• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment*

    2021-05-24 02:26:02KunYangWang王坤陽JieShao邵杰LiGangShao邵李剛JiaJinChen陳家金GuiShiWang王貴師KunLiu劉琨andXiaoMingGao高曉明
    Chinese Physics B 2021年5期
    關(guān)鍵詞:劉琨陳家

    Kun-Yang Wang(王坤陽), Jie Shao(邵杰), Li-Gang Shao(邵李剛), Jia-Jin Chen(陳家金),Gui-Shi Wang(王貴師), Kun Liu(劉琨), and Xiao-Ming Gao(高曉明),2

    1Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Science,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230031,China

    3College of Physics and Electronic Information Engineering,Zhejiang Normal University,Zhejiang 321004,China

    Keywords: second harmonic amplitude,pressure-calibration,microbial growth,sealed environment,CO2

    1. Introduction

    Monitoring microbial growth plays an important role in a wide range of fields spanning from medical diagnosis to food microbiology.[1–4]Microbial growth occurs in a sealedenvironment bottle(or medium)with a limited supply of nutrients,it goes through by four distinct phases:[5]the lag phase,the exponential growth phase (or log growth phase), the stationary phase, and the death phase (or decline phase). The lag phase is the initial period of slow growth, during which time microorganisms adapt to the medium and synthesize critical proteins. The lag phase is followed by the exponential growth phase. With the number of cells doubling every unit of time, rapid microbial growth presents exponential growth.During the stationary phase, the growth rate of microorganisms is nearly equal to the death rate of microorganisms because nutrients are depleted in the medium,and the conditions become unfavorable for survival. During the death phase,the growth rate of microorganisms decreases and finally reaches zero.[2,6]The modified Gompertz model is widely used to describe these phases.[5]Microorganisms using respiration as a metabolic pathway release carbon dioxide (CO2). Thus CO2as a reliable indirect indicator,the amount of CO2produced in this period accurately reflects the above microbial growth process. BacT/ALERT blood culture bottles based on reflectance spectrometry have been applied to measure the color variation of CO2sensitive receptors in microbial growth.[7]However,such detection is susceptible to contamination and each data point needs to take half an hour.[8]

    Wavelength modulation spectroscopy (WMS) with second harmonic (2f-WMS) as a real time, non-invasive, and high-accuracy detection technology is especially suited for gas detection.[9–12]Though detecting the CO2metabolized by microorganisms, this technology can quantify microbial growth. Thus in recent years, WMS has been used to study metabolic CO2produced above culture medium, for example,our group used WMS to swiftly assess CO2produced by microbial growth with a Hz resolution.[13]This implies that WMS can rapidly and accurately obtain the information of microbial growth. Brueckner et al. used to determine CO2changes in headspaces of the bottles that induced by metabolically active microorganisms.[14]However, it is worth noting that the above traditional WMS is affected by pressure broadening effect when detecting metabolic CO2in sealed microbial growth environment.Because,in traditional WMS,the 2f amplitude is often employed for gas concentration retrieval under constant pressure condition,[15–17]but for microbial growth,produced CO2will continue to increase and cause the pressure continuously increase in the sealed-environment bottle.It affects the line shape of the 2f signal and leads to the reduction of the 2f amplitude.[18]This effect makes 2f-WMS unable to accurately detect metabolic CO2in sealed microbial growth environment, thus the pressure calibration should be performed in this detection.

    In this paper, we propose a new pressure-calibration method to calibrate the reduction of the 2 f amplitude which is caused by pressure broadening effect in sealed microbial growth environment. The new method differs from traditional 2 f amplitude in a significant way: it combines with linewidth compensation and modulation depth compensation,and makes the 2f amplitude accurately retrieve metabolic CO2without being affected by pressure broadening effect. Furthermore,in order to verify the method,a simulation experiment was developed,in which the increasing CO2concentration leaded to the increasing pressure. Comparing with the relation between the traditional 2f amplitude and CO2concentration, there was a monotonous relation between the calibrated 2 f amplitude and CO2concentration, particularly, a linear relation was developed when CO2concentration was replaced with the CO2particle number. In terms of microbial measurement,the growth of Escherichia coli was measured, and the culture bottle was sealed during the microbial growth process. The traditional 2 f amplitude and calibrated 2 f amplitude were used to detect CO2in the microbial growth. The experimental result showed that comparing to the traditional 2 f amplitude,the calibrated 2 f amplitude can accurately retrieve microbial growth in sealed environment.

