• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear propagation of an intense Laguerre–Gaussian laser pulse in a plasma channel*

    2021-05-24 02:27:12MingpingLiu劉明萍ZhenZhang張震andSuhuiDeng鄧素輝
    Chinese Physics B 2021年5期
    關(guān)鍵詞:張震

    Mingping Liu(劉明萍), Zhen Zhang(張震), and Suhui Deng(鄧素輝)

    School of Information Engineering,Nanchang University,Nanchang 330031,China

    Keywords: nonlinear propagation,intense Laguerre–Gaussian laser pulse,wake-field effect,plasma channel

    1. Introduction

    The optical guiding of an intense laser pulse in plasma is very important to many promising applications,such as laserdriven accelerators,[1]harmonic generation,[2]laser confinement fusion,[3]and x/γ-ray radiation sources.[4]As we know,a laser pulse propagating in vacuum will diffract after a distance on the order of a Rayleigh length ZR=πr20/λ,where r0is the laser spot size at focus and λ is the laser wavelength.However,an intense laser pulse in uniform plasmas can guide itself due to the relativistic self-focusing(RSF)when the laser power exceeds the critical power Pc=17.4(ω0/ωp)2(GW),where ω0is the laser frequency and ωpis the plasma frequency.[5]If the laser power is smaller than Pc,laser diffraction will dominate over the RSF. In this case, a preformed plasma channel with a radially parabolic density profile can prevent laser diffraction and guide the latter propagating over many Rayleigh lengths,[6]which is beneficial to the above applications. In a realistic scenario,even if the laser power P ≥Pc,GeV quasimonoenergetic electron bunches can be obtained by increasing the acceleration length to a few centimeters in a laser guiding discharge capillary.[7–9]Recently,a striking result of electron bunch approaching 8 GeV has been measured in such channelguided laser accelerator with more powerful laser systems.[10]Such high energy electron bunches provide a potential approach to produce high brightness x-ray and even γ-ray radiation sources.[11–13]Laser wake-field acceleration (LWFA)is the main acceleration mechanism for the generation of such energetic electron bunch and then wake field effects play a crucial role in electron acceleration like as the plasma channel.

    In these experiments, laser pulses with fundamental Gaussian(FG)mode are usually used as drivers for propagating in a preformed plasma channel. It has been shown that the propagation characteristics of an intense laser pulse in a preformed plasma channel is strongly dependent on the interactions between the laser and plasma according to the principle of the refractive guiding.[5]When electrons quiver transversely in the electric field of an intense laser pulse,their mass increase relativistically and then the radial profile of the refraction index peaks on the propagating axis, which means that the plasma acts as a positive len. Consequently,the laser pulse focuses toward the axis, i.e., the RSF occurs. A performed plasma channel with a radially parabolic density profile creates a refractive index profile with on-axis maximum,which yields the channel focusing (CF). The transverse ponderomotive force of an intense laser pulse can expel electrons away from the region where the laser intensity is the maximum, which gives rise to transverse gradient of the refractive index. This effect is well known as the ponderomotive self-channeling (PSC). All these nonlinearities discussed above present the focusing effects. Therefore, whether the laser pulse can realize guiding would mainly depend on the competition between the vacuum diffraction and the combined focusing effects of RSF, CF, and PSC. Many papers have investigated these focusing effects in the uniform plasma or preformed channel cases.[14–20]It has been found that the spot size of an laser pulse can evolve along the propagating axis with constant, periodically focusing and defocusing oscillations, and catastrophic focusing. Further, Zhang et al. has investigated the existence conditions of solitary waves in a parabolic plasma channel.[21]The solitary waves are helpful to electron acceleration in the LWFA, because any perturbation of the solitary waves would lead to the wave breaking and realize the electron self-injection in the wake-field regime.Hong et al. found that when the laser length is on the order of plasma wavelength,a wake field will be excited efficiently and focus the laser pulse during its propagation forward.[22]Most of these results are based on the laser pulses with FG modes. In recent years, there has been an increasing interest on the laser pulses with Laguerre–Gaussian(LG)modes which have hollow transverse intensity profile and carry orbital angular momentum.[23–33]LG laser pulses drive donut-shaped wake fields whose field structure is capable of accelerating positrons and significantly enhances x/γ-ray generation.[23–26]Obviously, the dynamics of LG laser pulse propagating in a preformed plasma channel would definitely affect its application. In non-relativistic limit, the condition for the matched LG laser pulse in a preformed plasma channel is the same for all modes whether it includes the finite pulse length and group velocity dispersion or not.[6,34]However,electrons can be violently accelerated in the wake field regime driven by an intense laser pulse. Thus,these nonlinearities,such as group velocity dispersion, relativistic and wake-field effects, should be considered in analyzing the LG laser dynamics.

