• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser*

    2021-05-24 02:23:12MuhammadHusinNgLauAbdullahandMahdi
    Chinese Physics B 2021年5期

    F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi

    1Department of Physics,Faculty of Science,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    2Wireless and Photonics Networks Research Centre,Faculty of Engineering,Universiti Putra Malaysia,43400 UPM Serdang,Selangor,Malaysia

    3Department of Electronics and Nanoengineering,Tietotie 3,Aalto University,02150 Espoo,Finland

    Keywords: zinc-oxide,saturable absorber,tapered fiber,mode-locked,fiber laser

    1. Introduction

    Mode-locked fiber lasers are of great interest to researchers due to their ability to generate ultrashort pulses,which can find potential applications in various fields, including spectroscopy, basic scientific research, material processing, metrology, telecommunications, and biomedical research.[1–6]Although mode-locking can be undertaken using active components,the passive scheme,such as using saturable absorbers (SAs), is preferable since additional switching electronics that lead to the bulkiness of the system are not required. In contrast to the active method, passively modelocked by SAs provide a significant advantage of low complexity and ease of operation due to their simple design,which allows for the development of compact and cost-effective pulsed laser sources.

    Various SAs have been implemented for passively modelocked fiber laser generation,such as semiconductor saturable absorber mirrors (SESAMs),[7,8]carbon nanotubes,[9,10]graphene,[11–13]topological insulators(TIs),[14]and transition metal dichalcogenides(TMDs).[15]Apart from the aforementioned SAs, a significant amount of research has also been devoted to the development of a cheaper material as the SA with less complex fabrication for passive mode-locking. Recently, zinc-oxide (ZnO) has emerged as a strong candidate to be employed as the saturable absorber due to its superior properties such as large carrier density excitation,[16,17]high third-nonlinear coefficient,[16,18–20]and ultrafast recovery time,[16,17]making it highly attractive for optical applications.

    In previous works, most of the ZnO-based SAs are integrated into the fiber laser cavity by sandwiching the ZnO thin film between two fiber ferrules.[16,19–21]Although this technique is simple and compatible, the sandwiched SA material is in physical contact with the fiber ends and is prone to thermal damage due to the direct interaction with light,which can reduce the lifetime of the SA and hinder the operation in the high-power regime. In addition, this technique also involves a small functionalized area of the SA, confined by the small area of the fiber core. This would inherently limit the nonlinear interaction length of the SA,which eventually degrades the pulse laser operation.

    As an improved technique, the evanescent field interaction scheme has been exploited to overcome the aforementioned drawbacks of the sandwiched-based SAs. This scheme allows the SA to interact with the leaking interface wave that propagates in the microfiber structure, such as D-shaped fibers,[22–24]hollow-core fibers and tapered fibers.[25,26]In contrast to direct penetration of light into the SA material at the fiber ends, it has many advantages such as high power tolerance of the optical power-induced thermal damage, and longer lateral interaction length between SA material and the evanescent field of the propagating wave along the microfiber. To enhance the efficiency of the light-SA interaction in this scheme, it is imperative to have a nonblocking configuration of the SA device structure.[27]Among evanescent field interaction schemes, the SA-coated tapered fiber seems to be the most versatile method compared to other types of microfibers[28]since the fiber surface are maximally utilized, thus allowing for maximum efficiency of the light–SA interaction. Several methods have been demonstrated for fabricating the SA-coated tapered-fiber, such as optical deposition,[29,30]direct spray-coating,[31]and pulse laser deposition(PLD).[32,33]However,direct deposition of SA material on the taper’s surface introduces large scattering loss and exposes the device directly to the environment.[28]In addition,those aforementioned methods could not guarantee the allsurface deposition on the tapered fiber. Therefore,researchers have come up with the idea of coating the SA-polymer composite on the tapered fiber using an appropriate polymer with low refractive index,[27,28,34–36]which enables the SA to be well dispersed in the polymer topology, thus reducing the clustering effect as well as the scattering loss.[28]In addition,the polymer composite could protect the device from direct exposure to the environment and impurities to improve durability.[28]

    In this paper, we demonstrate the fabrication of ZnO/PDMS polymer-composite wrapped around the whole surface of the tapered fiber to guarantee the maximum efficiency of the nonlinear effect of the ZnO with careful optimization of the coating process. This is achieved by embedding a tapered fiber in ZnO/PDMS polymer-composite solution and subsequently spreading the solution evenly throughout the tapered region to maximize the coating area. The ZnO/PDMS-clad tapered fiber is then employed as an SA to realize mode-locked pulse operation in an EDFL based on the evanescent field interaction scheme. The measured modulation depth of the SA is 6.4%,with an insertion loss of 0.87 dB.The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively. These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as a simple and low-cost SA device for ultrafast laser applications. To the best of the authors’ knowledge, this is the first demonstration of mode-locked fiber laser achieved by using ZnO/PDMS-clad tapered fiber.

