• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic exciton Stark shift in hemispherical quantum dots

    2021-05-24 02:23:04ShuDongWu吳曙東
    Chinese Physics B 2021年5期

    Shu-Dong Wu(吳曙東)

    College of Physics Science and Technology,Yangzhou University,Yangzhou 225002,China

    Keywords: anisotropic Stark shift,exciton,hemispherical quantum dots,electric field

    1. Introduction

    There is an increasing interest in hemispherical quantum dots(HQDs)as they have promising nanostructures with outstanding properties and potential applications in optoelectronic devices.[1–7]With nanostructure sizes decreasing,the geometrical shapes of nanostructures become more and more important because they significantly modify the electronic structures and modulate other physical properties.[8–10]Since the spherical symmetry is broken, HQDs are able to control many properties of macroscopic materials by means of quantum-mechanical effects. They provide a threedimensional carrier confinement resulting in the superior carrier localization and optical confinement capabilities.[11–14]With the significant progress in novel nanofabrication methods it is possible to fabricate quantum dots(QDs)with hemispherical shapes. For instance, when the CuI and CdS nanocrystals are grown on a graphite substrate by a new electrochemical/chemical method, the microscopic studies indicate that their shapes can be approximated as hemispheres.[15]By optimizing the growth conditions during the self-assembled growth of InAs QDs via molecular beam epitaxy on a GaAs substrate, Leonard et al.[16]observed the HQD shape of the InAs QDs via atomic force microscopy measurements.

    When an electric field is applied to a semiconductor quantum-confined system, a significant redshift of the exciton absorption edge is observed, which is referred to as the quantum-confined Stark effect (QCSE).[17–22]In the past decades, the QCSE in semiconductor nanostructures has become increasingly popular due to the potential applications in both fundamental physics and device applications.[23–33]There are two types of QCSEs. The first type offers tailorable optical response that can be used in devices like highspeed optical modulators.[34,35]The second one has a detrimental effect on the optical emission: the performances of the polar optoelectronic devices,such as light emitting diodes(LEDs),are limited,which is due to the fact that the existence of a huge built-in electric field inside quantum well structure causes the radiative recombination efficiency to decrease greatly.[36–38]Theoretical calculations of the exciton Stark effect may be very helpful in the theoretical and experimental studies.For instance,the investigation of Stark effect in a tilted electric field can provide an insight into the dimension and the anisotropy of QDs. However,to date,the relationship between the exciton Stark shift and the electric field is still unclear in such an HQD quantum-confined system. Consequently, it is necessary to study how to suppress the exciton Stark effect in the HQDs.In this work,we study the exciton Stark shift of the HQDs subjected to a tilted external electric field.

    The remaining sections of the paper are organized as follows. In Section 2, we use an exact diagonalization method to calculate the exciton states and Stark shift in HQDs subjected to a tilted external electric field.In Section 3,we present and explain our calculated results for the exciton ground-state Stark shift and polarization in HQDs. Some conclusions and remarks are presented in Section 4. Further,a fully analytical expression for the matrix elements of the exciton Hamiltonian is derived in Appendix A,and an analytical expression of the exciton ground-state Stark shift by a perturbation theory is derived in Appendix B.

    2. Models and methods

    A sketch of the HQD geometry with radius R is shown in Fig.1,and an HQD which consists of InAs material is considered. We choose the z axis of our coordinate system to represent the growth direction,and the in-plane center of the HQD is set to be the origin of coordinate. Due to the rotational symmetry of the HQD in the xy-plane, the external uniform electric field is tilted in the xz plane with respect to the x axis,i.e.,F =(F||,0,F⊥),where F‖=F cosα and F⊥=F sinα are components along the x and z axis, respectively, α represents the angle between the electric field and the x axis,and F denotes the strength of the applied electric field. In the following,we focus on the Voigt(F parallel to the x axis: α=0°)geometry and Faraday(F orthogonal to the x axis: α =90°)geometry.

    Fig.1. Geometry of HQD with Cartesian coordinate axes.

    In the presence of external electric field, the exciton Hamiltonian of the HQD in spherical coordinates can be written as

    where

    with[k]being the floor function which gives the greatest integer less than or equal to k,jl(x)is the spherical Bessel function of the l-th order,and χnlis the n-th zero point of jl(x).According to the boundary condition Ylm(π/2,?)=0,the value of l and m are required to fulfill the condition |l ?m|=odd, i.e.,n=1,2,3,...,l=1,2...,and m=?l+1,?l+3,...,l ?3,l ?1.Thus,the ground state in an HQD corresponds exactly to the 1p0 state(n=1,l=1,m=0)in a spherical QD with the same radius.

    The exciton states can be obtained by solving the exciton Schr¨odinger equation

    where Eexand ψ(re,rh)are the exciton energy and wave function,respectively.

    When the Coulomb term is included, the Schr¨odinger equation(6)cannot be solved analytically. Hence,we employ an exact diagonalization method to solve it. In this method,the exciton wave function is expanded into a linear combination of direct products of the single-particle electron and hole wave functions

    where aλe,λhdenote the expansion coefficients resulting from the diagonalization of the exciton Hamiltonian, and the subscripts λe=(ne,le,me)and λh=(nh,lh,mh)are the quantum number sets for the electron and hole single-particle state,respectively.