    In this paper, we study the propagation characteristics of an intense LG laser pulse in a preformed plasma channel used by variational technique,including the combined effects of RSF, CF, and PSC. In order to effectively excite the wake field, the pulse length is defined as L=λpin our model,[1,5]where L and λpare the pulse length and plasma wavelength,respectively. The evolution equation of the LG laser spot size is obtained and then the conditions of laser and plasma channel parameters for propagating with constant spot size,periodically focusing, and defocusing oscillations, catastrophic focusing and solitary waves are identified in detail. All these nonlinear effects mentioned above are also illustrated numerically.

    2. Evolution equation of laser spot size

    The propagation along the z-direction of a linearly polarized laser pulse in a preformed plasma channel will be considered in our model. The density of the plasma channel is assumed with a profile of the form nch(r) = n0+Δnr2/r2ch,where n0is the initial axial electron density,Δn and rchare the channel depth and radius,respectively. The normalized vector potential of the laser field is given by where a=eA/m0c2is the normalized amplitude of the vector potential of the laser field,e and m0are the charge and the rest mass of electron,c is the light velocity in vacuum,ω =ck/βgis the laser center frequency,βg=vg/c is the normalized group velocity, ?x is the unit vector along the x axis,and c.c. denotes the complex conjugate.

    where Llnis the generalized Laguerre polynomial,φ is the polar angular coordinate, and as(z), θ(z), rs(z), and α(z) are the real functions of the propagation distance z and represent the amplitude, phase shift, spot size, and curvature, respectively. For the sake of simplicity, the first order LG mode(l=1,n=0)is considered in our model,which has been used by most papers to study electron acceleration and radiation sources.[23–33]By inserting Eq. (4) into Eq. (3), the solution for the perturbed plasma density inside the pulse(0 ≤ξ ≤L)is given by

    where a0and r0are the initial(z=0)amplitude and spot size of the LG laser pulse,respectively. Considering the effects of relativistic,channel-coupling nonlinearity and wake field,one can obtain the evolution characteristics of the laser spot from Eqs. (6)–(8). Equation (6) indicates the power conservation relation=. The first term on the right-hand side of Eq. (8) shows the vacuum diffraction, the second term represents the RSF,the third term yields the CF,the fourth and fifth terms present the wake-field effects induced by the transverse and longitudinal ponderomotive forces of the laser pulse, respectively. It obviously shows that the wake field also leads to the focusing of the LG laser pulse. Compared with the results of a FG laser pulse, such as Eq. (8) in Ref. [22], coefficient of the term of vacuum diffraction decreases by half and coefficients of the terms of the combined focusing also decrease by a quarter except the third term of the CF.Therefore,the hollow transverse intensity profile of the LG laser pulse significantly influences on its nonlinear propagation characteristics.

    3. Propagation characteristics of the LG laser pulse

    Equation (10) has the same form of an energy equation for a particle in a potential well V(rs). Here, rshas the role of the space coordinate and z is the“time”. Thus,it is more instructive to discuss the solution of Eq.(10)according to the value of the potential V(rs), which in turn depends on the initial laser and plasma parameters.

    We first analyze the potential function V(rs). By solving V(rs)=0,one can obtain three solutions as

    First of all, we discuss the condition for a matched(nonevolving) spot size of the LG laser pulse in the plasma channel. Only case (vi) mentioned above can ensure the test particle rest in the potential well V(rs) as shown in Fig. 1(f).Thus,if the initial laser and plasma parameters satisfy P=Pth2and Nc>Nth,the spot size rs=1 will retain during the propagation of the LG laser pulse in the plasma channel.Second,the test particle will be unstable and eventually move boundlessly to the position rs→0, which can occur in the cases (i), (ii),(iv),and(ix),respectively.In this case,the spot size will be focused catastrophically and contracted to a geometric point. It should be pointed that the singularity will never occur since the laser intensity will be increased infinitely,which is beyond the weakly relativistic limit of our model.According to the parameter conditions of cases(i), (ii), (iv), and(ix), one can obtain the comprehensive parameter regions for catastrophic focusing,i.e.,P >Pth1for any Ncand Pth2<P ≤Pth1for Nc≤Nth.Third,one can find from Figs.1(e)and 1(h)that the test particle will oscillate back and forth between rs1and rs2. So the structure of the spot size rsis a train of finite amplitude waves with finite wavelength. The test particle will perform periodically defocusing oscillation in the case (v) whereas perform periodically focusing oscillation in the case(viii). Last but not least,in cases(vii)and(iii),the test particle initially lies in or moves to a critical point. It is very interesting to discuss the two critical cases for the propagation of LG laser pulse in a preformed plasma channel.

    Fig.1. Potential well V(rs)as a function of rs. Panels(a)–(i)correspond to the enumerated cases(i)–(ix)in the paper discussed above rs1,rs2,and rs3 are the three roots of V(rs)=0. The red point in each figures represents the initial position of a test particle with rs=1 and ?rs/?z=0. The normalized laser amplitude is a0=0.3 for all cases.