    2. Device fabrication

    ZnO used in this work is originally in the form of nanopowder with a nanoparticle size of ~55 nm, which is synthesized by the sol-gel method. The synthesis process of the ZnO nanopowder has been described in detail in Ref.[37].The ZnO nanopowder is firstly mixed with chloroform,CHCl3as the effective solvent for ZnO, with a concentration of 0.3 mg/ml, which can evaporate easily and dissolve in most types of polymers. The ZnO/CHCl3mixture is subsequently placed into a commercial ultrasonicator at 15 kHz and 10 W for 30 minutes to form a well-dispersed ZnO nanoparticle in CHCl3solution and to reduce particle agglomeration.

    The procedure is continued with the fabrication of the ZnO/CHCl3/polydimethylsiloxane(ZnO/CHCl3/PDMS)mixture by mixing 10 ml of the prepared ZnO/CHCl3solution with 20 ml PDMS polymer. It must be noted that appropriate mixing and concentration of ZnO nanoparticles in the polymer is significant to reduce the excessive scattering losses.The ZnO/CHCl3/PDMS mixture is stirred by using a magnetic stirrer and heated continuously at 80°C until the mixture is reduced to approximately 10 ml, which takes about 7 hours to be completed. This thermal treatment is crucial towards ensuring the evaporation of CHCl3,which needs to be removed to form the ZnO/PDMS polymer-composite mixture, as well as to increase the homogeneity and transparency of the final ZnO/PDMS composite.The PDMS is chosen as the host polymer in this work due to its high transparency and low refractive index of ~1.40,which is lower than the refractive index of glass silica of the optical fiber core. In addition,the PDMS polymer can help to reduce the scattering effect,which would consequently reduce the transmission loss of the signal propagating in the tapered region.

    Once the ZnO/PDMS polymer-composite mixture is ready, we fabricate the tapered fiber, which is drawn from a standard single-mode optical fiber via the heating and pulling technique using a GPX-3000 Vytran instrument. This technique works in a way that the fiber is stretched out by the heat produced from the flame to reduce the fiber diameter at the transition region. In this work, the fiber is tapered down to a waist diameter of approximately 12μm and a waist length of approximately 5 mm. The tapered fiber is then fixed to an aluminum plate to be embedded in the ZnO/PDMS mixture using the drop-casting technique. To maximize the coated surface area, the tapered fiber with the adhered ZnO/PDMS mixture is rolled gently and moved laterally from end to end against the aluminum plate,and this is repeated several times. This all surface technique enables a large interaction area between the evanescent field wave and the ZnO-SA, which in turn would enhance the nonlinearity of the device. The coated tapered fiber is then left to dry at room temperature for 3 days without requiring further heat treatment process to let the excess CHCl3fully evaporates as well as to solidify the ZnO/PDMS polymer-composite around the tapered fiber.

    3. Nonlinear saturable absorption and structural characterization of ZnO/PDMS-clad tapered fiber

    The saturable absorption properties of our SA device are experimentally characterized using a power-dependent transmission system based on an equalized dual-detector technique.This technique employs a home-made mode-locked pulse system comprising of an EDFL with an integrated carbon nanotube(CNT)-based SA as the pulse source. The mode-locked pulse operates at a pulse repetition rate of 13.3 MHz and pulse duration of 594 fs. This ultrafast laser source is used to generate a signal up to 150 mW to fully saturate the ZnO-based SA.A 50:50 optical coupler and optical power meters are used to complete the measurement setup. The ZnO/PDMS-clad tapered fiber is coupled to the pulse source through one output port of the 50:50 optical coupler,and the other port is used to measure the power as a reference. By varying the input power to the SA device,the transmitted power is recorded as a function of the input power. The experimental data is shown in Fig.1,which can be well-fitted by a solid curve based on the instantaneous two-level SA model[38]as expressed in Eq.(1)to extrapolate the approximate values of α0,Isatand αns,

    where α(I) is the intensity-dependent absorption coefficient,α0is the modulation depth, Isatis the saturation intensity,and αnsis the non-saturable absorption loss. From the fitting, the modulation depth, saturation intensity, and nonsaturable absorption loss of the device are estimated to be 6.4%, 4.15 MW/cm2, and 55.48%. This indicates a strong saturable absorption property of the device,which can be potentially used for short-pulse laser generation. The obtained modulation depth is comparable to the widely used graphene and CNT-based SA as reported in Refs. [34,39,40]. It is expected that higher modulation depth can be achieved by increasing the concentration of ZnO, though this comes at the expense of increasing its insertion loss. The measured insertion loss of our SA device is about ~0.87 dB.

