• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation on partial coalescence of a droplet with different impact velocities*

    2021-05-24 02:23:20CanPeng彭燦XianghuaXu徐向華andXingangLiang梁新剛
    Chinese Physics B 2021年5期

    Can Peng(彭燦), Xianghua Xu(徐向華), and Xingang Liang(梁新剛)

    Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,School of Aerospace Engineering,Tsinghua University,Beijing 100084,China

    Keywords: droplet impact,partial coalescence,volume of fluid(VOF)method

    1. Introduction

    Droplet impact is a ubiquitous phenomenon that will be encountered in a wide range of engineering fields such as ink-jet printing,[1]fuel injection in engines,[2]spray coating,[3]and spray cooling.[4–6]Previous studies revealed that different impact conditions would result in different behaviors: splashing,[7–9]full coalescence,[10,11]and partial coalescence.[11,12]Partial coalescence is a peculiar impact result during which the droplet does not coalesce with the underlying liquid completely and a daughter droplet will be pinched off.[11]For the practical significance and complexity, partial coalescence attracts plenty of researchers’interests.

    Partial coalescence only emerges under certain circumstances. Charles and Mason[11]proposed a criterion of 0.02 <μ*<7–11, where μ*is the viscosity ratio. Chen et al.[13]found that there was a special droplet size range for partial coalescence. Analysis from Blanchette and Bigioni[14]indicated that there was a critical Ohnesorge number for partial coalescence and the critical Ohnesorge number was approximately 0.026 at a low Bond number. And the critical Ohnesorge number was affected by the density ratio and viscosity ratio. Aryafar and Kavehpour[15]observed that there was no daughter droplet pinched off when the Ohnesorge number was larger than 1. Yue et al.[16]divided the critical Ohnesorge number Ohcinto three zones in terms of the viscosity ratioμ*and the density ratio ρ*. For μ*>0.4,Ohcwas nearly constant with a value close to 2.45×10?2. For ρ*>0.5 andμ*<0.4,Ohcdepended mainly onμ*. For ρ*<0.5 andμ*<0.4,the contours of Ohcshowed a ridge-like structure.

    To gain a better insight into partial coalescence,the mechanism was discussed by several researchers. Charles and Mason[11]attributed partial coalescence to the Rayleigh instability. Blanchette and Bigioni[14]argued that it was the capillary wave convergence rather than the Rayleigh instability that led to partial coalescence.They noticed that the capillary wave could distort the droplet and stretch it upward, which helped the horizontal collapse exceed the vertical collapse. Ray et al.[20]believed that it was the competition between horizontal and vertical momentum that determined the transition between partial coalescence and full coalescence. When the horizontal momentum exceeded the vertical momentum, partial coalescence took place. Mohamed-Kassim and Longmire[21]evidenced the generation of the capillary wave with PIV experiments. Chen et al.[13]also observed the capillary wave, and they found that the uplifting effect of capillary waves thinned the liquid column in the first stage of partial coalescence and the capillary instability led to the pinch-off in the second stage.Gilet et al.[19]investigated the capillary wave propagation and damping. They concluded that the convergence of capillary waves was not the only mechanism and other viscous mechanisms were also involved. Yue et al.[16]thought that there was an energy barrier due to the increase of interface. If the kinetic energy was large enough to overcome the energy barrier partial coalescence would take place. Otherwise,the full coalescence happened. Although many researchers have put forward valuable analyses and explanations,some unclarity still remains on the partial coalescence mechanism. The capillary wave is just one aspect of the mechanism.

    In the present study,the coalescence process is simulated with the volume of fluid(VOF)method. Firstly,the effects of the droplet impact velocity on the daughter droplet diameter ratio and coalescence time are investigated. Secondly,the importance of a downward high-velocity region for the droplet evolving into a prolate shape and the final pinch-off is discussed. And the shift from partial coalescence to full coalescence is explained based on the droplet shape before the pinch-off. Thirdly,the influence of film thickness on the coalescence is investigated. Finally,the effects of surface tension coefficient,viscosity and initial droplet diameter on the critical droplet impact velocity are studied.

    2. Computational model

    2.1. Simulation system

    The droplet is set as a sphere above the underlying liquid at the initial moment. Both the droplet and underlying liquid are water. The ambient fluid is air. The physical properties are assumed to be constant. Since the flow during the coalescence is rotationally symmetric, the 2D axisymmetric model is applied. The boundary conditions are shown in Fig.1.

    Fig.1. Schematic of the simulation system and boundary conditions.

    2.2. Numerical method

    The VOF method proposed by Hirt and Nichols[22]is adopted to track the interface.In this method,the volume fraction is introduced to describe different fluids

    In the present study, the CFD software FLUENT is used to conduct the simulation. The geometric reconstruction scheme is chosen for the discretization of the VOF function.The PISO algorithm is selected for the pressure velocity coupling. The second-order upwind scheme is applied to discretize the spatial terms,while the first-order implicit method is adopted for the discretization of the transient terms. The PRESTO!scheme is used for the pressure interpolation.

