• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy behavior of Boris algorithm

    2021-05-24 02:27:04AbdullahZafarandMajidKhan
    Chinese Physics B 2021年5期

    Abdullah Zafar and Majid Khan

    1Department of Engineering and Applied Physics,University of Science and Technology of China,Hefei 230026,China

    2Department of Physics,Quaid-i-Azam University,Islamabad 45320,Pakistan

    Keywords: Boris algorithm,invariant tori,chaotic system,H′enon-Heiles potential

    1. Introduction

    Motion of a non-relativistic particle of charge q and mass m in the electromagnetic fields is governed by Newton’s law by taking into account the Lorentz force,i.e.,by the following set of equations:

    The discretized form of the above equations for the Boris algorithm can be written as[1–3]

    where En=E(xn), and Bn=B(xn) are time-independent electric and magnetic field vectors. Despite its simplicity,the Boris algorithm has many advantageous features: it exhibits a long-term accuracy compared to its counterpart,such as the fourth order Runge–Kutta (RK4) method. Moreover, it has been observed that the global error of energy and other conserved quantities,e.g.,canonical momentum,can be bounded for all time steps in the Boris scheme, not to mention the exact energy conservation in the absence of an electric field.[3]Due to these excellent properties, Boris algorithm has been widely used in simulation studies of magnetized plasmas.[3–5]A common misconception about the underlying cause of the long-term fidelity is that the Boris algorithm is a symplectic integrator.[6–8]However,it is actually a volume-preserving method. Further,an earlier study has highlighted that no variational formulation of the Boris algorithm exists, indicating that the long-time stability should be attributed to its volumepreserving characteristics.[9–11]Unlike the symplectic integrator,whose long time energy conservation has been rigorously demonstrated by a backward error analysis,[12]the volumepreserving integrator has a little to do with this energy conservation. We refer readers to Refs.[2,13]where one can counter an example for which Boris algorithm cannot keep a long time energy conservation and the special conditions under which it can bound these errors. Near-conservation of energy, over long simulation times, has been demonstrated under the conditions that the magnetic field is constant or the electric potential is quadratic in nature.[2]Nonetheless,the energy behavior of the Boris algorithm in the general cases is not very well understood. This motivates our study to reveal the underlying causes of the different energy behaviors associated with the Boris numerical scheme. The research interests of structure preserving integrators were originated from its qualitative numerical superiority, e.g., conservation of the Kolmogorov–Arnold–Moser (KAM) tori. The near invariant tori of symplectic integrators leads to energy conservation. Similarly,some earlier studies have shown that the invariant torus exists in volume-preserving maps.[14,15]To be specific, under certain non-degeneracy conditions,any n-dimensional smooth volume-preserving maps close to the integrable ones,preserve a large set of invariant (n ?1)-dimensional tori.[16]Thus, if the Boris algorithm can preserve the tori, then the conservation of energy would be obtained as a result. Here, we have shown the long-time energy behavior of Boris method for a 2-degree-of-freedom autonomous Hamiltonian. Numerical experimentation reveals that such an algorithm exhibits several kinds of energy errors. When the invariant tori can be preserved under Boris discretization,the energy error is bounded for an exponentially long time. However, if the invariant tori are not preserved, the error exhibit a linear growth. On the other hand, when the Hamiltonian system is non-integrable,Boris algorithm does not conserve energy and exhibits a random walk behavior on the global energy error. For all numerical examples, the symplectic integrator is implemented as a control group for comparisons, which shows a long time energy conservation regardless of whether the original system is integrable or otherwise.

    The rest of the article is organized as follows: mathematical description of the model is presented in Section 2. Key results are discussed in Section 3. Finally,a brief summary of the main results is presented in Section 4.

    2. Mathematical description of the model

    The specific scheme of Boris algorithm used here is a second-order symmetric version, described by the following set of discretized equations

    where all the terms have their usual meaning. We have performed our numerical experiments based on the H′enon–Heiles Hamiltonian system,[18]for investigating the invariant tori.The canonical H′enon–Heiles Hamiltonian describes the motion of stars around a galactic center,assuming that the motion is restricted to the x–y plane. The corresponding potential can be expressed as[18]