    Fig.1. Nonlinear saturable absorption characterization of ZnO/PDMS-clad tapered fiber SA.

    The prepared SA device is further examined microscopically under Raman spectroscopy by a Witec Alpha 300R Raman spectrometer. The Raman spectrum is acquired by a laser excitation at 531.88 nm with an exposure time of 5.1 s using a grating value of 600 g/mm, and the incident power and the depth of field are set to be 1 mW and 16.25 μm, respectively. Figure 2 shows the Raman spectrum of the prepared SA device, which exhibits several significant intensity peaks at Raman shift of approximately 100, 191, 491, 2905,and 2966 cm?1. The vibrational modes at 100 cm?1and 491 cm?1are found to match the specified Raman peak profile for ZnO, with each associated with the vibration of the heavy Zn sublattice at E2(low)and oxygen atoms at E2(high)respectively,[41,42]thus confirming the presence of ZnO on the tapered fiber. It is remarkable that the blue-shift in E2(high)from 437 cm?1(theoretical value)to 491 cm?1(experimental value) is created by the impurities or the tensile strain in the sample.[43]On the other hand, the observed intensity peaks at 2905 cm?1and 2966 cm?1are assigned to the C–H vibration of the Vinyl group in the PDMS.[44]In addition, Raman spectroscopy can also be used to characterize the disorder and defects of the ZnO samples.

    Fig.2. Raman trace of ZnO/PDMS-clad tapered fiber.

    Figure 3(a) presents the surface of ZnO/PDMS-clad tapered fiber measured by the field emission scanning electron microscope (FESEM) at a scale bar of 40 μm. It can be observed that the coated ZnO/PDMS reveals a smooth surface and a uniform structure appearance along the tapered region.For comparison purposes,the FESEM image of a bare tapered fiber is shown in Fig.3(b).

    Fig. 3. Top view FESEM image of (a) ZnO/PDMS-clad tapered fiber and(b)bare tapered fiber.

    4. Experimental setup

    Figure 4 illustrates the experimental setup of the modelocked EDFL based on ZnO/PDMS-clad microfiber as the SA.A section of 6.5 m Lucent Technologies HP980 erbium-doped fiber(EDF)is pumped by a 980 nm laser diode(LD)through a 980 nm port of a fused 980/1550 nm wavelength division multiplexer(WDM).The signal absorption coefficient of the EDF is about 3.5 dB/m at 1530 nm. An optical isolator is spliced at the output port of the EDF to ensure unidirectional signal oscillation in the clockwise direction within the ring-structured EDFL cavity. The fabricated ZnO/PDMS-clad microfiber is placed after the isolator,whereby this ZnO-based SA assembly acts as the modelocking element in the laser cavity.After passing through the ZnO-based SA,the signal is then channeled to an 80:20 coupler for tapping out a 20% portion of the signal oscillating in the cavity for further analysis.On the other hand,the remaining signal will propagate through the 80% port of the coupler, which is connected to a polarization controller(PC). This PC functions to adjust the birefringence effect in the laser cavity as well as to optimize the mode-locking state.The signal is finally channeled back to the 1550 nm port of the WDM,thus completing the laser resonator. The length of the resonator is approximately 22.4 m.

    Fig. 4. Experimental setup of mode-locked EDFL using the fabricated ZnO/PDMS-clad microfiber-based SA.

    A Yokogawa AQ6370B optical spectrum analyzer(OSA)with a resolution of 0.02 nm is used to measure the output spectrum of the generated mode-locked laser. Analyzing the pulse train properties of the modelocked pulses makes use of a Tektrunin TDS 3012C digital phosphor oscilloscope together with a Thorlabs SIR5 1856 light wave detector for optical to electrical conversion in place of the OSA.A GW INstek GSP-830 radio frequency spectrum analyzer(RFSA)is used to analyze the pulse train in the frequency domain.An autocorrelator(Alnair HAC-200) is also used to analyze the autocorrelation trace of the output pulse.

    5. Mode-locked EDFL performance with ZnO/PDMS-clad microfiber-based SA

    The proposed system initially operates in the continuous wave (CW) mode at a lasing threshold of 24.5 mW. Further increase of the pump power to 33.07 mW and above yields a mode-locking operation with an appropriate setting of the PC. At the maximum pump power of 151.5 mW, the central wavelength and 3-dB spectral width of the mode-locked spectrum are 1558.48 nm and 5.02 nm, respectively. The output spectrum of the mode-locked EDFL obtained from the OSA at the maximum pump power of 151.5 mW is shown in Fig. 5.Considering the dispersion coefficient β2of the EDF, SMF-28, and Hi-1060 SMF used in the laser cavity with the value of 23 ps2/km, ?22 ps2/km, and ?7 ps2/km, respectively, the estimated total group velocity dispersion(GVD)for the entire cavity is ?0.186 ps2,thereby putting the operation of the laser in the anomalous dispersion regime and allowing the laser to operate in a soliton mode-locking regime. The Kelly sidebands observed from the optical spectrum in Fig. 5 further validate the solitonic behavior of the pulsed laser.