    2.3. Numerical model validation

    The present numerical model is validated with the experimental result from Blanchette and Bigioni.[14]The ambient fluid is air; the droplet and underlying liquid is ethanol with the density of 786 kg/m3and the viscosity of 0.00105 Pa·s;the surface tension coefficient is 0.022 N/m;the initial droplet diameter is 1.07 mm. Figure 2 shows the comparison between experimental and numerical results. In the numerical simulation, the daughter droplet diameter ratio, defined as the ratio of the daughter droplet diameter to the initial droplet diameter,is 0.59, and the coalescence time, defined as the interval between the onset of coalescence and the pinch-off, is 3.72 ms.In the experiment of Blanchette and Bigioni,[14]the daughter droplet diameter ratio was 0.55 and the coalescence time was 3.98 ms. The discrepancies in the daughter droplet diameter ratio and coalescence time are 7.2% and 6.5%, which proves that the present numerical model is reliable.

    3. Results and discussion

    3.1. Daughter droplet diameter ratio and coalescence time

    Firstly, three grid cases with the cell number of 76456,109600 and 171250 are used to examine the mesh independence. The results show that the discrepancy in the daughter droplet diameter between the grid cases with the cell number of 109600 and 171250 is less than 1%. Thus, the grid case with the cell number of 109600 is adopted in the following simulations.

    The influence of droplet impact velocity on the daughter droplet diameter ratio is investigated,and the variation trend is shown in Fig.3. The initial droplet diameter is 3.82 mm. With the droplet impact velocity (U0) increasing from 0.01 m/s to 0.45 m/s, the daughter droplet diameter ratio decreases from 0.617 to 0.247 nearly linearly. When the droplet impact velocity increases to 0.455 m/s, the full coalescence happens, and no daughter droplet is pinched off. Different droplet impact velocities lead to different coalescence results: partial coalescence as shown in Fig.4(a)and full coalescence as shown in Fig. 4(b). And partial coalescence only takes place in a low impact velocity range.

    Fig. 2. Comparison between the experimental result from Blanchette and Bigioni[14] (top rows) and numerical result in the present study (bottom rows). (a) 0.00 ms, (b) 0.53 ms, (c) 1.15 ms, (d) 1.40 ms, (e) 2.62 ms,(f)3.57 ms.

    Fig.3. Daughter droplet diameter ratio vs. different droplet impact velocities.

    Fig. 4. Coalescence results with different droplet impact velocities. (a)partial coalescence with U0 = 0.05 m/s, (b) full coalescence with U0 =0.455 m/s.

    The coalescence time is also a concerned parameter. Figure 5 shows the influence of the droplet impact velocity on the coalescence time. Similar to the variation trend of the daughter droplet diameter ratio, higher droplet impact velocity will result in shorter coalescence time. The coalescence time decreases from 14.67 ms to 9.30 ms,with the droplet impact velocity increasing from 0.01 m/s to 0.45 m/s. The reason is that higher droplet impact velocity will accelerate the coalescence process.

    Fig.5. Coalescence time vs. different droplet impact velocities.

    3.2. Mechanism of partial coalescence

    Blanchette and Bigioni[14]suggested that the convergence of capillary waves was responsible for partial coalescence.However,we find that besides the capillary wave convergence,a downward high-velocity region at the neck also plays an important role. Figure 6 shows the pressure fields and velocity vectors at different moments during the partial coalescence process with the droplet impact velocity of 0.05 m/s.Note that there is a low-pressure region formed at the neck because of the negative curvature and surface tension. The velocity near the low-pressure region will be accelerated, and a downward high-velocity region arises.With the coalescence evolving,the high-velocity region expands, and the velocity magnitude increases,as shown in Fig.6. The high-velocity region will pull the droplet downward. And the capillary wave convergence can draw the droplet upward.[14]As a result, the droplet will change into a prolate shape. Since the high-velocity region with downward velocity stretches the droplet continuously,the neck becomes thinner and thinner and finally pinches off. According to the present simulation,both the capillary wave convergence and the high-velocity region play important roles in partial coalescence. Ray et al.[20]concluded that partial coalescence took place when the horizontal momentum exceeded the vertical momentum. Nevertheless,it is not a necessity for the pinch-off in the present simulation,since the vertical momentum dominates and the pinch-off still happens, as shown in Figs.6(g)and 6(h).