    2. Methods and system details

    2.1. Theory

    According to the article mentioned above,as microorganisms growing and metabolizing CO2, the pressure P and the particle number N in the sealed culture bottle environment satisfy the state equation of gas

    where NA[mol?1]is the Avogadro constant,V is the gas volume,n is the gas amount of substance,R[J/(mol·K)]is the gas constant,and T [K]is the thermodynamic temperature.The air particle number in the sealed-environment culture bottle is N0,the initial pressure P0is normal pressure(1 atm); at a certain time t(t >0),the CO2particle number produced by microbial growth is Nt, and the pressure in the sealed-environment culture bottle is Pt[atm]. According to the above equation, the pressure Ptat time t can be obtained as

    Here Nt+N0is the total particle number in the sealedenvironment culture bottle at time t. Thus, the CO2concentration X [%]at time t can be obtained as

    From Eqs. (2) and (3), the relation between pressure Ptand concentration X in the sealed-environment culture bottle can be given by

    It can be seen from Fig.1 that the relation between Ptand X in the sealed-environment culture bottle is a nonlinear curve,and the increasing CO2concentration causes the increasing pressure.

    Fig. 1. The relation between pressure Pt and concentration X in the sealed-environment culture bottle.

    The fundamental principle of 2 f-WMS is the Beer–Lambert law, which describes the relation between the incident and the transmitted radiation when the laser beam passes through a uniform gas medium. According to the Beer–Lambert law and the weak gas absorption, the absorption coefficient αvis defined by

    Combining Eqs.(6)and(9),we can find the principle of pressure broadening effect:Increasing pressure P can broaden linewidth Δvcand affect the modulation depth ˉva, so that reduce the 2 f amplitude. Thus,we need to build a calibrated 2 f amplitude function which is independence of linewidth Δvcand modulation depth ˉva,while,dependent on the gas concentration or the particle number. In this way,the pressure P cannot affect the line width and modulation depth,so that the 2 f amplitude will not be reduced. In order to build this equation,the linewidth compensation and modulation depth compensation are introduced: According to Eq. (9), multiplying the equation by linewidth Δvcand the reciprocal of equation(10)1/ˉχL,2, the 2f amplitude S2fbecomes an equation that satisfies the above conditions. Thus,the pressure-calibration coefficient (or the linewidth compensation and modulation depth compensation coefficient)κ can be written as

    Combining Eqs. (2) and (3), the 2f amplitude calibration equation H2fhas a linear relation with the CO2particle number,as described by Eq.(12). Combining Eqs.(3)and(4)the equation H2fhas a monotonically increasing relation with the CO2concentration,as described by Eq.(14):

    where G is the proportionality coefficient including the constant parameters.

    2.2. Simulation

    In order to verify the validity of the pressure-calibration method,the absorption line located at 4991.25 cm?1for highprecision detection of CO2was selected from the HITRAN 2016 database,whose strength was 1.26×10?21cm/molecule at the temperature of 296 K. The optical length was 3 cm,which was the same as the width of the culture bottle,the initial pressure was 1 atm. As the CO2concentration increased from 0 to 50%,the pressure also increased from 1 atm to 2 atm(8 groups,each group increasing 0.125 atm). Figure 2 shows the traditional 2 f signal at 0.08 cm?1modulation amplitude under different pressure. It can be seen that, with the CO2concentration and pressure increasing,the 2f signal increased until reaching 33%CO2concentration condition(1.5 atm pressure condition), after that the 2 f signal decreased due to the pressure broadening effect.

    Fig. 2. The simulated 2f signal under 8 groups of concentration and pressure at 0.08 cm?1 modulation amplitude.

    Figure 3 depicts the relation between the traditional 2 f amplitude and CO2concentration. The other different modulation amplitudes (including low modulation amplitude 0.04 cm?1and large modulation amplitude 0.16 cm?1) were plotted in the figure. It can be seen from the simulation experiments that there are non-linear and non-monotonic curves between the traditional 2f amplitude and CO2concentration.The traditional 2 f amplitude is proportional to CO2concentration in the 0–20%concentration range(1–1.25 atm pressure),and the pressure broadening effect becomes the main factor affecting the 2 f amplitude in 20%–50% concentration range(1.25–2 atm pressure range). In addition,although increasing modulation amplitude can increase the traditional 2f amplitude and optimize the monotonicity of the curves, it cannot change the non-monotonic characteristics of the curves.

    Fig.3. The relation between the traditional 2 f amplitude and CO2 concentration at three different modulation amplitudes.

    Fig.4. The relation between the calibrated 2 f amplitude and CO2 concentration.