    According to the nonlinear dynamics theory,equation(9)can be reduced to the following autonomous system’s equations:

    Fig. 2. Propagation characteristics of a LG laser pulse (black curves) and a FG laser pulse (red curves) for a0 =0.3. The circles correspond to the critical parameters Nth. The solid curves 4 represent the parameters of the existence of the solitary waves,while the dashed curves 2 denote the propagation of laser pulse with constant spot size. There are three regions,which correspond periodically defocusing oscillations (region 1), periodically focusing oscillations (region 3), and catastrophic focusing (region 5). The results of the FG laser pulse have calculated according to the formulas of Ref.[22].

    In order to get the full view of the propagation characteristics of the intense LG laser pulse, the initial parameters of laser and plasma channel for each cases discussed above are plotted in Fig.2(black curves). For comparison,the propagation characteristics of a FG laser pulse in a preformed channel are also shown in Fig. 2 (red curves). The solid curves 4 are the critical power of the laser pulse for the existence of the solitary waves under different the channel parameter Nc, and the dashed curves 2 denote the laser power for its propagation with constant spot size. The two types of curves classify the Nc–P plane with three regions corresponding to the periodically defocusing oscillation(region 1),periodically focusing oscillation(region 3)and catastrophic focusing(region 5),respectively. As expected, the effects of relativistic, channelcoupling nonlinearity and wake field greatly release the total critical power P for the laser focusing, which is far smaller than 1. It is obviously seen from Fig.2 that the critical power of the LG laser pulse for the existence of the solitary waves almost coincides with that of the FG laser pulse,while the laser power for its propagation with constant spot size in the case of the LG laser pulse is decreased remarkably compared with the case of the FG laser pulse. When Nc=0.5,the powers for the existence of the solitary waves are 0.525 for the LG laser pulse and 0.515 for the FG laser pulse,respectively. However,the power for the propagation with constant spot size is very weak, i.e., P0, in the case of the LG laser pulse, which is more less than that (P=0.305) in the case of the FG laser pulse. Therefore,one can note that there is a overlapping area between the periodic focusing region of the LG laser pulse and the periodic defocusing region of the FG laser pulse.

    4. Numerical results and discussion

    In this section, the propagation characteristics of the LG laser pulse in a performed plasma channel are numerically investigated according to Eq. (9), which is solved using the fourth-order Runge–Kutta method with the parameters presented in Fig. 1 and the initial conditions rs|z=0= 1 and?rs/?z|z=0=0. The evolution of laser spot size rsand amplitude aswith the propagation distance z will be shown in the following Figs.3–5 for the cases of constant spot size, catastrophic focusing, periodically focusing (or defocusing) oscillation,and solitary waves,respectively.

    It can be seen from Eq. (9) that the propagation characteristics of the LG laser pulse strongly depend on the competition between the vacuum diffraction and the combined focusing effects of relativistic, channel-coupling nonlinearity, and wake field. When the effect of the vacuum diffraction is exactly canceled by the combined focusing effects, the equilibrium solution with constant spot size rsand constant amplitude asare shown in the solid curves of Fig.3 corresponding to the case(vi)of Fig.1. If the combined focusing effects significantly overwhelm the vacuum diffraction,the catastrophic focusing will happen. One can see the cases of the catastrophic focusing plotted in Fig.3 with the dashed curves,dotted curves and dash–dotted curves, which correspond to the cases of Figs.1(a),1(d),and 1(i),respectively.With the nearly same laser power P, the spot size rsof the case of Fig. 1(a)is focused catastrophically more faster than those cases of Figs. 1(d) and 1(i) because of the higher channel parameter Nc. As mentioned early, the catastrophic focusing will never occur since the laser intensity will increase infinitely when the spot size is focused to zero. Then,the effects of higher-order relativistic nonlinearities and other terms will prevent the spot size collapse in the real laser-plasma interactions. Actually,the high-intense laser pulse (a0≥1) will expel local plasma electrons and create an electron-free blowout. This effect will lead to the diffracting propagation for the laser pulse as in the vacuum.[36,37]Even so,it is still out of the weakly relativistic limit used in our model.

    Fig. 3. The evolution of laser spot size rs (a) and amplitude as (b) with the propagation distance z. The propagation characteristics of the LG laser pulse with constant spot size are plotted with the parameters of Fig. 1(f)(solid curve), while the cases of catastrophic focusing are plotted with the parameters of Fig. 1(a) (dashed curve), (d) (dotted curve), and (i) (dash–dotted curve).

    If the initial parameters of laser and plasma are chosen as in region 1 of Fig. 2, the periodically defocusing oscillations will occur as shown in Figs. 4(a) and 4(c) responding to the case of Fig.1(e). In this region,the combined focusing effects are weaker than the vacuum diffraction in the beginning, and the laser spot size in turn increases at first,which can be verified by rswith greater than 1 in Fig.4(a). With the increase of the spot size,the CF will be enhanced but the vacuum diffraction becomes weaker. Then, the defocusing behavior of the spot size will be prevented and it will decrease after reaching a peak. Thus, the periodically defocusing oscillations of the laser spot size will form as shown in Fig. 4(a). In the region 3 of Fig. 2, with the parameters of laser and plasma in this region,e.g. the the case(viii)of Fig.1,the laser spot size decreases at first and will be less than 1, which leads to enhancing the vacuum diffraction but decreasing the CF. Thus,the periodically focusing oscillations can build as shown in Figs.4(b)and 4(d).

