一区二区三区综合在线观看 | 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 香蕉丝袜av| 夜夜骑夜夜射夜夜干| 免费女性裸体啪啪无遮挡网站| 久久国内精品自在自线图片| 男的添女的下面高潮视频| 欧美国产精品va在线观看不卡| 免费女性裸体啪啪无遮挡网站| av不卡在线播放| 久久99一区二区三区| av不卡在线播放| 高清黄色对白视频在线免费看| 一区二区三区四区激情视频| 蜜桃在线观看..| 黑人猛操日本美女一级片| 欧美97在线视频| 视频区图区小说| 少妇 在线观看| 成年美女黄网站色视频大全免费| 久久精品久久精品一区二区三区| av在线app专区| 久久99一区二区三区| 免费观看无遮挡的男女| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 成人二区视频| 人成视频在线观看免费观看| 亚洲婷婷狠狠爱综合网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产福利在线免费观看视频| av卡一久久| 欧美+日韩+精品| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久精品电影小说| 精品国产一区二区三区久久久樱花| 视频中文字幕在线观看| 考比视频在线观看| 亚洲av.av天堂| 日本色播在线视频| 在线观看免费高清a一片| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 精品人妻熟女毛片av久久网站| 成人漫画全彩无遮挡| 在线观看免费视频网站a站| av又黄又爽大尺度在线免费看| 乱码一卡2卡4卡精品| 中文字幕人妻熟女乱码| 在线观看www视频免费| a级毛片在线看网站| 美女国产高潮福利片在线看| 在线看a的网站| 精品一区二区三区视频在线| 日本黄大片高清| 国语对白做爰xxxⅹ性视频网站| 99国产精品免费福利视频| 久久综合国产亚洲精品| 国产伦理片在线播放av一区| 男女高潮啪啪啪动态图| 国产又爽黄色视频| 国产成人免费观看mmmm| 亚洲av综合色区一区| 男女边摸边吃奶| 大香蕉97超碰在线| 亚洲av电影在线进入| 天美传媒精品一区二区| 成人午夜精彩视频在线观看| 在线观看三级黄色| 国产亚洲精品第一综合不卡 | 男人爽女人下面视频在线观看| 夫妻性生交免费视频一级片| 亚洲精品av麻豆狂野| 在线精品无人区一区二区三| www.熟女人妻精品国产 | 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频| 国产xxxxx性猛交| 成人国产av品久久久| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 日日爽夜夜爽网站| 97人妻天天添夜夜摸| 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| 国产精品人妻久久久久久| 午夜激情久久久久久久| 伊人久久国产一区二区| 26uuu在线亚洲综合色| 成人二区视频| 国产精品成人在线| 国产乱来视频区| 亚洲精品乱码久久久久久按摩| 成年人午夜在线观看视频| 99国产综合亚洲精品| 久久韩国三级中文字幕| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| av视频免费观看在线观看| 一级片'在线观看视频| 亚洲第一av免费看| 七月丁香在线播放| 亚洲av在线观看美女高潮| 国产精品秋霞免费鲁丝片| 国产爽快片一区二区三区| av福利片在线| 欧美日韩亚洲高清精品| 观看av在线不卡| 晚上一个人看的免费电影| 日本色播在线视频| 超碰97精品在线观看| 黄片无遮挡物在线观看| 国产日韩欧美视频二区| 免费高清在线观看视频在线观看| 99热全是精品| 18在线观看网站| 韩国高清视频一区二区三区| 成人手机av| 另类精品久久| 成人黄色视频免费在线看| 亚洲成人一二三区av| 国产欧美日韩综合在线一区二区| 九九爱精品视频在线观看| 国产欧美日韩综合在线一区二区| 欧美成人精品欧美一级黄| 99香蕉大伊视频| 天天躁夜夜躁狠狠躁躁| 草草在线视频免费看| 女的被弄到高潮叫床怎么办| 国产 一区精品| 999精品在线视频| 如日韩欧美国产精品一区二区三区| 黄网站色视频无遮挡免费观看| 午夜日本视频在线| 99热6这里只有精品| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 热re99久久精品国产66热6| 香蕉国产在线看| 国产精品久久久久久精品古装| 国产精品无大码| 晚上一个人看的免费电影| 精品国产乱码久久久久久小说| 男人舔女人的私密视频| 亚洲欧洲国产日韩| 国产在线一区二区三区精| 一级毛片 在线播放| 午夜福利视频在线观看免费| 久久久久视频综合| 国产精品久久久av美女十八| 少妇的逼好多水| h视频一区二区三区| 国产高清国产精品国产三级| 人人妻人人爽人人添夜夜欢视频| 久久青草综合色| 国产精品.久久久| 美女国产高潮福利片在线看| 国产极品粉嫩免费观看在线| 国产av一区二区精品久久| 亚洲成人手机| 国产极品天堂在线| 国产日韩欧美亚洲二区| 丰满迷人的少妇在线观看| 全区人妻精品视频| 蜜桃国产av成人99| 久久久国产一区二区| 国产一区二区激情短视频 | 一级毛片 在线播放| 午夜影院在线不卡| 啦啦啦在线观看免费高清www| 日韩精品免费视频一区二区三区 | 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 中文字幕制服av| 亚洲国产av影院在线观看| 在线观看人妻少妇| 天堂8中文在线网| 午夜福利在线观看免费完整高清在| 美女视频免费永久观看网站| 久久久国产一区二区| 日韩熟女老妇一区二区性免费视频| 欧美xxxx性猛交bbbb| 美女国产视频在线观看| 深夜精品福利| 成年人午夜在线观看视频| 又大又黄又爽视频免费| 国产精品人妻久久久久久| 午夜福利影视在线免费观看| 成人黄色视频免费在线看| 精品视频人人做人人爽| 亚洲高清免费不卡视频| 亚洲精品,欧美精品| 亚洲第一av免费看| 久久 成人 亚洲| 国产黄色免费在线视频| av在线老鸭窝| 亚洲人成77777在线视频| 国产精品99久久99久久久不卡 | 欧美日韩视频精品一区| 日韩精品免费视频一区二区三区 | 亚洲精品美女久久久久99蜜臀 | av福利片在线| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 制服诱惑二区| 日韩一区二区视频免费看| 99九九在线精品视频| 亚洲美女黄色视频免费看| 久久狼人影院| 9191精品国产免费久久| 国产精品无大码| 亚洲丝袜综合中文字幕| 成人无遮挡网站| 亚洲色图 男人天堂 中文字幕 | 中国三级夫妇交换| 在线天堂中文资源库| 侵犯人妻中文字幕一二三四区| 国产精品国产三级国产av玫瑰| 免费大片黄手机在线观看| 侵犯人妻中文字幕一二三四区| 亚洲一级一片aⅴ在线观看| 九草在线视频观看| 久久人人爽人人片av| 在线观看三级黄色| 人人妻人人澡人人爽人人夜夜| 韩国高清视频一区二区三区| 久久久国产一区二区| 老司机影院毛片| 欧美亚洲日本最大视频资源| 免费av中文字幕在线| 欧美日韩一区二区视频在线观看视频在线| 女的被弄到高潮叫床怎么办| 国产高清国产精品国产三级|