    where λ is a constant, x and y are coordinates. The motion under this potential can be seen as double harmonic oscillators coupled with the term associated with λ. It has been seen that the third integral exists only for a limited number of initial conditions.[18]In the modern perspective, the initial conditions that do not exhibit a third integral of motion is correlated with chaotic orbits. To implement the Boris method to a more general case, an extra non-constant magnetic field has also been added. For a constant magnetic field, the onestep map of the Boris algorithm (xn,Pn)→(xn+1,Pn+1) is symplectic,where Pn=Vn+eAn. This follows from the fact that the Boris method is a variational integrator if and only if B is a constant.[9]Thus, to investigate the energy behavior of the Boris scheme from its volume-preserving property, without loss of generality,we choose the asymmetric and variable magnetic field as given by

    with the corresponding vector potential written as

    On the basis of this system, we can generate various orbits as affected by different initial conditions, which can correspond to integrable and non-integrable regimes. Also, different λ parameters have been used for the construction of the desired Hamiltonian,e.g.,λ =1 is a regime in which the integrability depends on the initial conditions,while λ =0 corresponds to an integrable systems.

    Firstly, the phase space behavior of the H′enon–Heiles system has been studied by plotting the Poincar′e maps,which is a recurrence plot and can be applied to distinguish chaotic,periodic, or quasi-periodic motions. It focuses only on that regime where the orbit intersects the bottom part of the Poincar′e section, instead of studying the motion in the entire phase space. If there are only a few intersection points,then the motion is periodic. If the intersection points constitute a line,the motion is quasi-periodic and if such points are dense and form a random structure,it corresponds to a chaotic regime.[19]In practice,we fix one phase element and plot the other elements each time the selected element has the desired value,thus an intersection surface is obtained. For the H′enon–Heiles Hamiltonian, these plots exhibit various phase space orbits correspond to chaotic and regular motions,with respect to different initial conditions. It is important to note that, in this work,we will use normalized(dimensionless)quantities.

    Figure 1 shows the Poincar′e maps of the H′enon–Heiles system,and highlights that this system strongly depending on initial conditions can be either integrable or non-integrable.The breaking of the invariant tori can be observed for increasing values of the initial energy,e.g.,for E0=0.16,the system also exhibits chaotic behavior.

    Fig. 1. Poincar′e plots of H′enon–Heiles Hamiltonian in (y,Py) plan, with initial energy of(a)0.1 and(b)0.16.

    Secondly, the orbit in configuration space can be classified by the means of Fourier transformation,which gives an alternative way to identify the invariant tori.[20–22]For a canonical integrable Hamiltonian system with n degrees of freedom,we can find a canonical transformation,from(p,q)to(I,?),i.e.,

    where i=1,2,...,n. The transformed coordinates (I,?) are called the action-angle variables, which, for a special case H=H(I),correspond to the Hamilton’s equations

    The motion on a specific torus has a fundamental frequency and thus a total of n, such values for an integrable system,namely ν1,ν2,...,νn. Further,the canonical coordinates(q,p)can be expressed as the function of the periodic parameter ? as the Fourier representation,i.e.,

    where ν is a fundamental frequency vector, and n is an nvector with integer components in the interval[?∞,+∞]. The Fourier coefficients qnare functions of the action I.[21]

    The chaotic and regular orbits corresponding to different initial conditions are shown in Fig. 2, and the discrete fourier transform (DFT) of these orbits is depicted in Fig. 3.As discussed, the spectrum for the integrable system is discrete,whereas for the chaotic motion it exhibits a white noise pattern.

    Fig. 2. A regular and chaotic orbit of the H′enon–Heiles system. The initial condition for the regular orbit is (a) X =[0,0.1,0]T, V = [0.157073238266067,0.269255830975273,0]T,while for the chaotic orbit we have (b) X =[0,0.1,0]T and V =[0.282596864122024,0.490039806942659,0]T.

    Fig. 3. The DFT spectrum characteristics of orbits for regular and chaotic patterns. The initial conditions are the same as in Fig.2.

    3. Numerical analysis and discussion

    Using the above mentioned scheme,we have investigated the energy error evolution of a single as well as group of statistical charged particles. Moreover, the classification of the orbital type and the correlation of the energy behavior of the Boris algorithm with the system integrability has also been presented. For the demonstration of orbits and energy behavior,we have used the symplectic integrator as a benchmark.

    3.1. Energy behavior under different Hamiltonian regimes

    First we set λ =0 and plot the consequent phase section in Fig.4,which exhibit a regular path and the Boris algorithm depicts an excellent long time energy conservation. As for the case of λ =0, the harmonic oscillators are decoupled, therefore the KAM structure is not associated with the corresponding initial energy.As a consequence,the Poincar′e section consists of several concentric closed orbits and is not perturbed by increasing initial energy.

    Fig.4.Poincar′e plot of H′enon–Heiles Hamiltonian with the additional asymmetric magnetic field, within the potential parameter λ =0. The initial energy is 0.1.