    The propagation characteristics of solitary waves are presented in Fig.5. One can see that the homoclinic orbits in rs–?rs/?z plane are depicted in Figs.5(a)and 5(b)corresponding to the parameters of Figs.1(c)and 1(g),respectively. It means that the evolution of the spot size rsand amplitude aswith the propagation distance z will be solitary waves. However,in general it is hard to get the exact solutions of the solitary wave for Eq.(9)since the numerical error is unavoidable. Hence,a train of solitary-like waves of the spot size rs,of course amplitude as,are shown in Figs.5(c)–5(f). It should note that in the case of Fig.1(c),the initial spot size is not at a saddle point and a solitary-like structure is formed at first,and then the spot size keeps constant for a long distance about 7ZR. However,in the case of Fig. 1(g), the spot size initially lies on a saddle point and in turn keeps constant at first for a longer distance about 150ZR. It is worth pointing out that the solitary-like waves have the focusing effect in Figs. 5(a), 5(c), and 5(e) because of the higher channel focusing, while the solitary-like waves have the defocusing effect in Figs.5(b),5(d),and 5(f).

    Fig. 4. The evolution of laser spot size rs (a) and amplitude as (c) shows the periodically defocusing oscillation with the parameters of Fig.1(e). The evolution of laser spot size rs(b)and amplitude as(d)shows the periodically focusing oscillation with the parameters of Fig.1(h).

    Fig. 5. Propagation characteristics of solitary-like waves corresponding to the cases of Fig.1(c)(left column)and 1(g)(right column). (a)and(b)Orbits on the phase plane rs–?rs/?z, the initial position is marked in red; (c)and(d)the evolution of the laser spot size rs with the propagation distance z; (e) and (f) the evolution of the laser amplitude as with the propagation distance z.

    In order to further understand the influence of the hollow transverse intensity profile of the LG laser pulse on its propagation characteristics, it is necessary to investigate the behaviors of the spot size of the LG and FG laser pulses with the same initial parameters. Figure 6 shows the evolution of the spot size rsof the LG (solid curves) and FG (dashed curves) laser pulses with the same parameters of laser power and plasma channel in the different regions of Fig. 2, i.e.,P=0.2 and Nc=0.2 in region 1,P=0.2 and Nc=0.5 in the overlapping region,P=0.4 and Nc=0.5 in the region 3,and P=0.6 and Nc=0.8 in the region 5.In region 1 of Fig.2,both of the LG and FG laser pulses perform periodically defocusing oscillations as shown in Fig.6(a). However, the effect of vacuum diffraction of the LG laser pulse is weaker than that of the FG laser pulse and then the spot size of the latter increases to the peak about 2.05,close to 1.6 times the peak value of the former. When the channel parameter Ncincreases to 0.5,i.e.,in the overlapping region of Fig.2,the combined focusing effects overwhelm the vacuum diffraction effect for the LG laser pulse and it in turn performs periodically focusing oscillations as shown in Fig. 6(b). However, due to the stronger vacuum diffraction,the FG laser pulse still remains the periodically defocusing oscillations but with the smaller amplitude of oscillation. In region 3 of Fig.2,the combined focusing continually overwhelms the vacuum diffraction for the LG laser pulse and then its oscillation amplitude is further enhanced as shown in Fig.6(c). Due to the enhanced laser power,the FG laser pulse converts to present periodically focusing oscillations with the smaller amplitude of oscillation.When the parameters of laser power and plasma channel locate in the region 5 of Fig.2,the focusing characteristics of the LG and FG laser pulses coincide with each other except the spot size rsclose to 0 as shown in Fig.6(d),which will never occur.

    Fig. 6. The evolution of spot size rs with propagation distance z for the LG (black solid curves) and FG (red dashed curves) laser pulses. The parameters of laser pulse and plasma channel are(a)P=0.2 and Nc=0.2 in region 1 of Fig. 2, (b) P=0.2 and Nc =0.5 in the overlapping region of Fig. 2, (c) P=0.4 and Nc =0.5 in the region 3 of Fig. 2, and (d) P=0.6 and Nc=0.8 in the region 5 of Fig.2,respectively.