    Fig.5. Optical spectrum of the mode-locked EDFL.

    The pulse time characteristic of the output solitons as measured from the autocorrelator is shown in Fig. 6, which represents the autocorrelation trace using sech2fitting. By assuming the sech2pulse shape, the full-width half maximum(FWHM) pulse duration is estimated to be 1.03 ps, which is slightly shorter than the reported value of 1.21 ps in Ref.[27].The autocorrelation trace shows that the experimentally obtained value agrees well with the theoretical sech2fitting,with no indication of pulse breaking or pulse pair generation. A time-bandwidth product(TBP)of 0.63 is obtained, which indicates a minor deviation from the expected transform-limited sech2pulse of 0.315, due to the slight chirping in the pulse.Theoretically, the pulse chirping can be reduced by compensating the dispersion at the laser output.

    Fig.6. Autocorrelation trace of the mode-locked pulse.

    Fig.7. Output pulse train of the mode-locked EDFL.

    Figure 7 shows the output pulse train of the mode-locked EDFL obtained at the pump power of 151.5 mW. The time interval between two consecutive pulses in the pulse train is 102.9 ns, which corresponds to a pulse repetition rate of 9.77 MHz, thus matching well with the computed repetition rate for a cavity length of 22.4 m. The intensity of the peaks is almost constant at 5 mV,without any distinct amplitude fluctuation, indicating that the mode-locking operation is stable.Measurement of the average output power and pulse energy of the pulse yields a value of approximately 1.3 mW and 0.13 nJ,respectively.

    The mode-locked output intensity is also measured in the frequency domain by the RFSA to further characterize the operating stability of the mode-locked pulses. Figure 8 shows the output pulse measured by the RFSA with the RF spectrum span of 50 MHz. The RF spectrum provides an evenly spaced frequency interval of approximately 10 MHz,which is comparable to the measurement of pulse repetition rate value obtained from the oscilloscope,thus indicating that the modelocked laser output works in its fundamental regime. No spectral modulation is observed from the RF spectrum,which proves that there is no Q-switching instability in the modelocked pulses.[45]

    Figure 9 plots the fundamental cavity round-trip frequency observed at ~10 MHz in the RF spectrum, which is measured with about 300 kHz frequency span and 0.01 kHz resolution. The peak-to-pedestal extinction ratio of the fundamental pulse is estimated to be approximately 58 dB, implying low amplitude noise fluctuations as well as low timing jitter.[46,47]It can also be seen that the RF spectrum exhibits no sidebands,signifying good stability of the pulse train.[48]

    Fig.8. RF spectrum of the mode-locked pulses at 50 MHz span.

    Fig.9. RF spectrum at fundamental frequency peak of ~10 MHz.

    Fig.10. Short-term stability measurement of the output spectrum over 30 minutes.

    To further verify the stability of the proposed system, a short-term stability measurement of the optical spectrum is carried out at the maximum pump power of 151.5 mW within an observation period of 30 minutes for every 5 minutes time interval,and the result is shown in Fig.10. Based on the result in Fig. 10, it can be seen that the optical spectrum behavior is well maintained over time with no obvious deviation of the output power and spectral bandwidth,in addition to a negligible shift in the central wavelength of 1558.48 nm as well as the side bands,thus validating the high stability of the modelocked laser operation. This result also proves the high power tolerance of our SA device based on its ability to operate continuously at a high pump power of 151.5 mW,with no sign of surpassing its damage threshold. It is expected that the power tolerance ability of the SA device towards the optical powerinduced thermal damage could be further enhanced by optimizing the diameter of the tapered fiber and the quality of the coated SA.[33]

    6. Conclusion

    In summary, we demonstrate the fabrication of ZnO/PDMS polymer-composite coated around the whole surface of the tapered fiber. We achieve this by embedding a tapered fiber in ZnO/PDMS polymer-composite solution and spreading the solution evenly throughout the tapered region for whole surface deposition. Subsequently, we propose and demonstrate the use of the fabricated ZnO/PDMS-clad tapered fiber as an SA to generate mode-locked pulses in an EDFL cavity based on evanescent field interaction. The modulation depth and saturation intensity of the fabricated SA device are measured to be 6.4% and 4.15 MWcm?2, respectively. The proposed laser is able to generate soliton mode-locking operation at a threshold power of 33.07 mW,with a 3 dB spectral bandwidth of 5.02 nm and a central wavelength of 1558 nm.The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps,respectively. These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be a useful SA device for ultrafast laser applications.