    Fig.5.The orbits of a particle calculated by Boris and symplectic integrators.The initial condition is X =[0,0.82,0]T, V =[0.123201731589563,0,0]T and the corresponding initial energy is E0=0.16,dt=0.001 and λ =0.

    For a given initial conditions X = [0,0.82,0]T, V =[0.123201731589563,0,0]Tand E0=0.16, the phase space orbits evaluated by Boris and symplectic algorithms have been illustrated in Fig. 5. In this case, the particle moves along an elliptical orbit while pressing around the counter-diagonal.The motion is quite regular,having several fixed frequencies.

    The relative energy errors of Boris and symplectic schemes have also been studied for a long simulation time(about one million iterations)and the findings are depicted in Fig.6. In this case,both Boris and the symplectic integrators have kept the energy error bounded.

    Fig. 6. The evolution of relative error of energy for Boris and symplectic numerical schemes. Initial condition is X = [0,0.82,0]T, V =[0.123201731589563,0,0]T,time interval is dt=0.001,and we iterate over 3×107 steps to show the long time behavior of energy error.

    Fig. 7. Poincar′e plot of H′enon–Heiles Hamiltonian system with the asymmetric magnetic field. The Poincar′e section of the surface lies on the(y,Py)plane as well,the initial energy in(a)is 0.1,and in(b)is 0.16.

    The second example presents a non-integrable Hamiltonian system,i.e.,we set λ =1,and the computed phase space structure under different initial energies are shown in Fig. 7.After the asymmetric magnetic field is appended, the phase space structure is distorted and becomes complicated. Compared to Fig. 1, for the same energy level E0=0.1, more islands among regular concentric circles appears, moreover at even high values,e.g.,E0=0.16,the entire phase section becomes irregular.

    Without losing any generality, we could investigate the energy behavior of Boris algorithm for H′enon–Heiles Hamiltonian. In this regard, comparisons of the chaotic orbit and corresponding relative energy errors of Boris and symplectic algorithms are shown,respectively,in Figs.8 and 9. The initial conditions used here are the same as those in Fig.7. The energy error of these chaotic orbits reveals a random walk behavior in particular this error for the Boris stochastically increases with iteration time while symplectic integrator depicts a long term conservation of energy.

    Fig. 8. The orbit in configuration space calculated by Boris algorithm and symplectic integrator. The initial condition is X =[0,0.82,0]T, V =[0.123201731589563,0,0]T,time interval is dT =0.001,and we iterate for 3×105 steps. The blue line denotes the result of the Boris algorithm and the black line denotes the result of the symplectic integrator. The red dot is the initial position. Under this condition,the orbit exhibits a chaotic pattern.

    Fig. 9. The evolution of relative error of energy for Boris algorithm and symplectic integrator. The initial condition is X =[0,0.82,0]T, V =[0.123201731589563,0,0]T,time interval is dT =0.001,and we iterate for 3×107 steps.

    To investigate the energy behaviors of Boris algorithm statistically, we consider a group containing 10 particles, all with E0= 0.16 and randomly distributed in velocity space.The evolution of the energy error for the entire particle group is shown in Fig. 10. Here one can observe two distinct error responses, namely a “random walk” pattern and “l(fā)ong time conservation”pattern.

    Next,we show an example of having the“irregular”orbits and a linear energy error. For that consider the initial energy E0=0.1,which corresponds to a regular orbit in the original H′enon–Heiles system. However, with the asymmetric magnetic field, the shape of the orbit turns out to be irregular but not chaotic(the orbit is not sensitive to the initial value). The irregular orbits and their resulting energy behavior of Boris and symplectic integrators are illustrated in Figs. 11 and 12,respectively. In this case, the energy error of the Boris algorithm exhibits a linear growth pattern,while the energy of the symplectic simulations remains well conserved.

    Fig. 10. Energy behavior for a group of 10 particles with the initial energy E0=0.16,initial position X =[0,0,0]T,and randomly chosen the sampling points in velocity space. The time interval is dt =0.001 and the calculation steps are 3×107 steps for each sampling particle.The black line is the results of the symplectic algorithm. The colored lines denote the results from Boris algorithm.

    Fig. 11. An irregular orbit calculated by Boris and symplectic integrators. The initial condition is X = [0,0,0]T, V =[?0.373621484848066,0.245778327075286,0]T, dt = 0.001 and 3×105 steps. The two orbits completely overlap,which means that orbit is not chaotic.