    5. Conclusion

    In a summary, the propagation characteristics of an intense LG laser pulse in a performed plasma channel are investigated, which takes into account the combined effects of relativistic,channel-coupling nonlinearity,and wake field. An evolution equation of the laser spot size is derived by means of the variational method. It is proved that the LG laser pulse can propagate with constant, periodically defocusing and focusing oscillations,catastrophic focusing,and solitary waves,respectively. The behaviors of the laser spot size and amplitude strongly depend on the initial parameters of the LG laser pulse and plasma channel,i.e.,laser amplitude a0,laser power P,and channel parameter Nc.Comparing with the propagation characteristics of a FG laser pulse, the effect of the vacuum diffraction is reduced by half and the effects of relativistic and wake-field focusing are decreased by one quarter because of the hollow transverse intensity profile of the LG laser pulse.However, the CF effect is the same order of magnitude with that of the FG laser pulse. Correspondingly,the matched condition for the LG laser pulse with constant spot size is reduced obviously,while the parameters of the laser and plasma for the existence of solitary waves nearly coincides with those of the FG laser pulse.Therefore,the characteristic region of the periodically defocusing oscillation is enlarged compared with the case of the FG laser pulse and the characteristic region of the periodically focusing oscillation in turn is reduced.

    猜你喜歡
    張震
    致命的暗喻
    張震將軍與他的客家母親
    晚報文萃(2016年4期)2016-07-23 05:34:01
    “學(xué)霸”張震:武俠男神養(yǎng)成記
    內(nèi)置轉(zhuǎn)子套管式換熱器強(qiáng)化傳熱實(shí)驗(yàn)
    張震與他的客家養(yǎng)母
    黨史縱覽(2015年12期)2015-12-15 00:26:27
    張震三十歲學(xué)藝
    張震:武俠男神養(yǎng)成三部曲
    汽車生活(2015年7期)2015-05-30 10:48:04
    《張震講故事之鬼迷心竅》校園記憶恐怖來襲
    電影故事(2015年26期)2015-02-27 09:02:37
    以刀會友
    東方電影(2015年1期)2015-01-06 05:29:49
    陌生的來電
    飛天(2013年11期)2013-11-16 08:19:40
    精品久久久久久成人av| 国产熟女欧美一区二区| 国产高清视频在线播放一区| 亚洲色图av天堂| 小蜜桃在线观看免费完整版高清| 精品一区二区三区av网在线观看| 高清毛片免费看| 夜夜夜夜夜久久久久| 亚洲一区高清亚洲精品| 精品久久久久久久久久免费视频| 国产亚洲精品久久久com| 观看美女的网站| 日韩欧美精品免费久久| 亚洲欧美精品综合久久99| 国产精品久久电影中文字幕| 国产精品不卡视频一区二区| 大型黄色视频在线免费观看| 九九热线精品视视频播放| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| 看免费成人av毛片| 国产高清激情床上av| 亚洲国产欧美人成| 99热6这里只有精品| 欧美最黄视频在线播放免费| 不卡一级毛片| 久久精品国产自在天天线| 深爱激情五月婷婷| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| 久久精品人妻少妇| 亚洲国产欧美人成| aaaaa片日本免费| 啦啦啦观看免费观看视频高清| 网址你懂的国产日韩在线| 日本色播在线视频| 超碰av人人做人人爽久久| 热99re8久久精品国产| 亚洲人成网站高清观看| 成人av一区二区三区在线看| 亚洲熟妇熟女久久| 