    Figure 7 shows the evolution of minimal pressure in the low-pressure region. The evolution goes through three stages:increase stage,flat stage and decrease stage. At 1 ms,the minimal pressure reaches ?358.7 Pa and then increases into a flat stage at about 4 ms. The flat stage lasts for 6 ms and then decreases to ?399.4 Pa at 13 ms. The minimal pressure remains negative during the coalescence. The negative pressure results from the competition between the two curvature radiuses, R1and R2,as shown in Fig.6(c)and the negative curvature radius R2dominates during the coalescence.

    Figure 8 shows the evolution of the maximum velocity in the high-velocity region. It can be seen that the maximum velocity increases continuously under the influence of the lowpressure region. The increase is mild during the increase and the flat stages of the pressure evolution. When it comes to the decrease stage,the velocity increases rapidly,which helps stretching the droplet as introduced above.

    Figure 9 shows the evolution of the velocity at the droplet summit. The velocity at the droplet summit fluctuates and can be downward with positive velocity or upward with negative velocity. Note that the velocity changes from 0.47 m/s at 7 ms to ?0.55 m/s at 8 ms. The fluctuation range reaches 1.02 m/s.The fluctuation is a result of the propagation of the capillary wave. When the capillary waves converge at the summit, the velocity can be accelerated and a crater at the top of the droplet is created,as shown in Fig.6(d)at 7 ms.Also,the velocity can be decelerated by the capillary wave, and the droplet summit is drawn upward as shown in Fig.6(e)at 9 ms.

    Furthermore,it is found that the shift from partial coalescence to full coalescence with the increase of droplet impact velocity depends on the droplet shape before the pinch-off.Figure 10 shows the droplet shapes before the pinch-off with different droplet impact velocities. The moments are chosen when the radiuses of the neck for each case are the same.Note that the droplet shapes are prolate and with the droplet impact velocity increasing it will get close to a sphere as shown in Fig.10. Under the effect of surface tension,the prolate shape tends to evolve into a sphere,which is conducive to the shrinkage of the neck. As the droplet impact velocity increases,the shape gets closer to a sphere and the shrinking trend of the neck is diminishing. Thus, when the droplet shape is close enough to a sphere, the pinch-off stops to take place. The droplet shape can be evaluated by the ratio of the long axis length (a) to the theoretical droplet diameter (Dv) which is corresponding to the volume of the droplet (V) as shown in Fig. 10(a). The variation trend of the ratio (a/Dv) with the droplet impact velocity is shown in Fig.11. It can be seen that when the ratio is close to 1, which means the droplet shape is nearly a sphere the partial coalescence shifts to full coalescence.

    Fig.6. Evolution of the pressure field and velocity vector with the surface tension coefficient of 0.073 N/m and the droplet impact velocity of 0.05 m/s(pressure: Pa,velocity: m/s). (a)1 ms,(b)3 ms,(c)5 ms,(d)7 ms,(e)9 ms,(f)11 ms,(g)13 ms,(h)14 ms.

    Fig. 7. Evolution of the minimal pressure in the low-pressure region with the surface tension coefficient of 0.073 N/m and the droplet impact velocity of 0.05 m/s.

    Fig.8. Evolution of the maximum velocity in the high-velocity region with the surface tension coefficient of 0.073 N/m and the droplet impact velocity of 0.05 m/s.

    Fig.9. Evolution of the velocity at the droplet summit with the surface tension coefficient of 0.073 N/m and the droplet impact velocity of 0.05 m/s.

    Fig.10. Shape of the droplet before the pinch-off with different droplet impact velocities. (a)U0=0.05 m/s,(b)U0=0.15 m/s,(c)U0=0.25 m/s,(d)U0=0.35 m/s,(e)U =0.45 m/s,(f)U =0.455 m/s.

    Fig.11. The ratio of the long axis length to the theoretical droplet diameter which is corresponding to the volume of the droplet.

    3.3. Effect of film thickness

    In this section,the effect of film thickness(f0)on the coalescence is investigated. Figures 12 and 13 show the variation trends of the coalescence time and daughter droplet diameter ratio with the film thickness, respectively. It is noted that the film thickness has a slight influence on the coalescence time and daughter droplet diameter ratio when the film thickness is greater than 2.0 mm. However, with the decrease of the film thickness,full coalescence will happen. It can be explained with the evolution of the high-velocity region. Figure 14 shows the evolution of the maximum velocity in the high-velocity region with U0=0.1 m/s. It can be seen that in the case with the film thickness of 0.1 mm,the maximum velocity increases significantly slower than that in the cases with the film thickness of 0.5 mm, 1.0 mm, 2.0 mm and 3.0 mm.Partial coalescence happens in the cases with the film thickness of 0.5 mm,1.0 mm,2.0 mm and 3.0 mm,while full coalescence happens in the case with the film thickness of 0.1 mm.With the evolution of the high-velocity region, the droplet is stretched downward, and the liquid film is pushed away. A crater is created in the liquid film,as shown in Fig.6(h). If the film thickness is small,there will not be enough space for the evolution of the high-velocity region. That is, the small film thickness will suppress the high-velocity region. And the slow increase of the maximum velocity will retard the stretching of the droplet. As a result, full coalescence happens in the case with small film thickness.The results also imply that the highvelocity region plays a significant role in partial coalescence.