    Fig. 12. The evolution of relative energy error for initial condition X =[0,0,0]T, V =[?0.373621484848066,0.245778327075286,0]T, time interval is dT =0.001, and the simulations is performed over 3×107 steps to show the long time behavior.

    3.2. Analysis of error growth pattern

    In the preceding sections,we have discussed three typical energy trends associated with the Boris scheme. In this regard,the corresponding orbits and the Poincar′e sections show a correlation between energy and system integrability.The energy error of the Boris algorithm shows a random walk pattern for particles exhibiting a chaotic motion. However,the causes for the linear-growth in energy error are not well understood.Here some typical cases with such trends have been analyzed,and the results are compared with the corresponding integrable cases. In the following, we will present a brief discussion on the phase sections and the spectrum characteristics of those motions.

    We choose an initial point,which corresponds to the regular structure in the Poincar′e maps,e.g.,as shown in Fig.7(a).Although this initial condition corresponds to a quasi-periodic motion in which there exists an invariant tori, the Boris algorithm still results in linear growth. The Poincar′e plot of a specific particle is shown in Fig.13.

    Fig.13. The Poincar′e maps for a particle exhibiting a periodic orbit. The initial energy for this particle is 0.1, and the initial condition is X =[0,0,0]T,V =[?0.373621484848066,0.245778327075286,0]T.

    From Figs.11 and 13,we can see that the motion is quite regular and quasi-periodic,which means that the invariant tori is existed and Boris algorithm would be able to conserve the energy error for this condition. However, it shows a linear growth pattern as depicted in Fig. 12. Actually, the error growth of Boris has originated from the breaking of invariant tori during iterations. To demonstrate this,we apply the DFT to show the information about the invariant tori.

    As discussed in Eqs. (13)–(17), the x component of the orbits data is a finite time sequence as functions of actionangle variables. Thus,a discrete Fourier transformation shows the amplitudes and the frequencies information of the invariant tori. By comparing the spectrum of different orbits, obtained through Boris and symplectic methods, we can quantitatively analyze the evolution of invariant tori,i.e.,the energy behavior with respect to KAM structure can be revealed.

    To investigate the invariance of tori, the difference of spectrum of orbit sequences for Boris and symplectic schemes are calculated and the results are presented in Fig. 14. The amplitude as evaluated by Boris method is 3 to 4 orders larger than its symplectic counterpart. Thus,for such systems,Boris can not preserve the structure of invariant tori,and for this reason, it exhibits a linear growth in the energy. To further clarify, a complete integrable system has been investigated, with the same initial conditions as in Fig. 5. The Boris algorithm shows a long time energy conservation,and the spectrum difference of the orbit in this case is presented in Fig. 15. We can observe that the amplitude difference is around 1–2 orders smaller than its corresponding case (see Fig. 14). Thus, the invariant tori are preserved under Boris discretization, consequently,the energy error is well behaved.

    Fig.14.The difference of spectrum for the two slices of orbit sequences.The blue line denotes the results of Boris while the black line represents symplectic results.

    Fig.15. The characteristic spectrum difference of orbit sequences with simulation time. In this case, The parameter λ in scalar potential is set to be 0.

    4. Summary

    To conclude,we have shown various kinds of energy error behaviors of the Boris algorithm for the motion of a charged particle in an electromagnetic field. The energy errors in our numerical examples strongly depend on the integrability of the Hamiltonian. If the Hamiltonian of our system is chaotic,i.e.,no invariant tori exists in this case, the energy error of Boris algorithm has a random walk pattern. However,if there is an invariant tori in the original Hamiltonian system,but is not preserved under Boris discretization,the error will exhibit a linear growth. As a comparison, the global bound on energy error typically associated with symplectic algorithms still holds for all numerical examples.

    Acknowledgements

    Abdullah Zafar acknowledges the Chinese Scholarship Council(CSC)to support him as the 2015 CSC awardee(CSC No. 2015GXZQ56). The authors would like to thank Dr.Jiangshan Zheng for the technical discussion.