久久九九热精品免费| 国产 一区 欧美 日韩| 欧美最新免费一区二区三区| 欧美日韩在线观看h| 男人舔女人下体高潮全视频| 97人妻精品一区二区三区麻豆| av国产免费在线观看| 亚洲欧美成人综合另类久久久 | 51国产日韩欧美| 国产高清三级在线| 三级国产精品欧美在线观看| 亚洲国产欧美人成| 又爽又黄无遮挡网站| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 特级一级黄色大片| 国产高清激情床上av| 在线观看美女被高潮喷水网站| 狂野欧美激情性xxxx在线观看| 亚洲精品国产成人久久av| 禁无遮挡网站| 最新在线观看一区二区三区| 性欧美人与动物交配| 久久久久精品国产欧美久久久| 久久久a久久爽久久v久久| 性欧美人与动物交配| 97超级碰碰碰精品色视频在线观看| 国内精品宾馆在线| 观看免费一级毛片| 午夜福利高清视频| 久久综合国产亚洲精品| 成年女人毛片免费观看观看9| 99久久精品一区二区三区| 身体一侧抽搐| 有码 亚洲区| 成人性生交大片免费视频hd| 中国美白少妇内射xxxbb| 亚洲成人精品中文字幕电影| 我要搜黄色片| 国内久久婷婷六月综合欲色啪| 亚洲无线观看免费| 国产精品无大码| 国产精品人妻久久久影院| 日本爱情动作片www.在线观看 | 亚洲av中文av极速乱| 一级毛片电影观看 | 高清日韩中文字幕在线| 18禁在线无遮挡免费观看视频 | 午夜a级毛片| 校园人妻丝袜中文字幕| 日本三级黄在线观看| 日韩精品中文字幕看吧| 草草在线视频免费看| 18禁在线无遮挡免费观看视频 | 成人国产麻豆网| 一区二区三区四区激情视频 | 国产亚洲精品av在线| av中文乱码字幕在线| 国产精品爽爽va在线观看网站| 国产精品一区www在线观看| 日日摸夜夜添夜夜添小说| av在线蜜桃| 色哟哟·www| 99热这里只有是精品在线观看| 免费一级毛片在线播放高清视频| 悠悠久久av| 国国产精品蜜臀av免费| 中文字幕精品亚洲无线码一区| 中文字幕人妻熟人妻熟丝袜美| 尾随美女入室| 国产伦精品一区二区三区视频9| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看| 午夜福利18| 中国国产av一级| 性欧美人与动物交配| 天堂影院成人在线观看| 亚洲在线自拍视频| 亚洲人成网站在线观看播放| 老熟妇乱子伦视频在线观看| 黄色一级大片看看| 精品一区二区三区视频在线观看免费| 国产三级中文精品| 我的老师免费观看完整版| 99久久九九国产精品国产免费| 一进一出抽搐gif免费好疼| 男人舔女人下体高潮全视频| 观看美女的网站| 国产久久久一区二区三区| 国产亚洲精品久久久久久毛片| 久久久久久伊人网av| 给我免费播放毛片高清在线观看| 波多野结衣巨乳人妻| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 久久久a久久爽久久v久久| 国产爱豆传媒在线观看| 岛国在线免费视频观看| 尤物成人国产欧美一区二区三区| 赤兔流量卡办理| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 久久久a久久爽久久v久久| 免费看光身美女| 免费观看在线日韩| 在线免费观看的www视频| 午夜免费激情av| 99久久成人亚洲精品观看| 你懂的网址亚洲精品在线观看 | 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 日日摸夜夜添夜夜添小说| av中文乱码字幕在线| 日本爱情动作片www.在线观看 | 国产成人福利小说| 精品99又大又爽又粗少妇毛片| 国语自产精品视频在线第100页| 国产精品久久久久久精品电影| 中国美女看黄片| 中文字幕久久专区| 3wmmmm亚洲av在线观看| 国产真实乱freesex| 欧美激情国产日韩精品一区| 日韩三级伦理在线观看| 又爽又黄无遮挡网站| 99视频精品全部免费 在线| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 国产亚洲精品久久久久久毛片| 国产亚洲91精品色在线| 国产69精品久久久久777片| 在线观看66精品国产| 在线免费观看的www视频| 国产精品一区www在线观看| 内射极品少妇av片p| 国产精品久久久久久精品电影| 好男人在线观看高清免费视频| 午夜免费男女啪啪视频观看 | 午夜久久久久精精品| 又粗又爽又猛毛片免费看| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 精品国内亚洲2022精品成人| 亚洲美女黄片视频| 99riav亚洲国产免费| av专区在线播放| 日本色播在线视频| 少妇人妻精品综合一区二区 | 亚洲专区国产一区二区| 天堂动漫精品| 一本一本综合久久| 人妻制服诱惑在线中文字幕| 久久这里只有精品中国| 高清毛片免费观看视频网站| 国产色爽女视频免费观看| 亚洲专区国产一区二区| 国产熟女欧美一区二区| 亚洲成人中文字幕在线播放| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 91久久精品国产一区二区三区| 一区二区三区免费毛片| 国产精品伦人一区二区| 淫妇啪啪啪对白视频| 天堂av国产一区二区熟女人妻| 不卡视频在线观看欧美| 国产精品久久久久久久电影| 亚洲综合色惰| 免费大片18禁| 日本欧美国产在线视频| 久久久久久久亚洲中文字幕| 亚洲性久久影院| 日本黄大片高清| 综合色av麻豆| 国产精品永久免费网站| 日韩欧美 国产精品| 国产高清有码在线观看视频| 日韩欧美在线乱码| 天堂√8在线中文| 桃色一区二区三区在线观看| 成人特级黄色片久久久久久久| 国产精品爽爽va在线观看网站| 中文字幕免费在线视频6| 两个人的视频大全免费| 精品久久久久久久末码| 免费看光身美女| 