    Figure 4 depicts the relation between the calibrated 2f amplitude and CO2concentration, according to Eq. (14).Comparing with the traditional 2f amplitude,there are monotonic curves between the calibrated 2 f amplitude and CO2concentration. At the same time, these curves were not only unaffected by pressure broadening effect,but also independent of modulation amplitudes,so the similar concentration results can be obtained by using the calibrated 2 f amplitude.Through these simulation experiments we can find that the calibrated 2 f amplitude can achieve CO2concentration detection in the sealed environment with increasing pressure, and effectively eliminate the effects of pressure broadening effect. Furthermore,the linear relation between the calibrated 2f amplitude and the CO2particle number is plotted in Fig. 5, according to Eq. (13), and the linear relation can better retrieve microbial growth by using the calibrated 2f amplitude. Thus, this pressure-calibration method provides theoretical support for 2 f-WMS in the sealed microbial growth measurement.

    Fig.5. The relation between the calibrated 2f amplitude and the CO2 particle number,the air particle number N0 is 2.48×1019 and the initial pressure P0 is 1 atm.

    3. Experiment

    A schematic of experimental system was designed for verifying the pressure-calibration method, as exhibited in Fig.6.The 2004 nm distributed feedback(DFB)tunable diode laser was used as a light source. The DFB laser was controlled by a laser driver (Stanford Research System, LDC501) and scanned at 1 Hz by a function generator (RIGOL, DG4162).The laser beam was collimated by an antireflection lens(Thorlabs, F260APC-1550) and introduced into the culture bottle(3 cm path length and 100 mL volume). An InGaAs photodiode(Thorlabs,DET10D/M)was used to detect the laser beam transmitted from the headspaces of the culture bottle. A digital lock-in amplifier(Stanford Research Systems SR830)was used to generate sinusoidal modulation signal at 19 kHz and receive the electrical signal from the photodiode detector. The 2 f signal produced by the lock-in amplifier was acquired by a NI card(National Instruments,NI 6351)and fitted by a computer.

    The growth of Escherichia coli coming from American Type Culture Collection (ATCC) was detected in the culture bottle and its initial concentration was 103cfu/mL.The culture temperature was 22°C and kept by a heated incubator. The culture bottle was sealed during the microbial growth process.The growth period was about 70 hours and the measurement interval was 40 min. Finally,the traditional 2f amplitude and calibrated 2 f amplitude were used to detect CO2in the microbial growth.

    A flow chart for the pressure-calibration method is shown in Fig. 7. The 2 f absorption signal produced by the lockin amplifier is obtained, through using the 2nd Fourier Lorentzian lineshape function, a fitted 2 f absorption signal can be calculated,where An,Bn,Cn,Dnare furthermore solely functions of ˉvaand ˉvb,for detailed discussion of the Lorentzian lineshape function, refer to Ref. [21]. Furthermore, the fitted Δvcand vacan be deduced when the best-fit parameters between the measured and fitted absorbance signals are obtained. Then according to Eq. (10), 1/ˉχL,2(ˉva) can be calculated. Finally, according to Eq. (11), the pressure-calibration coefficient κ can be calculated.

    Fig.6. Schematic of experimental system.

    Fig.7. Flow chart for pressure-calibration method.

    4. Results and discussion

    As shown in Fig.8,eight groups of actual fitted 2f signals were took with integer time to illustrate the pressure broadening problem. As noted,from the 0th hour to the 30th hour,the 2 f signals increased with increasing CO2concentration and were basically not affected by the pressure broadening effect.With the rapid growth of Escherichia coli,the amount of CO2increased and caused the pressure in the sealed-environment culture bottle increase rapidly. After the 30th hour, although the amount of CO2increased continuously,the pressure made the linewidth of the 2 f signals broaden and caused the amplitude of the 2f signals to decrease. Especially,for the 2 f signals at the 70th hour(death phase),its amplitude was smaller than the amplitude at 30th hour.Thus,the traditional 2f amplitude was unable to accurately detect CO2in sealed microbial growth environment and cannot correctly retrieve the growth of microorganisms. Because,according to the modified Gompertz model, the CO2concentration should stop increasing at the death phase,rather than decreasing.

    Fig.8. Fitted 2f signals.