    无限看片的www在线观看| 色精品久久人妻99蜜桃| 美女高潮喷水抽搐中文字幕| 久久99热这里只有精品18| 99久久99久久久精品蜜桃| 搡老熟女国产l中国老女人| 又黄又爽又免费观看的视频| 白带黄色成豆腐渣| 老司机深夜福利视频在线观看| 国产精品一区二区免费欧美| 亚洲avbb在线观看| 黄色丝袜av网址大全| 一级毛片女人18水好多| 精品国产乱子伦一区二区三区| 欧美一级a爱片免费观看看 | 99国产精品99久久久久| 淫妇啪啪啪对白视频| 精品国内亚洲2022精品成人| 国产伦一二天堂av在线观看| 中文亚洲av片在线观看爽| 成人国产一区最新在线观看| 久久精品aⅴ一区二区三区四区| 丰满的人妻完整版| 宅男免费午夜| 岛国视频午夜一区免费看| 男女床上黄色一级片免费看| 精品国产美女av久久久久小说| 欧美午夜高清在线| 男女午夜视频在线观看| 一进一出抽搐gif免费好疼| 国产乱人伦免费视频| 亚洲 国产 在线| 伊人久久大香线蕉亚洲五| 免费在线观看影片大全网站| 亚洲专区国产一区二区| 国产亚洲av高清不卡| 成人国产综合亚洲| 夜夜躁狠狠躁天天躁| 亚洲天堂国产精品一区在线| 国产v大片淫在线免费观看| 日本在线视频免费播放| 伦理电影免费视频| 亚洲欧洲精品一区二区精品久久久| 欧美另类亚洲清纯唯美| 免费看日本二区| 国产激情欧美一区二区| 日本一本二区三区精品| 成人欧美大片| 国产aⅴ精品一区二区三区波| 精品久久久久久久久久久久久 | 男人舔女人的私密视频| 好男人电影高清在线观看| 在线天堂中文资源库| 午夜精品在线福利| 中文字幕av电影在线播放| 免费在线观看影片大全网站| 精品久久久久久久毛片微露脸| 欧美人与性动交α欧美精品济南到| 亚洲在线自拍视频| 一区二区三区高清视频在线| 欧美乱码精品一区二区三区| 韩国精品一区二区三区| 亚洲性夜色夜夜综合| 中文字幕精品亚洲无线码一区 | 久久99热这里只有精品18| 夜夜爽天天搞| 中文在线观看免费www的网站 | 他把我摸到了高潮在线观看| 给我免费播放毛片高清在线观看| 窝窝影院91人妻| 精品电影一区二区在线| 久久久久久大精品| 免费看日本二区| 女性被躁到高潮视频| www日本黄色视频网| 少妇裸体淫交视频免费看高清 | 天堂影院成人在线观看| 在线观看免费视频日本深夜| 深夜精品福利| 亚洲欧美一区二区三区黑人| 搡老妇女老女人老熟妇| 男人舔女人的私密视频| 午夜免费成人在线视频| 久久久久亚洲av毛片大全| av欧美777| 久久久久久国产a免费观看| 成在线人永久免费视频| 欧美成人性av电影在线观看| 18禁裸乳无遮挡免费网站照片 | 国产亚洲av嫩草精品影院| 制服诱惑二区| cao死你这个sao货| 国内毛片毛片毛片毛片毛片| 中文字幕人妻丝袜一区二区| 91麻豆精品激情在线观看国产| 欧美日本亚洲视频在线播放| 身体一侧抽搐| 在线观看免费视频日本深夜| 亚洲成人免费电影在线观看| 亚洲欧美精品综合一区二区三区| 99精品在免费线老司机午夜| 9191精品国产免费久久| 国产精品电影一区二区三区| 99久久99久久久精品蜜桃| 精品国产乱子伦一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 欧美最黄视频在线播放免费| 久久久久久久久免费视频了| 天堂影院成人在线观看| 亚洲男人的天堂狠狠| 日韩一卡2卡3卡4卡2021年| 久久这里只有精品19| 99久久国产精品久久久| av福利片在线| 久久午夜亚洲精品久久| 久9热在线精品视频| 在线观看午夜福利视频| 国产真实乱freesex| 国产精品永久免费网站| 男女那种视频在线观看| 亚洲av中文字字幕乱码综合 | 国产成人欧美| 日韩成人在线观看一区二区三区| xxxwww97欧美| 久久性视频一级片| 欧美在线黄色| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩黄片免| 亚洲av片天天在线观看| 国产成人av激情在线播放| 免费看日本二区| 成人手机av| 国产精品乱码一区二三区的特点| 亚洲国产看品久久| 国产色视频综合| 搡老岳熟女国产| 久久精品人妻少妇| 亚洲国产看品久久| 18禁美女被吸乳视频| 夜夜爽天天搞| 国产精品久久久人人做人人爽| 九色国产91popny在线| 制服人妻中文乱码| 99久久国产精品久久久| 这个男人来自地球电影免费观看| 亚洲aⅴ乱码一区二区在线播放 | 女人爽到高潮嗷嗷叫在线视频| 日日爽夜夜爽网站| 国产精品电影一区二区三区| 91麻豆av在线| 欧美成人免费av一区二区三区| bbb黄色大片| 男人的好看免费观看在线视频 | 51午夜福利影视在线观看| 日本免费a在线| 嫩草影院精品99| 久久久精品欧美日韩精品| 色综合站精品国产| 亚洲性夜色夜夜综合| 久久久精品欧美日韩精品| 90打野战视频偷拍视频| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 