    Fig.12. The effect of film thickness on coalescence time.

    Fig.13. The effect of film thickness on daughter droplet diameter ratio.

    3.4. Critical droplet impact velocity

    According to the investigation above, there is a critical droplet impact velocity for partial coalescence to take place.When the droplet impact velocity is higher than the critical droplet impact velocity, partial coalescence will shift to full coalescence. In this section,the effects of surface tension coefficient, viscosity, and initial droplet diameter on the critical droplet impact velocity are discussed.

    Figure 15 shows the variation trend of the critical droplet impact velocity with surface tension coefficient. The droplet diameter is 3.82 mm and the viscosity is 0.001 Pa·s. The numerical results indicate that the critical droplet impact velocity increases with the increase of surface tension coefficient. That is, the shift from partial coalescence to full coalescence with a higher surface tension coefficient happens at higher droplet impact velocity. The coalescence process is affected by multifactors. Low droplet impact velocity leads to partial coalescence,while high droplet impact velocity leads to full coalescence. That is, the larger inertia force inhibits partial coalescence. On the contrary,higher surface tension is beneficial for the shrinkage of the neck of the droplet and will promote the final pinch-off. With a higher surface tension coefficient, the surface tension can dominate at a higher droplet impact velocity. As a result,the pinch-off can take place at a higher droplet impact velocity.

    Fig.14. The effect of film thickness on the evolution of the maximum velocity in the high-velocity region with U0=0.1 m/s.

    Fig.15. The effect of surface tension coefficient on the critical droplet impact velocity.

    Figure 16 shows the effect of viscosity on the critical droplet impact velocity. The droplet diameter is 3.82 mm,and the surface tension coefficient is 0.073 N/m. Unlike the variation trend with surface tension coefficient, the critical droplet impact velocity decreases with the increase of viscosity. The reason is that higher viscosity will inhibit the capillary wave[14]and damp the velocity of the droplet during the coalescence. As a result, the stretching of the droplet is retarded, and it is easier for full coalescence to take place at lower droplet impact velocity.

    Figure 17 shows the effect of initial droplet diameter on the critical droplet impact velocity. The surface tension coefficient is 0.073 N/m, and the viscosity is 0.001 Pa·s. Similar to the variation trend with viscosity,the critical droplet impact velocity decreases with the increase of initial droplet diameter.The reason is that with a larger droplet diameter, the inertia force which inhibits partial coalescence is larger,while the effect of surface tension which promotes partial coalescence is weaker. In other words,the inertia force with a larger droplet diameter can dominate at lower droplet impact velocity.

    Fig.16. The effect of viscosity on the critical droplet impact velocity.

    Fig.17. The effect of initial droplet diameter on the critical droplet impact velocity.

    The critical droplet impact velocity is used to calculate the critical Weber number (Wec) defined as ρLU2cD0/σ. Ucis the critical droplet impact velocity, and D0is the initial droplet diameter. Figures 18–20 show the effects of surface tension coefficient, viscosity, and initial droplet diameter on the critical Weber number, respectively. It can be seen that the critical Weber number decreases with the increase of viscosity monotonically. Different from the variation trend with viscosity,the critical Weber number increase with the increase of surface tension coefficient and initial droplet diameter nonmonotonically. As the surface tension coefficient or the initial droplet diameter increases, there is a maximum value for the critical Weber number.

    Fig. 18. The effect of surface tension coefficient on the critical Weber number.

    Fig.19. The effect of viscosity on the critical Weber number.

    Fig.20. The effect of initial droplet diameter on the critical Weber number.

    4. Summary and conclusion

    In the present study, the VOF method is adopted to simulate the partial coalescence process. The importance of a downward high-velocity region formed near the low-pressure region for the droplet evolving into a prolate shape and the final pinch-off is proposed. The low-pressure region is caused by the negative curvature and surface tension. Furthermore,the shift from partial coalescence to full coalescence is explained based on the droplet shape before the pinch-off. The droplet shape is evaluated by the ratio of the long axis length of the prolate droplet to the theoretical droplet diameter which is corresponding to the volume of the droplet. With the increase of droplet impact velocity, the droplet shape will get close to a sphere. When the droplet shape gets close enough to a sphere, the shrinking trend of the neck is weak, and the partial coalescence will shift to full coalescence. The effect of film thickness is also studied. When the film thickness is large enough,the film thickness shows a slight influence on the coalescence, and when the film thickness is small, the full coalescence rather than partial coalescence happens. Moreover,the influences of surface tension coefficient,viscosity,and initial droplet diameter on the critical droplet impact velocity are investigated. The results show that a higher surface tension coefficient will cause higher critical droplet impact velocity while higher viscosity and larger droplet diameter will lead to lower critical droplet impact velocity. The critical droplet impact velocity is used to calculate the critical Weber number.The results indicate that there is a maximum critical Weber number with the increase of surface tension coefficient and initial droplet diameter.