麻豆国产97在线/欧美| 高清毛片免费看| 亚洲成人久久性| av中文乱码字幕在线| 久久久成人免费电影| 国产精品精品国产色婷婷| 少妇裸体淫交视频免费看高清| 国产女主播在线喷水免费视频网站 | 亚洲成人av在线免费| 一a级毛片在线观看| 久久韩国三级中文字幕| 久久久a久久爽久久v久久| 大型黄色视频在线免费观看| 国产精品精品国产色婷婷| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 小说图片视频综合网站| 床上黄色一级片| 秋霞在线观看毛片| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费| 精品乱码久久久久久99久播| 中国美女看黄片| 久久久精品大字幕| 国产女主播在线喷水免费视频网站 | 亚洲中文字幕日韩| 亚洲精品国产成人久久av| 精品人妻一区二区三区麻豆 | 18禁裸乳无遮挡免费网站照片| 中文资源天堂在线| 国产一区二区亚洲精品在线观看| 真实男女啪啪啪动态图| 久久婷婷人人爽人人干人人爱| 日韩 亚洲 欧美在线| .国产精品久久| 日本免费a在线| 久久久久久久亚洲中文字幕| 香蕉av资源在线| 女的被弄到高潮叫床怎么办| 日本与韩国留学比较| 在现免费观看毛片| 国产亚洲精品久久久久久毛片| 久久综合国产亚洲精品| 日韩成人伦理影院| a级毛片免费高清观看在线播放| 久久精品国产鲁丝片午夜精品| 日产精品乱码卡一卡2卡三| 男人和女人高潮做爰伦理| 亚洲av五月六月丁香网| 欧美性感艳星| 午夜日韩欧美国产| 亚洲无线在线观看| 一级毛片aaaaaa免费看小| 久久久久久伊人网av| 欧美成人免费av一区二区三区| 亚洲成人久久性| 国产精品久久久久久av不卡| 白带黄色成豆腐渣| 69人妻影院| 国产在线男女| 久久久久久久午夜电影| 99热精品在线国产| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 久久久久久九九精品二区国产| 亚洲七黄色美女视频| 亚洲欧美成人精品一区二区| 97在线视频观看| 成人美女网站在线观看视频| 亚洲精品色激情综合| av黄色大香蕉| 菩萨蛮人人尽说江南好唐韦庄 | 我要看日韩黄色一级片| 一级毛片aaaaaa免费看小| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 色在线成人网| aaaaa片日本免费| 亚洲欧美精品自产自拍| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 亚洲精品国产av成人精品 | 成人无遮挡网站| 少妇熟女aⅴ在线视频| 深爱激情五月婷婷| 特级一级黄色大片| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 亚洲内射少妇av| 久久久精品大字幕| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 在线免费观看的www视频| 精品久久久久久成人av| 五月伊人婷婷丁香| 亚洲欧美精品综合久久99| 欧美又色又爽又黄视频| 狂野欧美白嫩少妇大欣赏| 成人av一区二区三区在线看| 在现免费观看毛片| 国产高潮美女av| 老司机影院成人| 国产熟女欧美一区二区| 毛片女人毛片| 永久网站在线| 别揉我奶头~嗯~啊~动态视频| 亚洲人成网站在线播放欧美日韩| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 99九九线精品视频在线观看视频| 成人精品一区二区免费| АⅤ资源中文在线天堂| 99久久精品一区二区三区| 九色成人免费人妻av| 国产探花在线观看一区二区| 国产精品日韩av在线免费观看| 国产aⅴ精品一区二区三区波| 在线观看一区二区三区| 中出人妻视频一区二区| 亚洲美女黄片视频| 色视频www国产| 欧美又色又爽又黄视频| 成人鲁丝片一二三区免费| 自拍偷自拍亚洲精品老妇| a级毛色黄片| 此物有八面人人有两片| 最新在线观看一区二区三区| 久久人人精品亚洲av| 可以在线观看的亚洲视频| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 最近的中文字幕免费完整| 欧美bdsm另类| 99久国产av精品国产电影| 在线播放无遮挡| 国产精品久久久久久精品电影| 免费看日本二区| 久久国产乱子免费精品| 中文字幕免费在线视频6| 男人舔女人下体高潮全视频| 久久九九热精品免费| 99热这里只有精品一区| 精品熟女少妇av免费看| 国产成人福利小说| 精品日产1卡2卡| 婷婷精品国产亚洲av| 舔av片在线| 亚洲在线观看片| 午夜a级毛片| 美女高潮的动态| 国产三级在线视频| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 男人和女人高潮做爰伦理| 国产精品一区二区性色av| 亚洲国产色片| 亚洲激情五月婷婷啪啪| 又爽又黄无遮挡网站| 婷婷色综合大香蕉| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件 | 日韩人妻高清精品专区| 久久人人爽人人片av| 最好的美女福利视频网| 成人二区视频| 久久精品国产亚洲av香蕉五月| 成年av动漫网址| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 五月玫瑰六月丁香| 99久久精品一区二区三区| 淫秽高清视频在线观看| 91狼人影院| 在线观看美女被高潮喷水网站| 国产成人一区二区在线| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 久久天躁狠狠躁夜夜2o2o| 免费av不卡在线播放| 亚洲欧美清纯卡通| 国产乱人视频| 麻豆av噜噜一区二区三区| 亚洲成人中文字幕在线播放| 