国产激情偷乱视频一区二区| 成人欧美大片| 啦啦啦韩国在线观看视频| 人人澡人人妻人| 伦理电影免费视频| 一级毛片女人18水好多| 欧美乱码精品一区二区三区| 亚洲色图av天堂| 一区二区三区激情视频| 久久精品人妻少妇| 国产精品久久久久久精品电影 | 精品熟女少妇八av免费久了| 成年女人毛片免费观看观看9| 可以在线观看的亚洲视频| 日韩三级视频一区二区三区| 亚洲无线在线观看| 成人免费观看视频高清| 在线观看免费日韩欧美大片| 国产v大片淫在线免费观看| 国产精品久久电影中文字幕| 中文字幕av电影在线播放| 免费无遮挡裸体视频| 男人舔女人的私密视频| 草草在线视频免费看| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片 | 国产亚洲精品一区二区www| 久热爱精品视频在线9| 精品人妻1区二区| 丰满的人妻完整版| 听说在线观看完整版免费高清| 国产亚洲av嫩草精品影院| 久久精品国产99精品国产亚洲性色| 精品一区二区三区av网在线观看| 黑人巨大精品欧美一区二区mp4| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 欧美成人性av电影在线观看| 香蕉国产在线看| www.熟女人妻精品国产| 欧美性长视频在线观看| 丁香欧美五月| 日日干狠狠操夜夜爽| 精品午夜福利视频在线观看一区| 亚洲va日本ⅴa欧美va伊人久久| 久久国产乱子伦精品免费另类| 天天添夜夜摸| 性欧美人与动物交配| 免费一级毛片在线播放高清视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产毛片av蜜桃av| 亚洲av日韩精品久久久久久密| 久久亚洲真实| 久久久国产成人精品二区| 精品卡一卡二卡四卡免费| 亚洲一区二区三区色噜噜| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色| 看黄色毛片网站| 97碰自拍视频| 亚洲成av片中文字幕在线观看| 午夜福利视频1000在线观看| 美女扒开内裤让男人捅视频| 国产成人精品久久二区二区免费| 韩国av一区二区三区四区| 日本黄色视频三级网站网址| 日韩欧美一区二区三区在线观看| 国产黄色小视频在线观看| tocl精华| 午夜成年电影在线免费观看| 亚洲最大成人中文| 999久久久国产精品视频| 亚洲国产看品久久| a级毛片在线看网站| 国产亚洲欧美精品永久| 岛国在线观看网站| 国产三级在线视频| 久久香蕉国产精品| 一进一出抽搐动态| 久久午夜综合久久蜜桃| 免费在线观看视频国产中文字幕亚洲| 伊人久久大香线蕉亚洲五| 99精品欧美一区二区三区四区| 久久亚洲真实| 亚洲欧美精品综合久久99| 亚洲av中文字字幕乱码综合 | 亚洲九九香蕉| 99精品久久久久人妻精品| 成人18禁高潮啪啪吃奶动态图| 天天一区二区日本电影三级| 身体一侧抽搐| 日韩欧美一区二区三区在线观看| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 国产片内射在线| 欧美激情久久久久久爽电影| 国产在线观看jvid| 国产欧美日韩精品亚洲av| 欧美黑人巨大hd| 中文字幕久久专区| 欧美激情久久久久久爽电影| 啦啦啦免费观看视频1| 成在线人永久免费视频| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 久久狼人影院| 日韩高清综合在线| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 日韩成人在线观看一区二区三区| 18禁美女被吸乳视频| 亚洲成国产人片在线观看| 亚洲专区字幕在线| 亚洲精品在线观看二区| 国产三级黄色录像| 99riav亚洲国产免费| 欧美中文日本在线观看视频| 久久久久久久久中文| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 99久久国产精品久久久| 丁香六月欧美| 12—13女人毛片做爰片一| 19禁男女啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 国产1区2区3区精品| 美国免费a级毛片| 日韩精品青青久久久久久| 国产一区在线观看成人免费| 免费观看人在逋| 最新在线观看一区二区三区| 99国产精品99久久久久| 日本精品一区二区三区蜜桃| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 国产高清视频在线播放一区| 亚洲性夜色夜夜综合| 亚洲第一电影网av| 999精品在线视频| 久久久久久久午夜电影| 亚洲一区高清亚洲精品| 欧美日韩精品网址| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 