    Figure 9 depicts the growth of Escherichia coli retrieved by the two different 2 f amplitudes, wherethe blue triangle curve represents the inversion result of traditional 2f amplitude and the red square curve represents the inversion result of the calibrated 2f amplitude. Before the 20th hour,the growth of Escherichia coli was at the lag phase, the growth rate was closed to zero and the amount of CO2was almost unchanged.From the 20th hour, Escherichia coli entered the growth phase, and the growth rate increased from zero to the maximum at the exponential growth phase. However,the microbial growth retrieved by the traditional 2f amplitude reached its maximum at the 24th hour, after that rapidly declined, which cannot accord with the modified Gompertz model. Comparing with the traditional 2 f amplitude, the calibrated 2 f amplitude was not affected by the pressure broadening effect and can accurately retrieve the growth of Escherichia coli. It can be seen that the amount of CO2increased at the exponential phase and the stationary phase and stopped increasing at the death phase. This result accorded with the modified Gompertz model and proved that the pressure-calibration method has an engineering value for the microbial growth.Except for retrieving microbial growth,the method also can be used to calibrate the 2 f amplitude in other sealed environments with increasing pressure.

    Fig.9. Two 2f amplitudes in the microbial growth,where L:lag phase,E:exponential growth phase,S:stationary phase,D:death phase.

    5. Conclusion

    A new pressure-calibration method for calibrating the reduction of 2 f amplitude caused by pressure broadening effect in sealed microbial growth environment was introduced. The new method combined with linewidth compensation and modulation depth compensation and made the 2 f amplitude accurately retrieve metabolic CO2without being affected by pressure broadening effect. A simulation experiment was developed,in which the increasing CO2concentration leaded to the increasing pressure. Comparing with the traditional 2 f amplitude,the simulation results of the calibrated 2 f amplitude had a monotonous relation with CO2concentration, particularly,a linear relation was presented when CO2concentration was replaced with the CO2particle number. In order to verify the method,the growth of Escherichia coli was measured,and the culture bottle was in a sealed environment during the microbial growth process.The experimental results showed that comparing with the traditional 2 f amplitude,the calibrated 2 f amplitude can accurately retrieve microbial growth in sealed environment. Except for retrieving microbial growth, the method can also be used to calibrate the 2 f amplitude in other sealed environments with increasing pressure.