    狠狠狠狠99中文字幕| 91av网站免费观看| 亚洲片人在线观看| 99久久久亚洲精品蜜臀av| 欧美日本视频| 国产亚洲欧美精品永久| 大香蕉久久成人网| 欧美激情高清一区二区三区| 1024香蕉在线观看| 成人国产一区最新在线观看| 亚洲欧美精品综合一区二区三区| 一级毛片高清免费大全| 国产精品 欧美亚洲| 99久久国产精品久久久| 午夜福利在线观看吧| 黑丝袜美女国产一区| 日韩精品免费视频一区二区三区| 少妇粗大呻吟视频| 曰老女人黄片| 国产精品野战在线观看| 国产精品永久免费网站| 国内精品久久久久久久电影| 男女床上黄色一级片免费看| 乱人伦中国视频| 九色亚洲精品在线播放| 国产成人精品久久二区二区免费| 法律面前人人平等表现在哪些方面| 99久久国产精品久久久| 亚洲人成电影观看| 一夜夜www| 国产三级黄色录像| 国产av一区二区精品久久| 日本五十路高清| 老司机靠b影院| 老司机在亚洲福利影院| 9191精品国产免费久久| 黄片播放在线免费| 亚洲欧美精品综合久久99| 国产精品美女特级片免费视频播放器 | 亚洲第一av免费看| 一进一出抽搐gif免费好疼| av免费在线观看网站| 欧美乱码精品一区二区三区| 亚洲在线自拍视频| 日本三级黄在线观看| 性少妇av在线| 亚洲色图 男人天堂 中文字幕| 欧美在线一区亚洲| 丝袜美腿诱惑在线| 欧美激情极品国产一区二区三区| 国产免费av片在线观看野外av| 免费少妇av软件| 亚洲精品一区av在线观看| 一区二区三区高清视频在线| 激情在线观看视频在线高清| 亚洲午夜理论影院| 日日夜夜操网爽| 久久热在线av| 日本在线视频免费播放| www国产在线视频色| 很黄的视频免费| 男人操女人黄网站| 国产精品久久视频播放| 狠狠狠狠99中文字幕| 99国产综合亚洲精品| 变态另类丝袜制服| 99热只有精品国产| 国产蜜桃级精品一区二区三区| 巨乳人妻的诱惑在线观看| 国产亚洲精品第一综合不卡| 亚洲 国产 在线| 亚洲精品在线美女| 麻豆成人av在线观看| 国产精品国产高清国产av| 亚洲va日本ⅴa欧美va伊人久久| 韩国av一区二区三区四区| 真人做人爱边吃奶动态| 91老司机精品| 日韩欧美国产在线观看| 国产成人啪精品午夜网站| 99国产精品99久久久久| 国产精品一区二区精品视频观看| 亚洲av成人不卡在线观看播放网| 色综合亚洲欧美另类图片| 叶爱在线成人免费视频播放| 青草久久国产| 日韩高清综合在线| 国产精品爽爽va在线观看网站 | 国产欧美日韩精品亚洲av| 免费少妇av软件| 大型黄色视频在线免费观看| 久热爱精品视频在线9| 好看av亚洲va欧美ⅴa在| 黄色a级毛片大全视频| 国产亚洲欧美精品永久| 午夜老司机福利片| 成人18禁在线播放| 久久久久久亚洲精品国产蜜桃av| 欧美黄色淫秽网站| 亚洲成国产人片在线观看| 国产亚洲欧美精品永久| 亚洲精品国产色婷婷电影| 国产av一区在线观看免费| 久久伊人香网站| 欧洲精品卡2卡3卡4卡5卡区| 在线av久久热| 夜夜爽天天搞| 精品日产1卡2卡| 亚洲欧美激情综合另类| 欧美成狂野欧美在线观看| 午夜福利在线观看吧| 免费搜索国产男女视频| av网站免费在线观看视频| 日本免费a在线| 亚洲av日韩精品久久久久久密| 午夜福利,免费看| av视频免费观看在线观看| 一a级毛片在线观看| 免费看a级黄色片| 午夜a级毛片| 男人舔女人的私密视频| 手机成人av网站| 丁香六月欧美| 级片在线观看| 亚洲第一欧美日韩一区二区三区| 久久香蕉激情| 久久久久国内视频| 18禁美女被吸乳视频| 亚洲精品美女久久久久99蜜臀| 亚洲国产毛片av蜜桃av| 日本免费一区二区三区高清不卡 | 美女高潮喷水抽搐中文字幕| 国产又爽黄色视频| 久久久久久人人人人人| 国产乱人伦免费视频| 国产精品野战在线观看| 中文字幕最新亚洲高清| 成人亚洲精品av一区二区| 人人妻人人澡人人看| 日韩大码丰满熟妇| 黄色视频,在线免费观看| 国产成年人精品一区二区| 日韩精品免费视频一区二区三区| av天堂在线播放| 999精品在线视频| 在线观看免费视频日本深夜| 熟妇人妻久久中文字幕3abv| 久久 成人 亚洲| 亚洲情色 制服丝袜| 丰满人妻熟妇乱又伦精品不卡| 狂野欧美激情性xxxx| 欧美色欧美亚洲另类二区 | 精品久久久精品久久久| 亚洲人成网站在线播放欧美日韩| 欧美av亚洲av综合av国产av| 亚洲欧美日韩无卡精品| 91成人精品电影| 久久国产乱子伦精品免费另类| 国产精品久久久av美女十八| 97人妻精品一区二区三区麻豆 | 欧美 亚洲 国产 日韩一| 少妇熟女aⅴ在线视频| 97人妻天天添夜夜摸| 国产精品一区二区精品视频观看| 