    黄色视频不卡| 桃红色精品国产亚洲av| 午夜福利成人在线免费观看| 亚洲专区字幕在线| 一级a爱片免费观看的视频| 亚洲中文av在线| 嫁个100分男人电影在线观看| 免费久久久久久久精品成人欧美视频| 搡老熟女国产l中国老女人| 老汉色∧v一级毛片| avwww免费| 男女之事视频高清在线观看| 美女 人体艺术 gogo| 久久国产精品人妻蜜桃| 亚洲五月色婷婷综合| 日韩 欧美 亚洲 中文字幕| 亚洲九九香蕉| 日韩一卡2卡3卡4卡2021年| 国产精品野战在线观看| 一区二区三区激情视频| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站| 黄色a级毛片大全视频| 黑人巨大精品欧美一区二区mp4| 国产精品香港三级国产av潘金莲| 日日干狠狠操夜夜爽| 成人国语在线视频| 老司机深夜福利视频在线观看| 美国免费a级毛片| 日韩欧美国产一区二区入口| 国产午夜精品久久久久久| 香蕉国产在线看| 亚洲国产精品久久男人天堂| 午夜两性在线视频| 亚洲久久久国产精品| 禁无遮挡网站| 啦啦啦观看免费观看视频高清 | 啦啦啦 在线观看视频| 女性生殖器流出的白浆| a级毛片在线看网站| 精品熟女少妇八av免费久了| aaaaa片日本免费| 国内久久婷婷六月综合欲色啪| 精品国内亚洲2022精品成人| 精品久久久精品久久久| 国产乱人伦免费视频| 此物有八面人人有两片| 久久精品aⅴ一区二区三区四区| 日韩欧美三级三区| 精品国产乱码久久久久久男人| 亚洲av熟女| 亚洲九九香蕉| 啪啪无遮挡十八禁网站| 精品欧美国产一区二区三| 最新在线观看一区二区三区| 色尼玛亚洲综合影院| 精品国内亚洲2022精品成人| 亚洲 欧美一区二区三区| 9191精品国产免费久久| 熟妇人妻久久中文字幕3abv| 亚洲成人免费电影在线观看| 精品电影一区二区在线| 国产在线观看jvid| 免费av毛片视频| 亚洲精品国产精品久久久不卡| 国产亚洲精品久久久久5区| 一本久久中文字幕| 在线av久久热| 人人澡人人妻人| 欧美性长视频在线观看| 搡老岳熟女国产| 免费看美女性在线毛片视频| 精品久久久久久成人av| 亚洲av五月六月丁香网| 在线免费观看的www视频| 91国产中文字幕| 淫妇啪啪啪对白视频| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 91在线观看av| 欧美黑人精品巨大| 午夜福利在线观看吧| 制服人妻中文乱码| 999久久久国产精品视频| 久久久久久久午夜电影| 少妇的丰满在线观看| 757午夜福利合集在线观看| 美女午夜性视频免费| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费视频日本深夜| 一进一出好大好爽视频| 成人亚洲精品一区在线观看| 一本久久中文字幕| 亚洲精品国产色婷婷电影| 中文亚洲av片在线观看爽| 99热只有精品国产| 热99re8久久精品国产| 国产亚洲精品综合一区在线观看 | 一边摸一边抽搐一进一出视频| 男女下面进入的视频免费午夜 | 国产熟女午夜一区二区三区| 男男h啪啪无遮挡| 精品人妻1区二区| 黄频高清免费视频| 日本在线视频免费播放| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 精品国产超薄肉色丝袜足j| 亚洲av成人av| x7x7x7水蜜桃| 曰老女人黄片| 免费高清视频大片| 久久久国产成人精品二区| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久| 午夜免费激情av| 精品国内亚洲2022精品成人| 国产真人三级小视频在线观看| av网站免费在线观看视频| 91大片在线观看| 麻豆久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区 | 老司机午夜十八禁免费视频| 中文字幕精品免费在线观看视频| 99热只有精品国产| 女警被强在线播放| 午夜激情av网站| 在线免费观看的www视频| 久99久视频精品免费| 精品久久久精品久久久| 亚洲第一青青草原| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| 久久中文看片网| 午夜精品久久久久久毛片777| 咕卡用的链子| 久久天堂一区二区三区四区| 午夜老司机福利片| 又黄又爽又免费观看的视频| 国产一区二区激情短视频| av片东京热男人的天堂| 国产亚洲av高清不卡| 久久久水蜜桃国产精品网| x7x7x7水蜜桃| 黄网站色视频无遮挡免费观看| 变态另类丝袜制服| √禁漫天堂资源中文www| 久久精品91蜜桃| 女性生殖器流出的白浆| 黄色丝袜av网址大全| 一区二区三区高清视频在线| 