    猜你喜歡
    劉琨陳家
    SOME PROPERTIES OF THE INTEGRATION OPERATORS ON THE SPACES F(p,q,s)*
    昆蟲才藝表演
    PbI2/Pb5S2I6 van der Waals Heterojunction Photodetector
    There Is No Perfect Solution
    西部論叢(2017年7期)2017-11-20 06:59:42
    枕戈
    我的家鄉(xiāng)最美之賀州
    安身立命的資本
    安身立命的資本
    陳家泵站新舊混凝土銜接處理
    安身立命的資本
    高潮久久久久久久久久久不卡| 色婷婷av一区二区三区视频| 国产av一区二区精品久久| 女人高潮潮喷娇喘18禁视频| 欧美激情久久久久久爽电影 | 国产高清国产精品国产三级| 成人国语在线视频| 成年人黄色毛片网站| 人成视频在线观看免费观看| 99国产精品免费福利视频| 在线观看一区二区三区激情| 亚洲欧美日韩另类电影网站| 一区二区三区乱码不卡18| 黄片播放在线免费| 国产男人的电影天堂91| 极品人妻少妇av视频| 青草久久国产| 99精品久久久久人妻精品| 黄片大片在线免费观看| 精品国产乱码久久久久久男人| 亚洲中文av在线| 蜜桃在线观看..| 亚洲欧美色中文字幕在线| 波多野结衣av一区二区av| 新久久久久国产一级毛片| 人人妻,人人澡人人爽秒播| 丝袜美足系列| 国产日韩一区二区三区精品不卡| 精品欧美一区二区三区在线| 纵有疾风起免费观看全集完整版| 亚洲一码二码三码区别大吗| 90打野战视频偷拍视频| 久久久水蜜桃国产精品网| 啦啦啦 在线观看视频| 久久av网站| 人人妻人人爽人人添夜夜欢视频| 国产淫语在线视频| 精品一品国产午夜福利视频| 国产精品香港三级国产av潘金莲| 国产精品久久久久久精品古装| 少妇 在线观看| 搡老熟女国产l中国老女人| 精品一区二区三区av网在线观看 | 国产精品一区二区在线观看99| 精品视频人人做人人爽| 亚洲三区欧美一区| 侵犯人妻中文字幕一二三四区| 午夜福利影视在线免费观看| 国产成+人综合+亚洲专区| 午夜福利影视在线免费观看| 午夜福利视频精品| 伦理电影免费视频| 人妻久久中文字幕网| 桃花免费在线播放| av线在线观看网站| 老司机亚洲免费影院| a级毛片黄视频| 国产亚洲一区二区精品| 亚洲精品在线美女| 超碰97精品在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲高清精品| 十八禁高潮呻吟视频| 久久久国产欧美日韩av| av欧美777| av视频免费观看在线观看| 蜜桃在线观看..| 国产精品九九99| 久久国产精品大桥未久av| 久久人妻熟女aⅴ| 最近最新中文字幕大全免费视频| 亚洲一码二码三码区别大吗| 免费看十八禁软件| 国产精品偷伦视频观看了| 男人操女人黄网站| 大香蕉久久成人网| 精品国产乱码久久久久久小说| 亚洲av美国av| 国产亚洲av片在线观看秒播厂| 91麻豆精品激情在线观看国产 | 搡老岳熟女国产| 国产真人三级小视频在线观看| 久久精品国产亚洲av香蕉五月 | 精品一区二区三区四区五区乱码| 夜夜夜夜夜久久久久| 最新在线观看一区二区三区| 法律面前人人平等表现在哪些方面 | 啪啪无遮挡十八禁网站| 国产成人精品无人区| 99国产精品一区二区蜜桃av | a 毛片基地| 曰老女人黄片| 精品少妇一区二区三区视频日本电影| 国产亚洲av高清不卡| 激情视频va一区二区三区| 老司机亚洲免费影院| 欧美精品亚洲一区二区| 一二三四在线观看免费中文在| 动漫黄色视频在线观看| 日韩欧美国产一区二区入口| 亚洲精品一区蜜桃| 国产精品麻豆人妻色哟哟久久| 美女午夜性视频免费| 精品乱码久久久久久99久播| 大香蕉久久网| 在线天堂中文资源库| 最近中文字幕2019免费版| 国产三级黄色录像| 中文字幕另类日韩欧美亚洲嫩草| 麻豆av在线久日| 久久九九热精品免费| 亚洲精品乱久久久久久| 免费久久久久久久精品成人欧美视频| 色视频在线一区二区三区| 国产成人av激情在线播放| 国产成人a∨麻豆精品| 免费日韩欧美在线观看| 国产无遮挡羞羞视频在线观看| 成年av动漫网址| 国产一区有黄有色的免费视频| 欧美变态另类bdsm刘玥| 国产一区二区三区综合在线观看| 国产成人精品在线电影| 中文字幕人妻丝袜制服| 日韩大码丰满熟妇| 老司机深夜福利视频在线观看 | 最黄视频免费看| 一级片免费观看大全| 久久人妻福利社区极品人妻图片| 国产欧美日韩精品亚洲av| 亚洲精品中文字幕一二三四区 | 亚洲国产毛片av蜜桃av| 国产无遮挡羞羞视频在线观看| 精品卡一卡二卡四卡免费| 中国国产av一级| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 我要看黄色一级片免费的| 