一级黄色大片毛片| 亚洲成人免费电影在线观看| 999精品在线视频| 精品电影一区二区在线| av天堂在线播放| 丁香欧美五月| 午夜a级毛片| 久久中文看片网| 长腿黑丝高跟| 视频区欧美日本亚洲| 黄频高清免费视频| 亚洲精品久久国产高清桃花| 亚洲人成电影免费在线| 国产精品亚洲av一区麻豆| 高清在线国产一区| 中文字幕久久专区| 国产熟女xx| 亚洲一区中文字幕在线| 国产亚洲精品久久久久久毛片| 99久久久亚洲精品蜜臀av| 午夜影院日韩av| 久久精品国产清高在天天线| 久久久久久国产a免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品91无色码中文字幕| 一级作爱视频免费观看| 国产区一区二久久| 国产精品 欧美亚洲| 国内精品久久久久精免费| 国产1区2区3区精品| 国产免费男女视频| 国产视频一区二区在线看| 日韩精品青青久久久久久| av在线播放免费不卡| 国产91精品成人一区二区三区| 亚洲成av片中文字幕在线观看| 国产精品日韩av在线免费观看 | 精品卡一卡二卡四卡免费| 日韩精品中文字幕看吧| 日韩中文字幕欧美一区二区| 一本综合久久免费| 亚洲自偷自拍图片 自拍| 中文亚洲av片在线观看爽| www.自偷自拍.com| 国产xxxxx性猛交| 99国产精品免费福利视频| 香蕉丝袜av| 日韩高清综合在线| 99久久国产精品久久久| 老司机福利观看| 欧美久久黑人一区二区| 麻豆一二三区av精品| 757午夜福利合集在线观看| 久久国产精品影院| 国产精品综合久久久久久久免费 | 叶爱在线成人免费视频播放| 18美女黄网站色大片免费观看| 后天国语完整版免费观看| 欧美黄色淫秽网站| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 曰老女人黄片| 一区二区三区高清视频在线| 97人妻精品一区二区三区麻豆 | 久久久久久免费高清国产稀缺| 婷婷精品国产亚洲av在线| 黄色女人牲交| 久久久久久大精品| 国产精品 国内视频| 一级作爱视频免费观看| 精品欧美一区二区三区在线| 9色porny在线观看| 女人爽到高潮嗷嗷叫在线视频| 九色亚洲精品在线播放| 亚洲专区中文字幕在线| 午夜a级毛片| 色综合站精品国产| av超薄肉色丝袜交足视频| bbb黄色大片| 国产精品 欧美亚洲| 一区二区三区国产精品乱码| 国产精品一区二区精品视频观看| 亚洲全国av大片| 亚洲精品久久成人aⅴ小说| 亚洲中文av在线| 亚洲黑人精品在线| 免费在线观看黄色视频的| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 亚洲自偷自拍图片 自拍| 久久婷婷成人综合色麻豆| 美女午夜性视频免费| 久久久久久久午夜电影| 久久精品91无色码中文字幕| 欧美丝袜亚洲另类 | 一本久久中文字幕| 成人国语在线视频| 欧美最黄视频在线播放免费| 国产精品1区2区在线观看.| 亚洲少妇的诱惑av| 91精品三级在线观看| 亚洲国产欧美一区二区综合| 热99re8久久精品国产| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 麻豆久久精品国产亚洲av| 在线观看一区二区三区| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 国产成人av教育| 久久午夜综合久久蜜桃| 久久婷婷成人综合色麻豆| 亚洲av电影在线进入| 成人三级做爰电影| 一级毛片精品| 精品不卡国产一区二区三区| 一级a爱片免费观看的视频| av有码第一页| 青草久久国产| 日本三级黄在线观看| 亚洲专区字幕在线| 亚洲精品中文字幕一二三四区| 在线观看免费日韩欧美大片| 亚洲第一欧美日韩一区二区三区| 91精品国产国语对白视频| 成人特级黄色片久久久久久久| 国产真人三级小视频在线观看| 成人亚洲精品一区在线观看| 香蕉国产在线看| svipshipincom国产片| 超碰成人久久| av天堂在线播放| 亚洲精品粉嫩美女一区| 日韩高清综合在线| 熟女少妇亚洲综合色aaa.