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| ponron亚洲| 欧美一区二区精品小视频在线| 琪琪午夜伦伦电影理论片6080| 欧美黄色淫秽网站| 日韩大尺度精品在线看网址 | 18禁黄网站禁片午夜丰满| 丰满人妻熟妇乱又伦精品不卡| 夜夜看夜夜爽夜夜摸| av有码第一页| 亚洲天堂国产精品一区在线| 国产av在哪里看| 一级片免费观看大全| 国产成人av激情在线播放| av中文乱码字幕在线| 中亚洲国语对白在线视频| 可以在线观看毛片的网站| 波多野结衣av一区二区av| 欧美成人一区二区免费高清观看 | 在线天堂中文资源库| 精品国产一区二区久久| 国产亚洲av高清不卡| 色综合站精品国产| 级片在线观看| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 99国产精品一区二区三区| 1024香蕉在线观看| e午夜精品久久久久久久| 变态另类成人亚洲欧美熟女 | 男男h啪啪无遮挡| avwww免费| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| av有码第一页| 女警被强在线播放| 精品国产乱子伦一区二区三区| 曰老女人黄片| 黑人巨大精品欧美一区二区蜜桃| av视频免费观看在线观看| 99国产综合亚洲精品| 免费在线观看黄色视频的| 啦啦啦观看免费观看视频高清 | 日韩高清综合在线| 国内久久婷婷六月综合欲色啪| 女性被躁到高潮视频| 国产精品久久久久久亚洲av鲁大| 亚洲久久久国产精品| 亚洲成av人片免费观看| 国产精品一区二区在线不卡| 一级黄色大片毛片| 丰满的人妻完整版| 午夜福利在线观看吧| 日韩欧美在线二视频| 热re99久久国产66热| 一区二区三区激情视频| 免费观看人在逋| 天堂影院成人在线观看| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 亚洲欧美日韩高清在线视频| 两个人免费观看高清视频| 一级作爱视频免费观看| 亚洲五月色婷婷综合| 精品久久久久久久毛片微露脸| 国产精品久久电影中文字幕| 精品国产亚洲在线| 久久人人精品亚洲av| 变态另类成人亚洲欧美熟女 | 操出白浆在线播放| √禁漫天堂资源中文www| 国产免费男女视频| 免费看a级黄色片| www.999成人在线观看| 欧美乱妇无乱码| 在线国产一区二区在线| 男女午夜视频在线观看| 日韩欧美免费精品| 亚洲成国产人片在线观看| 好看av亚洲va欧美ⅴa在| 国产成人系列免费观看| 日韩视频一区二区在线观看| 欧美国产日韩亚洲一区| 啦啦啦免费观看视频1| 久99久视频精品免费| 一级a爱视频在线免费观看| 国产精品爽爽va在线观看网站 | 淫妇啪啪啪对白视频| 美女大奶头视频| 中文字幕人妻熟女乱码| 妹子高潮喷水视频| 人成视频在线观看免费观看| 亚洲国产欧美网| 国产91精品成人一区二区三区| 免费不卡黄色视频| 纯流量卡能插随身wifi吗| 亚洲五月天丁香| 9191精品国产免费久久| 国产三级黄色录像| 日韩大尺度精品在线看网址 | 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| 中文字幕色久视频| 亚洲精品一区av在线观看| 后天国语完整版免费观看| 亚洲一区中文字幕在线| 香蕉丝袜av| 精品国内亚洲2022精品成人| 亚洲男人天堂网一区| 成人亚洲精品av一区二区| 神马国产精品三级电影在线观看 | 亚洲一码二码三码区别大吗| 国产精品亚洲美女久久久| 黄色视频不卡| 精品第一国产精品| 国产一卡二卡三卡精品| √禁漫天堂资源中文www| 免费看a级黄色片| 久久香蕉激情| 丝袜在线中文字幕| 香蕉国产在线看| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 国产又色又爽无遮挡免费看| 久久久久国产一级毛片高清牌| 精品电影一区二区在线| 成人手机av| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 亚洲专区字幕在线| 精品国产乱码久久久久久男人| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 我的亚洲天堂| 99热只有精品国产| 黑人欧美特级aaaaaa片| 一区福利在线观看| 成人三级做爰电影| 国产精品久久久av美女十八| 十分钟在线观看高清视频www| 亚洲成人免费电影在线观看| 深夜精品福利| 亚洲熟妇中文字幕五十中出| 19禁男女啪啪无遮挡网站| 午夜免费激情av| 纯流量卡能插随身wifi吗| 国产精品精品国产色婷婷| av天堂久久9| 亚洲精品一区av在线观看| 99riav亚洲国产免费| 韩国av一区二区三区四区| 18禁国产床啪视频网站| 久久精品国产99精品国产亚洲性色 | 在线国产一区二区在线| 