中文字幕av电影在线播放| 亚洲欧美日韩无卡精品| 久久天躁狠狠躁夜夜2o2o| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 亚洲全国av大片| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看| 老司机在亚洲福利影院| 免费电影在线观看免费观看| 麻豆av在线久日| 亚洲精品av麻豆狂野| 午夜影院日韩av| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 午夜影院日韩av| 欧美黑人巨大hd| 淫妇啪啪啪对白视频| 伊人久久大香线蕉亚洲五| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美在线二视频| 妹子高潮喷水视频| 日韩视频一区二区在线观看| 成年女人毛片免费观看观看9| 欧美日韩精品网址| 亚洲熟妇中文字幕五十中出| x7x7x7水蜜桃| 欧美不卡视频在线免费观看 | 99热只有精品国产| 99久久国产精品久久久| 成年版毛片免费区| 成人亚洲精品一区在线观看| www国产在线视频色| 国产视频一区二区在线看| 天堂动漫精品| 国产视频内射| 国产精品99久久99久久久不卡| 亚洲第一青青草原| 非洲黑人性xxxx精品又粗又长| 国产伦一二天堂av在线观看| 精品国产一区二区三区四区第35| 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲黑人精品在线| √禁漫天堂资源中文www| 国产视频一区二区在线看| 国产精品日韩av在线免费观看| 午夜老司机福利片| 亚洲专区字幕在线| 亚洲激情在线av| 日本撒尿小便嘘嘘汇集6| 国语自产精品视频在线第100页| av有码第一页| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 亚洲无线在线观看| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 亚洲欧美一区二区三区黑人| 欧美大码av| av天堂在线播放| 欧美黑人巨大hd| 色播在线永久视频| 久久亚洲精品不卡| 久99久视频精品免费| 白带黄色成豆腐渣| 亚洲精品国产精品久久久不卡| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 亚洲国产看品久久| 成年人黄色毛片网站| 韩国av一区二区三区四区| 在线永久观看黄色视频| 国产精品美女特级片免费视频播放器 | 精品久久蜜臀av无| 亚洲专区国产一区二区| 国产精品亚洲av一区麻豆| 欧美激情久久久久久爽电影| 中文字幕人妻丝袜一区二区| 久久久久久亚洲精品国产蜜桃av| 久久精品91蜜桃| 91成年电影在线观看| 久久伊人香网站| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| 丁香六月欧美| 久热这里只有精品99| 国产成人av教育| 亚洲专区国产一区二区| 亚洲九九香蕉| 精品一区二区三区av网在线观看| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| 久久香蕉国产精品| 色尼玛亚洲综合影院| 日韩欧美国产一区二区入口| 青草久久国产| 白带黄色成豆腐渣| 国内毛片毛片毛片毛片毛片| 正在播放国产对白刺激| 亚洲自拍偷在线| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 久久久久久久精品吃奶| 亚洲av中文字字幕乱码综合 | 久久草成人影院| 日本免费一区二区三区高清不卡| 麻豆av在线久日| 欧美国产精品va在线观看不卡| 变态另类丝袜制服| 人妻久久中文字幕网| 97碰自拍视频| 嫁个100分男人电影在线观看| 搞女人的毛片| 国产欧美日韩精品亚洲av| 久久伊人香网站| 日本五十路高清| 欧美乱妇无乱码| 曰老女人黄片| 嫩草影院精品99| 国产亚洲精品一区二区www| 少妇被粗大的猛进出69影院| 免费在线观看亚洲国产| 精品国产亚洲在线| 日本免费a在线| 中文字幕高清在线视频| 久热这里只有精品99| www国产在线视频色| 成人国产一区最新在线观看| 给我免费播放毛片高清在线观看| 欧美精品亚洲一区二区| 国产亚洲精品久久久久5区| 国产免费av片在线观看野外av| 男人舔女人的私密视频| 欧美最黄视频在线播放免费| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 亚洲av美国av| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 特大巨黑吊av在线直播 | 嫁个100分男人电影在线观看| 亚洲电影在线观看av| 满18在线观看网站| 少妇熟女aⅴ在线视频| 