在线观看免费高清a一片| 久久久久网色| 99九九在线精品视频| 亚洲精品第二区| 婷婷色av中文字幕| 一个人免费看片子| 美女中出高潮动态图| 国产xxxxx性猛交| av欧美777| 黑丝袜美女国产一区| 黑丝袜美女国产一区| 99国产精品一区二区蜜桃av | 国产男人的电影天堂91| 久久久久国产一级毛片高清牌| 成人国产av品久久久| av欧美777| 亚洲国产欧美网| av国产精品久久久久影院| 午夜日韩欧美国产| 天天躁日日躁夜夜躁夜夜| 午夜91福利影院| 国产一区二区 视频在线| 国产欧美日韩一区二区精品| 国产色视频综合| 如日韩欧美国产精品一区二区三区| 亚洲激情五月婷婷啪啪| 成年女人毛片免费观看观看9 | 老司机福利观看| 久久久久视频综合| 国产成人av激情在线播放| 国产成人精品久久二区二区免费| 人人妻人人添人人爽欧美一区卜| 精品国内亚洲2022精品成人 | 9色porny在线观看| 淫妇啪啪啪对白视频 | 日日摸夜夜添夜夜添小说| 亚洲精品av麻豆狂野| 啦啦啦中文免费视频观看日本| 看免费av毛片| 精品少妇内射三级| 亚洲国产欧美网| 我的亚洲天堂| 咕卡用的链子| 免费日韩欧美在线观看| 老熟妇乱子伦视频在线观看 | 日韩欧美免费精品| 久久精品成人免费网站| 国产黄频视频在线观看| 久久精品亚洲av国产电影网| 最近最新免费中文字幕在线| 国产精品偷伦视频观看了| 久久久久久久久久久久大奶| 日本av免费视频播放| 午夜老司机福利片| 国产97色在线日韩免费| 国产一区二区在线观看av| 欧美精品一区二区免费开放| 高清av免费在线| 9色porny在线观看| 久久国产亚洲av麻豆专区| 少妇猛男粗大的猛烈进出视频| 精品高清国产在线一区| 亚洲精品在线美女| 日韩大码丰满熟妇| 另类亚洲欧美激情| 国产欧美日韩一区二区三 | 国产野战对白在线观看| 97在线人人人人妻| 欧美av亚洲av综合av国产av| av欧美777| 两个人免费观看高清视频| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区黑人| 啪啪无遮挡十八禁网站| 桃红色精品国产亚洲av| 久久久精品国产亚洲av高清涩受| 操美女的视频在线观看| av国产精品久久久久影院| 欧美乱码精品一区二区三区| 亚洲欧美清纯卡通| 黑人巨大精品欧美一区二区mp4| 久久精品国产a三级三级三级| 无遮挡黄片免费观看| 青春草视频在线免费观看| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美午夜高清在线| 女人久久www免费人成看片| 十八禁网站免费在线| 久久免费观看电影| 天天添夜夜摸| 中文字幕人妻丝袜一区二区| 欧美在线一区亚洲| 久久久国产精品麻豆| 国产精品.久久久| 国产精品九九99| 国产精品自产拍在线观看55亚洲 | 美女大奶头黄色视频| 丝袜人妻中文字幕| 久久久久国内视频| 黄片大片在线免费观看| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| av视频免费观看在线观看| 色精品久久人妻99蜜桃| 国产成人av教育| 国产激情久久老熟女| 精品国产乱子伦一区二区三区 | 自线自在国产av| 日韩精品免费视频一区二区三区| www.av在线官网国产| 国产伦人伦偷精品视频| 亚洲天堂av无毛| 欧美日韩一级在线毛片| 国产成人av教育| 美女扒开内裤让男人捅视频| 黄色怎么调成土黄色| 丰满少妇做爰视频| 欧美 亚洲 国产 日韩一| 亚洲中文字幕日韩| 亚洲国产精品999| 大香蕉久久网| 免费女性裸体啪啪无遮挡网站| 国产一区二区三区av在线| av片东京热男人的天堂| 日本猛色少妇xxxxx猛交久久| 老司机深夜福利视频在线观看 | 亚洲国产毛片av蜜桃av| 日韩 欧美 亚洲 中文字幕| 天堂中文最新版在线下载| 后天国语完整版免费观看| 精品国产一区二区久久| 自拍欧美九色日韩亚洲蝌蚪91| 成人18禁高潮啪啪吃奶动态图| 一边摸一边做爽爽视频免费| 午夜免费成人在线视频| 91麻豆精品激情在线观看国产 | 男女午夜视频在线观看| 超碰97精品在线观看| 飞空精品影院首页| 国产精品二区激情视频| 精品国产一区二区三区久久久樱花| 亚洲黑人精品在线| 亚洲精品自拍成人| 老司机午夜福利在线观看视频 | 80岁老熟妇乱子伦牲交| 成年人免费黄色播放视频| 亚洲av电影在线进入| 久久99一区二区三区| 日本av免费视频播放| 青春草亚洲视频在线观看| 欧美性长视频在线观看| 不卡av一区二区三区| 曰老女人黄片| 国产一区有黄有色的免费视频| 亚洲中文av在线| 亚洲av欧美aⅴ国产| 久久精品成人免费网站| 各种免费的搞黄视频| 啦啦啦视频在线资源免费观看| 国产精品99久久99久久久不卡| 97在线人人人人妻| 久久亚洲国产成人精品v| 久久精品人人爽人人爽视色| 免费在线观看黄色视频的| 自拍欧美九色日韩亚洲蝌蚪91| 99国产精品99久久久久| 亚洲自偷自拍图片 自拍| 侵犯人妻中文字幕一二三四区| av天堂在线播放| 国产精品av久久久久免费| 国产麻豆69| www.