欧美在线黄色| 91国产中文字幕| 日韩精品中文字幕看吧| www.999成人在线观看| 亚洲第一欧美日韩一区二区三区| 欧美亚洲日本最大视频资源| 两个人视频免费观看高清| 精品第一国产精品| 色在线成人网| 国产av又大| 亚洲av成人一区二区三| 国产又爽黄色视频| 一个人观看的视频www高清免费观看 | 男女之事视频高清在线观看| 天堂影院成人在线观看| 日韩精品青青久久久久久| a级毛片在线看网站| 成人欧美大片| 99re在线观看精品视频| 如日韩欧美国产精品一区二区三区| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月| 久久久国产成人免费| 欧美乱码精品一区二区三区| av视频免费观看在线观看| 国产成人一区二区三区免费视频网站| 午夜激情av网站| 琪琪午夜伦伦电影理论片6080| 狂野欧美激情性xxxx| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 丝袜在线中文字幕| 女警被强在线播放| 久久久久亚洲av毛片大全| 人人妻人人澡人人看| 亚洲精品中文字幕在线视频| 亚洲人成电影免费在线| 成人国产一区最新在线观看| 精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 欧美丝袜亚洲另类 | 亚洲一区高清亚洲精品| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 久久精品国产99精品国产亚洲性色 | 欧美激情极品国产一区二区三区| 日日夜夜操网爽| 99在线人妻在线中文字幕| 黑人欧美特级aaaaaa片| 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 99国产精品免费福利视频| 精品久久久久久久久久免费视频| 在线天堂中文资源库| 亚洲色图综合在线观看| videosex国产| 精品久久久精品久久久| а√天堂www在线а√下载| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 亚洲精品一卡2卡三卡4卡5卡| www.999成人在线观看| 禁无遮挡网站| 亚洲国产欧美一区二区综合| 国产精品野战在线观看| 亚洲第一青青草原| 国产精品久久久久久人妻精品电影| 男男h啪啪无遮挡| 黄色女人牲交| 精品午夜福利视频在线观看一区| 老司机靠b影院| 国产成人精品久久二区二区91| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 桃红色精品国产亚洲av| 国产乱人伦免费视频| 香蕉丝袜av| 一级毛片高清免费大全| 深夜精品福利| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看 | 91精品国产国语对白视频| 两个人免费观看高清视频| 性少妇av在线| 麻豆久久精品国产亚洲av| 51午夜福利影视在线观看| 国产激情欧美一区二区| 亚洲激情在线av| 99久久综合精品五月天人人| av中文乱码字幕在线| 中文字幕人妻熟女乱码| 又紧又爽又黄一区二区| 日韩欧美免费精品| 丁香六月欧美| 88av欧美| 在线播放国产精品三级| 成人三级黄色视频| 麻豆国产av国片精品| 在线观看66精品国产| 91av网站免费观看| 精品国内亚洲2022精品成人| av视频免费观看在线观看| 欧美中文日本在线观看视频| 自线自在国产av| 国产色视频综合| 97人妻天天添夜夜摸| 国产亚洲精品久久久久5区| 日日摸夜夜添夜夜添小说| 国产91精品成人一区二区三区| 可以免费在线观看a视频的电影网站| 国产一区二区三区视频了| 国产精品 国内视频| 99国产精品一区二区三区| 亚洲无线在线观看| 怎么达到女性高潮| 婷婷六月久久综合丁香| 午夜老司机福利片| 久久婷婷成人综合色麻豆| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 亚洲精品美女久久久久99蜜臀| 成年女人毛片免费观看观看9| 男人舔女人的私密视频| 给我免费播放毛片高清在线观看| 国产免费男女视频| 精品久久久久久久毛片微露脸| 中文字幕久久专区| 欧美午夜高清在线| 午夜福利成人在线免费观看| 99国产极品粉嫩在线观看| 电影成人av| 欧美乱色亚洲激情| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 啦啦啦免费观看视频1| 欧美日韩乱码在线| 精品久久久久久久人妻蜜臀av | 久久久久久久精品吃奶| 亚洲国产日韩欧美精品在线观看 | 欧美+亚洲+日韩+国产| 午夜福利视频1000在线观看 | 久久久久久久久久久久大奶| 韩国av一区二区三区四区| 天堂√8在线中文| av天堂久久9| 精品人妻在线不人妻| 