久久精品国产鲁丝片午夜精品| 久久久成人免费电影| av在线老鸭窝| 久久人人爽人人爽人人片va| 在线播放无遮挡| 搡老妇女老女人老熟妇| 看十八女毛片水多多多| 国内精品宾馆在线| 神马国产精品三级电影在线观看| 欧美色欧美亚洲另类二区| 色在线成人网| 精品日产1卡2卡| 午夜a级毛片| 久久精品国产亚洲av天美| 美女黄网站色视频| 亚洲人成网站在线观看播放| 天堂√8在线中文| 成人亚洲精品av一区二区| 夜夜夜夜夜久久久久| 亚洲人成网站在线观看播放| 午夜影院日韩av| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av在线| 乱码一卡2卡4卡精品| 成人美女网站在线观看视频| 亚洲欧美成人综合另类久久久 | 看免费成人av毛片| 精品久久久久久久久av| 国产精品野战在线观看| 在线免费观看的www视频| 一级av片app| 国产精品综合久久久久久久免费| 欧美xxxx黑人xx丫x性爽| 国产av一区在线观看免费| 国产精品av视频在线免费观看| 中国国产av一级| 一级毛片aaaaaa免费看小| 精品午夜福利在线看| 亚洲不卡免费看| 少妇丰满av| 又爽又黄无遮挡网站| 无遮挡黄片免费观看| 99热6这里只有精品| 久久久久久九九精品二区国产| 男女之事视频高清在线观看| 极品教师在线视频| 最好的美女福利视频网| 午夜激情欧美在线| 91久久精品电影网| 毛片女人毛片| 欧美日韩一区二区视频在线观看视频在线 | 黄色欧美视频在线观看| 免费高清视频大片| 精品99又大又爽又粗少妇毛片| 男女啪啪激烈高潮av片| 午夜激情欧美在线| 大香蕉久久网| 日日干狠狠操夜夜爽| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区三区| 国产成人a区在线观看| 久久中文看片网| 少妇熟女欧美另类| av中文乱码字幕在线| 午夜福利在线观看吧| 欧美激情国产日韩精品一区| 欧美一区二区国产精品久久精品| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 成人鲁丝片一二三区免费| 免费av不卡在线播放| 国内揄拍国产精品人妻在线| 久久久成人免费电影| 高清日韩中文字幕在线| 3wmmmm亚洲av在线观看| 高清毛片免费观看视频网站| 精品久久久噜噜| 97碰自拍视频| 亚洲性久久影院| 亚洲18禁久久av| 精品欧美国产一区二区三| 日韩欧美在线乱码| 久久这里只有精品中国| 国产精品嫩草影院av在线观看| 国产精品电影一区二区三区| 美女大奶头视频| 一区二区三区免费毛片| 国产高清三级在线| 成人三级黄色视频| 最后的刺客免费高清国语| 久久久欧美国产精品| 日本精品一区二区三区蜜桃| 日韩亚洲欧美综合| 伦精品一区二区三区| 日日撸夜夜添| 免费黄网站久久成人精品| 91av网一区二区| 欧美色欧美亚洲另类二区| ponron亚洲| 九色成人免费人妻av| 国产大屁股一区二区在线视频| 日本成人三级电影网站| 欧美一区二区亚洲| 久久人妻av系列| 嫩草影视91久久| 国内精品宾馆在线| 国产黄片美女视频| 国产精品精品国产色婷婷| 国产探花在线观看一区二区| 一进一出好大好爽视频| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 性色avwww在线观看| 成年版毛片免费区| 俄罗斯特黄特色一大片| 又黄又爽又刺激的免费视频.| 久久久午夜欧美精品| 欧美色视频一区免费| 欧美不卡视频在线免费观看| 露出奶头的视频| 国产91av在线免费观看| 在线观看av片永久免费下载| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 国产高清三级在线| 久久精品国产清高在天天线| 国产日本99.免费观看| 国产高清视频在线播放一区| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 久久久成人免费电影| 如何舔出高潮| 婷婷精品国产亚洲av在线| 亚洲欧美日韩高清专用| 免费av不卡在线播放| 听说在线观看完整版免费高清| 欧洲精品卡2卡3卡4卡5卡区| 村上凉子中文字幕在线| 日韩制服骚丝袜av| a级毛色黄片| 国产乱人视频| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 亚洲无线在线观看| 亚洲人成网站在线观看播放| 变态另类丝袜制服| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 精品久久久久久久久亚洲| 干丝袜人妻中文字幕| 99久久久亚洲精品蜜臀av| 精品久久久久久久末码| 中国美白少妇内射xxxbb| 国产精品爽爽va在线观看网站| 亚洲在线观看片| 97超视频在线观看视频| 中文在线观看免费www的网站| 深夜a级毛片| 美女高潮的动态| av在线观看视频网站免费| 一级黄片播放器| 人人妻,人人澡人人爽秒播| 久久久国产成人免费| 日本成人三级电影网站| 久久久久国内视频| 国产白丝娇喘喷水9色精品| 一区二区三区四区激情视频 | 日韩,欧美,国产一区二区三区 | 亚洲久久久久久中文字幕| 一区福利在线观看| 欧美成人精品欧美一级黄| www日本黄色视频网| 精品日产1卡2卡| 日韩欧美精品v在线| 成人鲁丝片一二三区免费| 午夜福利在线在线| 国产精品嫩草影院av在线观看| 国产精品久久久久久久电影| 禁无遮挡网站| 精品一区二区三区视频在线观看免费| 18禁在线无遮挡免费观看视频 | 久久久久久国产a免费观看| 午夜视频国产福利| 久久精品综合一区二区三区| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 日韩欧美国产在线观看| 丰满人妻一区二区三区视频av| 国产乱人偷精品视频| 久久精品国产清高在天天线|