国产精品av久久久久免费| 91大片在线观看| 国产91精品成人一区二区三区| 亚洲成人久久爱视频| 欧美精品亚洲一区二区| 欧美成人性av电影在线观看| 亚洲国产欧美网| 日韩三级视频一区二区三区| 日本一本二区三区精品| 国产av一区二区精品久久| 99久久精品国产亚洲精品| 亚洲成人免费电影在线观看| www.www免费av| 久久久久久免费高清国产稀缺| 久久香蕉激情| 此物有八面人人有两片| 久久中文字幕一级| 搞女人的毛片| а√天堂www在线а√下载| 在线观看舔阴道视频| 午夜福利免费观看在线| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产 | 嫁个100分男人电影在线观看| 侵犯人妻中文字幕一二三四区| 老鸭窝网址在线观看| 黄片大片在线免费观看| 少妇 在线观看| 欧美成人一区二区免费高清观看 | 午夜精品在线福利| 一级毛片精品| 国产又爽黄色视频| 最新在线观看一区二区三区| 波多野结衣高清无吗| 欧美日韩福利视频一区二区| 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 色老头精品视频在线观看| 一夜夜www| 欧美绝顶高潮抽搐喷水| 日韩三级视频一区二区三区| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 韩国精品一区二区三区| 后天国语完整版免费观看| 久久婷婷成人综合色麻豆| 91国产中文字幕| 欧美不卡视频在线免费观看 | 两个人视频免费观看高清| 无限看片的www在线观看| 国产精品九九99| 九色国产91popny在线| 99热只有精品国产| 久久国产精品人妻蜜桃| 日本 av在线| 高清在线国产一区| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 搡老岳熟女国产| 狂野欧美激情性xxxx| 91成人精品电影| 女警被强在线播放| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区三区激情视频| 一区二区三区精品91| 亚洲三区欧美一区| 大香蕉久久成人网| 不卡一级毛片| 青草久久国产| 亚洲精品中文字幕在线视频| 久久性视频一级片| 亚洲一区二区三区色噜噜| 男人操女人黄网站| 国产成人欧美| 久久香蕉激情| 神马国产精品三级电影在线观看 | 中出人妻视频一区二区| 啦啦啦免费观看视频1| 成人亚洲精品av一区二区| 精品国产一区二区三区四区第35| 99久久综合精品五月天人人| 国产不卡一卡二| 级片在线观看| 久久久久久久久久黄片| 99精品在免费线老司机午夜| 19禁男女啪啪无遮挡网站| 99国产精品99久久久久| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 极品教师在线免费播放| 国产免费男女视频| 国产高清有码在线观看视频 | 制服人妻中文乱码| 国产精品,欧美在线| 精品第一国产精品| 国产精品二区激情视频| 中文字幕久久专区| 91成年电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 国内毛片毛片毛片毛片毛片| 欧美国产精品va在线观看不卡| cao死你这个sao货| 天天一区二区日本电影三级| 亚洲国产精品成人综合色| 国产精品一区二区精品视频观看| 18禁裸乳无遮挡免费网站照片 | 国产欧美日韩精品亚洲av| 丁香六月欧美| 成在线人永久免费视频| 天天一区二区日本电影三级| 一个人观看的视频www高清免费观看 | 不卡一级毛片| 一进一出抽搐动态| 午夜影院日韩av| 亚洲国产日韩欧美精品在线观看 | 亚洲五月婷婷丁香| 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 欧美av亚洲av综合av国产av| 亚洲欧美精品综合久久99| 国内揄拍国产精品人妻在线 | 久久婷婷成人综合色麻豆| 人人妻人人澡人人看| 国产精品影院久久| 欧美黄色淫秽网站| 久久精品夜夜夜夜夜久久蜜豆 | 免费看十八禁软件| 麻豆久久精品国产亚洲av| 一进一出抽搐动态| 在线视频色国产色| 日本三级黄在线观看| 在线免费观看的www视频| 国产激情偷乱视频一区二区| 91av网站免费观看| 亚洲一区中文字幕在线| 18禁裸乳无遮挡免费网站照片 | 国产精品九九99| 欧美乱色亚洲激情| 午夜福利在线观看吧| 麻豆久久精品国产亚洲av| 日韩一卡2卡3卡4卡2021年| 18禁黄网站禁片免费观看直播| 国产成人啪精品午夜网站| 久久久久久久久久黄片| 男男h啪啪无遮挡| 性色av乱码一区二区三区2| 又紧又爽又黄一区二区| 在线观看www视频免费| 日韩高清综合在线| 日韩免费av在线播放| 欧美中文日本在线观看视频| 在线永久观看黄色视频| 丁香六月欧美| 久久精品国产亚洲av高清一级|