久久久久国产一级毛片高清牌| 久久婷婷成人综合色麻豆| 欧美成人一区二区免费高清观看 | 日韩 欧美 亚洲 中文字幕| 欧美黄色淫秽网站| 999久久久国产精品视频| 午夜精品在线福利| 可以在线观看毛片的网站| 中文字幕人妻丝袜一区二区| 久久伊人香网站| 国产又爽黄色视频| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 亚洲国产精品成人综合色| 欧美精品啪啪一区二区三区| 欧美激情高清一区二区三区| 亚洲av片天天在线观看| 老汉色av国产亚洲站长工具| 九色国产91popny在线| 久久精品国产亚洲av香蕉五月| 在线av久久热| 久久久久亚洲av毛片大全| 欧美色视频一区免费| 午夜两性在线视频| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 91九色精品人成在线观看| 淫秽高清视频在线观看| 高潮久久久久久久久久久不卡| 午夜免费观看网址| www.精华液| 18禁国产床啪视频网站| 人人澡人人妻人| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产毛片av蜜桃av| 亚洲免费av在线视频| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 亚洲专区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品久久久久久毛片| 母亲3免费完整高清在线观看| www日本在线高清视频| 搡老妇女老女人老熟妇| 亚洲av片天天在线观看| 国产av精品麻豆| 91在线观看av| 成人亚洲精品一区在线观看| 一级毛片精品| 啦啦啦 在线观看视频| 欧美一级a爱片免费观看看 | 波多野结衣巨乳人妻| 女性生殖器流出的白浆| 一级毛片高清免费大全| 国产黄a三级三级三级人| 怎么达到女性高潮| 亚洲精品美女久久av网站| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 制服人妻中文乱码| 国产一卡二卡三卡精品| 久久人妻av系列| 亚洲av美国av| 91大片在线观看| 国产又色又爽无遮挡免费看| 美女扒开内裤让男人捅视频| 久久国产精品男人的天堂亚洲| 亚洲免费av在线视频| 久久人人精品亚洲av| e午夜精品久久久久久久| 涩涩av久久男人的天堂| 久久久国产成人精品二区| 男女午夜视频在线观看| 国产亚洲欧美98| 美女大奶头视频| 欧美成人免费av一区二区三区| 国产野战对白在线观看| 国产97色在线日韩免费| 欧美在线黄色| 亚洲精品国产一区二区精华液| 欧美在线黄色| 在线av久久热| 久久国产精品男人的天堂亚洲| 可以免费在线观看a视频的电影网站| 精品久久久久久,| 老司机福利观看| 日韩精品免费视频一区二区三区| 美女扒开内裤让男人捅视频| 丰满的人妻完整版| 亚洲天堂国产精品一区在线| 亚洲av美国av| 成人欧美大片| 久久久国产精品麻豆| 国产亚洲精品综合一区在线观看 | 欧美性长视频在线观看| 18禁美女被吸乳视频| 久久久久国产精品人妻aⅴ院| 久久久久久久久久久久大奶| 国产精品1区2区在线观看.| 视频在线观看一区二区三区| 999久久久精品免费观看国产| 午夜精品在线福利| 成人av一区二区三区在线看| 国产欧美日韩一区二区精品| 18禁观看日本| bbb黄色大片| 国产野战对白在线观看| 女人被狂操c到高潮| 美女免费视频网站| 亚洲第一电影网av| 岛国视频午夜一区免费看| 国内精品久久久久精免费| 国产一区二区在线av高清观看| 日日爽夜夜爽网站| 露出奶头的视频| 免费在线观看视频国产中文字幕亚洲| 国产成人精品久久二区二区91| av免费在线观看网站| 给我免费播放毛片高清在线观看| 悠悠久久av| 午夜老司机福利片| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕| 午夜免费观看网址| 脱女人内裤的视频| videosex国产| av电影中文网址| 国产精品久久久久久人妻精品电影| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 国产亚洲精品久久久久久毛片| 波多野结衣一区麻豆| 此物有八面人人有两片| 91麻豆av在线| 亚洲激情在线av| 久久 成人 亚洲| 久久人妻福利社区极品人妻图片| 色婷婷久久久亚洲欧美| 免费看十八禁软件| 欧美一区二区精品小视频在线| 免费不卡黄色视频| 精品人妻在线不人妻| 人人澡人人妻人| 久久人妻福利社区极品人妻图片| 国产精品一区二区精品视频观看| 禁无遮挡网站| 神马国产精品三级电影在线观看 | 成人免费观看视频高清| 亚洲va日本ⅴa欧美va伊人久久| www.www免费av| 好男人电影高清在线观看| 国产区一区二久久|