| 国产熟女xx| 午夜福利高清视频| 国产一卡二卡三卡精品| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人精品中文字幕电影| 久久久久久国产a免费观看| 亚洲色图 男人天堂 中文字幕| 日韩欧美国产在线观看| 国产精品98久久久久久宅男小说| 99re在线观看精品视频| 精品国产乱码久久久久久男人| 日韩有码中文字幕| 中文字幕久久专区| 亚洲精品中文字幕在线视频| aaaaa片日本免费| 一级毛片高清免费大全| 国产高清视频在线播放一区| 欧美黑人欧美精品刺激| 嫁个100分男人电影在线观看| 国产精品 欧美亚洲| 一边摸一边抽搐一进一出视频| 无遮挡黄片免费观看| 91av网站免费观看| 久久精品国产99精品国产亚洲性色 | 欧美最黄视频在线播放免费| 妹子高潮喷水视频| 中文字幕人妻丝袜一区二区| 嫁个100分男人电影在线观看| 久久午夜综合久久蜜桃| 亚洲熟女毛片儿| 宅男免费午夜| 国产亚洲av嫩草精品影院| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 亚洲av美国av| 欧美乱妇无乱码| 欧美一级a爱片免费观看看 | 少妇的丰满在线观看| 亚洲熟女毛片儿| 99国产综合亚洲精品| 久久久久精品国产欧美久久久| 久久国产精品影院| 亚洲av美国av| 男人操女人黄网站| 精品一区二区三区av网在线观看| 亚洲欧美激情在线| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看 | 欧美中文综合在线视频| 曰老女人黄片| 午夜a级毛片| 老鸭窝网址在线观看| 人妻久久中文字幕网| 亚洲中文日韩欧美视频| 一级a爱视频在线免费观看| 午夜福利18| 国产午夜精品久久久久久| 国产精华一区二区三区| √禁漫天堂资源中文www| 久久国产亚洲av麻豆专区| 亚洲中文字幕日韩| 国产不卡一卡二| 久久人妻福利社区极品人妻图片| 一区在线观看完整版| 久久久久精品国产欧美久久久| 又黄又粗又硬又大视频| 日韩免费av在线播放| 18禁国产床啪视频网站| 日韩欧美免费精品| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 色婷婷久久久亚洲欧美| 精品人妻1区二区| 亚洲熟妇熟女久久| 亚洲人成电影免费在线| 亚洲欧美日韩高清在线视频| 少妇 在线观看| 国产在线观看jvid| 嫩草影院精品99| 国产精品美女特级片免费视频播放器 | 亚洲中文av在线| 青草久久国产| 国产人伦9x9x在线观看| 欧美成人午夜精品| 色综合亚洲欧美另类图片| 亚洲国产欧美一区二区综合| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品合色在线| 丁香欧美五月| 久久中文字幕一级| 老司机福利观看| 欧美激情久久久久久爽电影 | 在线观看午夜福利视频| www.熟女人妻精品国产| 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 少妇熟女aⅴ在线视频| 国产一区在线观看成人免费| 搡老妇女老女人老熟妇| 成熟少妇高潮喷水视频| 成年版毛片免费区| 亚洲精品久久成人aⅴ小说| av视频在线观看入口| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久久5区| 亚洲一区高清亚洲精品| 搞女人的毛片| 丁香欧美五月| 久久久久久久精品吃奶| 国产激情久久老熟女| 午夜激情av网站| av视频免费观看在线观看| 久久久久国内视频| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费 | 久久精品成人免费网站| 日韩欧美国产在线观看| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 好男人电影高清在线观看| 黑丝袜美女国产一区| 久久久国产成人精品二区| www日本在线高清视频| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 婷婷六月久久综合丁香| 1024视频免费在线观看| 亚洲在线自拍视频| 91字幕亚洲| 丝袜美腿诱惑在线| 国产亚洲欧美精品永久| 在线观看免费视频日本深夜| 免费高清视频大片| 99久久精品国产亚洲精品| 不卡av一区二区三区| avwww免费| 日韩高清综合在线| 91精品国产国语对白视频| 亚洲第一av免费看| 国产精华一区二区三区| 久久久久久久久中文| 亚洲片人在线观看| 在线观看日韩欧美| 欧美精品啪啪一区二区三区| 深夜精品福利| 十分钟在线观看高清视频www| 国产乱人伦免费视频| 欧美日本中文国产一区发布| 久久久久久亚洲精品国产蜜桃av| 日韩精品中文字幕看吧| 亚洲男人天堂网一区| 热99re8久久精品国产| 欧美成人午夜精品| av在线天堂中文字幕| bbb黄色大片| 欧美国产精品va在线观看不卡| 免费高清视频大片| 精品午夜福利视频在线观看一区| 麻豆久久精品国产亚洲av| 久久久久久久精品吃奶| 国产1区2区3区精品| 免费av毛片视频| 女人被狂操c到高潮| 