熟女人妻精品国产| 国产亚洲一区二区精品| a级片在线免费高清观看视频| 亚洲精品日韩在线中文字幕| 免费高清在线观看视频在线观看| 熟女少妇亚洲综合色aaa.| 少妇的丰满在线观看| 伦理电影免费视频| 午夜日韩欧美国产| 成年人午夜在线观看视频| 日韩有码中文字幕| 国产av国产精品国产| 丰满少妇做爰视频| 成年动漫av网址| 午夜福利视频在线观看免费| 宅男免费午夜| 色精品久久人妻99蜜桃| 视频区图区小说| 久久久久网色| 18禁国产床啪视频网站| 亚洲国产精品999| 亚洲一卡2卡3卡4卡5卡精品中文| av又黄又爽大尺度在线免费看| 热re99久久国产66热| 亚洲国产精品成人久久小说| 热99久久久久精品小说推荐| 叶爱在线成人免费视频播放| 99精品久久久久人妻精品| 久久久久视频综合| 欧美少妇被猛烈插入视频| 黑人操中国人逼视频| 国产精品国产三级国产专区5o| 亚洲欧美激情在线| 国产欧美日韩一区二区三区在线| 亚洲国产毛片av蜜桃av| 亚洲国产欧美一区二区综合| 首页视频小说图片口味搜索| 丁香六月欧美| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| 高清视频免费观看一区二区| 亚洲一码二码三码区别大吗| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av高清一级| 国产精品自产拍在线观看55亚洲 | 纵有疾风起免费观看全集完整版| 欧美一级毛片孕妇| 久久天躁狠狠躁夜夜2o2o| 男女之事视频高清在线观看| 亚洲av国产av综合av卡| 精品久久久久久电影网| 免费av中文字幕在线| 久热爱精品视频在线9| 国产又爽黄色视频| 丝袜美腿诱惑在线| 亚洲色图 男人天堂 中文字幕| 亚洲中文日韩欧美视频| 蜜桃国产av成人99| 久久狼人影院| 国产精品.久久久| 国产成人av教育| 黄色a级毛片大全视频| 丝袜脚勾引网站| 91字幕亚洲| 十八禁网站免费在线| 人人妻人人澡人人爽人人夜夜| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看 | 日本猛色少妇xxxxx猛交久久| 亚洲成人手机| 久久人人爽人人片av| 国产深夜福利视频在线观看| 亚洲精品一二三| 亚洲精华国产精华精| 国产一区二区三区在线臀色熟女 | 中文精品一卡2卡3卡4更新| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 黄片小视频在线播放| 亚洲国产av新网站| 大片免费播放器 马上看| 一级黄色大片毛片| 黑人巨大精品欧美一区二区mp4| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 亚洲精品第二区| 考比视频在线观看| 两个人免费观看高清视频| 波多野结衣一区麻豆| 青青草视频在线视频观看| 午夜两性在线视频| 80岁老熟妇乱子伦牲交| 麻豆av在线久日| 国产精品成人在线| 国产精品免费大片| 高清欧美精品videossex| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费av片在线观看野外av| 日本黄色日本黄色录像| 久久久久国内视频| 女人精品久久久久毛片| 91精品国产国语对白视频| 啦啦啦啦在线视频资源| 精品乱码久久久久久99久播| 欧美在线一区亚洲| 欧美日韩福利视频一区二区| 亚洲情色 制服丝袜| 在线观看www视频免费| 在线观看免费视频网站a站| 在线精品无人区一区二区三| 久久精品成人免费网站| 国产精品一区二区在线不卡| 777久久人妻少妇嫩草av网站| 久久久国产欧美日韩av| 亚洲视频免费观看视频| 香蕉丝袜av| 久9热在线精品视频| 老司机福利观看| 啦啦啦在线免费观看视频4| 老汉色∧v一级毛片| 国产在线视频一区二区| av又黄又爽大尺度在线免费看| 在线观看一区二区三区激情| 男人爽女人下面视频在线观看| 啦啦啦免费观看视频1| 午夜免费观看性视频| 亚洲精品国产精品久久久不卡| 欧美亚洲 丝袜 人妻 在线| 免费av中文字幕在线| 亚洲avbb在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲全国av大片| 亚洲精品美女久久久久99蜜臀| 中文欧美无线码| 亚洲情色 制服丝袜| 777久久人妻少妇嫩草av网站| 久久综合国产亚洲精品| 美女国产高潮福利片在线看| 男人添女人高潮全过程视频| 香蕉丝袜av| 日本vs欧美在线观看视频| 高清在线国产一区| 丰满少妇做爰视频| 精品亚洲乱码少妇综合久久| 亚洲中文av在线| 亚洲久久久国产精品| 在线精品无人区一区二区三| 久久久久视频综合| 国产亚洲精品一区二区www | 精品国内亚洲2022精品成人 | 91字幕亚洲| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 国产高清视频在线播放一区 | 狠狠婷婷综合久久久久久88av| 精品国产一区二区久久| 亚洲欧美一区二区三区久久| 国产精品1区2区在线观看. | 成在线人永久免费视频| 欧美激情高清一区二区三区| 色婷婷av一区二区三区视频| 脱女人内裤的视频| 下体分泌物呈黄色| 丁香六月天网| 男人舔女人的私密视频| 电影成人av| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲综合一区二区三区_| 两性夫妻黄色片| 久久精品久久久久久噜噜老黄| 欧美乱码精品一区二区三区| 日韩电影二区| 欧美xxⅹ黑人| 中文字幕色久视频| 午夜日韩欧美国产| 欧美精品高潮呻吟av久久| 国产精品av久久久久免费| 亚洲欧美成人综合另类久久久| 国产成人欧美在线观看 | 两人在一起打扑克的视频| 一本大道久久a久久精品| 亚洲,欧美精品.| 一进一出抽搐动态| 丝袜美足系列| 国产精品香港三级国产av潘金莲| 中文字幕人妻丝袜制服| 亚洲国产中文字幕在线视频| 热re99久久精品国产66热6| 午夜福利免费观看在线| 国产精品亚洲av一区麻豆| 王馨瑶露胸无遮挡在线观看| 欧美av亚洲av综合av国产av| 69av精品久久久久久 | 深夜精品福利| 欧美精品一区二区免费开放| 国产亚洲精品久久久久5区| 日韩欧美一区二区三区在线观看 | 黑人猛操日本美女一级片| 久久人人爽人人片av| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 中文字幕人妻熟女乱码| 人妻人人澡人人爽人人| 国产深夜福利视频在线观看| 久久99一区二区三区| 精品熟女少妇八av免费久了| 少妇猛男粗大的猛烈进出视频| 日韩欧美国产一区二区入口| 欧美精品人与动牲交sv欧美| 欧美黄色淫秽网站| 久久人人97超碰香蕉20202| 欧美xxⅹ黑人| 黑人欧美特级aaaaaa片| 成年人午夜在线观看视频| av不卡在线播放| 国产不卡av网站在线观看| av片东京热男人的天堂| 久久国产亚洲av麻豆专区| 美女中出高潮动态图| 欧美在线一区亚洲| 久久久久国产一级毛片高清牌| 欧美久久黑人一区二区| 男人爽女人下面视频在线观看| 深夜精品福利| 久久九九热精品免费| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 女性生殖器流出的白浆| 成人国产av品久久久| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 中文字幕av电影在线播放| 免费黄频网站在线观看国产| 欧美日韩成人在线一区二区| 性色av一级| 在线看a的网站| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 人人妻人人澡人人爽人人夜夜| 男男h啪啪无遮挡| 国产xxxxx性猛交| 久久精品人人爽人人爽视色| 久久久久视频综合| 在线十欧美十亚洲十日本专区| 波多野结衣av一区二区av| 99国产精品免费福利视频| 女性生殖器流出的白浆| 一级片'在线观看视频| av国产精品久久久久影院| 国产在线一区二区三区精| 国产成人精品无人区| svipshipincom国产片| 丝瓜视频免费看黄片| 久久久久久久久久久久大奶| 午夜免费鲁丝| 精品视频人人做人人爽| 国产欧美日韩综合在线一区二区| 国产成人精品久久二区二区免费| 自线自在国产av| 中国美女看黄片| 啦啦啦在线免费观看视频4| 天天躁狠狠躁夜夜躁狠狠躁| 欧美人与性动交α欧美精品济南到| 国产在视频线精品| 亚洲男人天堂网一区| 首页视频小说图片口味搜索| 久久久精品区二区三区| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 免费在线观看影片大全网站| 伊人亚洲综合成人网| 少妇猛男粗大的猛烈进出视频| 精品乱码久久久久久99久播| 久久青草综合色| 热99久久久久精品小说推荐| 国产日韩一区二区三区精品不卡| 天天影视国产精品| 1024视频免费在线观看| 色播在线永久视频| 亚洲国产日韩一区二区| 免费观看a级毛片全部| av免费在线观看网站| www.999成人在线观看| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 又大又爽又粗| 一区二区三区乱码不卡18| 亚洲成人国产一区在线观看| 老司机午夜福利在线观看视频 | 性少妇av在线| 亚洲三区欧美一区| 国产欧美日韩精品亚洲av| 中文字幕另类日韩欧美亚洲嫩草| 两个人看的免费小视频| 精品国产一区二区三区四区第35| 嫁个100分男人电影在线观看| 老汉色∧v一级毛片| 69av精品久久久久久 |