亚洲精品在线美女| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频 | 91麻豆av在线| 91字幕亚洲| 亚洲五月婷婷丁香| 亚洲专区字幕在线| 美女大奶头视频| 免费看十八禁软件| 精品卡一卡二卡四卡免费| 免费看a级黄色片| 日韩大码丰满熟妇| 天天一区二区日本电影三级 | 夜夜躁狠狠躁天天躁| 在线观看免费视频网站a站| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 国产三级在线视频| 69精品国产乱码久久久| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯| 在线国产一区二区在线| 美女高潮喷水抽搐中文字幕| 日韩欧美在线二视频| 精品久久久久久,| 国产成人一区二区三区免费视频网站| 亚洲 欧美 日韩 在线 免费| cao死你这个sao货| 一本综合久久免费| 亚洲人成77777在线视频| 国产精品野战在线观看| 精品乱码久久久久久99久播| 国产激情久久老熟女| 亚洲美女黄片视频| 无人区码免费观看不卡| 欧美亚洲日本最大视频资源| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| 一个人免费在线观看的高清视频| 国内精品久久久久精免费| 久久天堂一区二区三区四区| 午夜福利成人在线免费观看| 男女午夜视频在线观看| 国产成人av教育| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频 | 久久性视频一级片| 日本黄色视频三级网站网址| 老鸭窝网址在线观看| 亚洲最大成人中文| 少妇裸体淫交视频免费看高清 | 丁香欧美五月| 免费不卡黄色视频| 日韩精品青青久久久久久| 国产欧美日韩一区二区精品| 夜夜看夜夜爽夜夜摸| 麻豆av在线久日| 精品福利观看| 欧美在线一区亚洲| 在线十欧美十亚洲十日本专区| 久久中文字幕人妻熟女| 精品卡一卡二卡四卡免费| 久久久久久国产a免费观看| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| 久久人人精品亚洲av| aaaaa片日本免费| 97碰自拍视频| 国产国语露脸激情在线看| 一区二区三区高清视频在线| 波多野结衣一区麻豆| 亚洲中文字幕一区二区三区有码在线看 | 亚洲男人天堂网一区| 夜夜躁狠狠躁天天躁| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 亚洲黑人精品在线| 激情视频va一区二区三区| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 一进一出抽搐动态| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区精品| 亚洲一区二区三区色噜噜| 制服诱惑二区| 悠悠久久av| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 此物有八面人人有两片| 国产麻豆69| 免费看a级黄色片| 在线av久久热| 成人三级黄色视频| 色综合欧美亚洲国产小说| 亚洲国产看品久久| 国产成人啪精品午夜网站| 日韩欧美一区视频在线观看| 久久伊人香网站| 亚洲激情在线av| 亚洲情色 制服丝袜| 天堂动漫精品| 国产精品电影一区二区三区| 久久久久久国产a免费观看| 一区二区三区国产精品乱码| 午夜福利免费观看在线| 黑人操中国人逼视频| 大香蕉久久成人网| 国产亚洲精品久久久久久毛片| 一本久久中文字幕| 欧美日韩黄片免| 国产欧美日韩综合在线一区二区| 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 久久国产乱子伦精品免费另类| 91麻豆av在线| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 国产精品二区激情视频| 脱女人内裤的视频| 午夜福利免费观看在线| 亚洲专区字幕在线| cao死你这个sao货| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 自线自在国产av| 国产精品亚洲av一区麻豆| 在线观看一区二区三区| 中文字幕最新亚洲高清| 亚洲久久久国产精品| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 一区二区三区激情视频| 精品熟女少妇八av免费久了| av天堂在线播放| 午夜福利成人在线免费观看| 久久精品国产清高在天天线|