    Substituting Eq.(7)into Eq.(6),we easily obtain the secular equation

    In order not to get involved in explicit integrals in the matrix elements of the exciton Hamiltonian, the fully analytical expressions of Eqs. (10a) and (10b) are derived in detail in Appendix A.These analytical expressions greatly simplify the calculation because most of the computational time is spent on the diagonalization of the matrix rather than on the calculation of the matrix elements. The resulting Hamiltonian matrix is real,symmetric,and sparse. By numerically diagonalizing the Hamiltonian matrix for a given size of the basis,ψ(re,rh)and Eexare obtained. The diagonalization is repeated with larger basis sets until the desired convergence is achieved.

    The Stark shift of exciton ground-state is determined by

    In order to explain explicitly exciton Stark shift, the analytical expression of Eq.(11)is derived in detail by a perturbative theory in Appendix B.

    The integration of the angular part of relations in Eq. (10a) gives the relation of the parity selection rule to orbital state. In other words, the integration induced by the electric field is nonzero only for these particular changes in l and m. In the Voigt geometry,the non-zero coupling conditions of electric field produce a quantum number displacement rule of the wave functions in response to electric fields [see Eq.(A6a)]:

    In the Faraday geometry, the non-zero coupling conditions of electric field produce a quantum number displacement rule of the wave functions in response to the electric fields[see Eq.(A6b)]:

    Those are selection rules for the allowed couplings of electric field.Note that Δl=±1(Δm=±1)implies a change in the orbital(magnetic)angular momentum of states. When Δm=0,there is no change in the magnetic angular momentum,which indicates that m is a good quantum number.

    3. Results and discussion

    In this section, we carry out the calculations for an InAs HQD.The electron and hole effective mass of InAs are m*e=0.023m0and m*h=0.41m0,where m0is the free electron mass,and ε =15.15.[39]

    Figure 2 show a schematic representation of the coupling of the first two allowed pairs of orbital levels in two different geometries of electric field. For simplicity, we plot only the six low-lying orbital states which we are primarily interested in.According to the selection rules in Eqs.(12)and(13),the Voigt geometry and the Faraday geometry couple different pairs of orbital states: the former couples the adjacent orbital states with l ?1 and l as well as m?1 and m(states φ1p0and φ1d±1),and the latter couples the higher orbital states with no change of m(states φ1p0and φ1f0). The Voigt-induced orbital admixture is much larger since the level spacing between φ1p0and φ1d±1is much smaller smaller than that between φ1p0and φ1f0. Hence,the the Voigt geometry has a greater influence on the field-induced orbital admixture than the Faraday geometry.

    Fig.2. Schematic representation of selection rules of how electric field couples the first two allowed pairs of orbital levels,with solid(dashed)doublearrow lines denoting coupling in Voigt geometry(Faraday geometry).

    Figure 3 shows the electron energy and hole energy in an InAs HQD with R=10 nm as a function of F for the two different geometries. Although with some mixed characters in the presence of electric field, the discrete energy states are still designated as 1p0(n=1,l=1,m=0),1d?1(n=1,l=2,m=?1),1d1(n=1,l=2,m=1),1f?2(n=1,l=3,m=?2),1f0(n=1,l=3,m=0),1f2(n=1,l=3,m=2),2p0(n=2,l =1, m=0), etc. In the Voigt geometry, the l degenerated states existing in the case F =0 are absolutely removed by the electric field since the electric field only couples the states with Δl=±1 and Δm=±1. With the increase of the electric field, the hole energy decreases much faster than the electron energy due to the larger effective mass of hole. In the Faraday geometry, the l degenerated states existing in the case F =0 are partly removed by the electric field since the electric field couples only the states with Δm=0. As m is a good quantum number, a degeneracy between m=±|m| remains. With the increase of the electric field,the electron energy increases almost linearly while the hole energy decreases almost linearly with F.

    Fig. 3. Electron and hole energy in InAs HQD with R=10 nm versus F applied in (a) Voigt geometry (left panel) and (b) Faraday geometry (right panel).

    Figure 4 shows the exciton binding energy Ebof exciton ground-state in an InAs HQD with R=10 nm. For a given tilt angle α, the exciton binding energy decreases monotonically with F increasing.This is a direct consequence of the effect of the electric field on the probability density of electrons and on the probability density of holes. When an electric field is applied to the HQD,the electron and hole are pulled towards the opposite side of the dot,and the electron–hole separation along the electric field increases,leading the electron–hole Coulomb interaction to decrease. The larger the value of α,the smaller the effect of electric field on Ebis, which can be explained by the interplay between the Voigt field effect and the Faraday field effect on electron and hole. The Faraday Stark effect is much smaller than the Voigt Stark effect. The Coulomb interaction has a small effect on the exciton Stark shift since the interaction energy weakly changes only with the small displacement of the electron wave function and hole wave function inside an HQD. Therefore, the main contribution to the exciton Stark shift comes from the electric field effect,and the contribution from the Coulomb interaction is small compared with that from the electric field effect.

    Fig.4. Exciton binding energy Eb versus F of ground-state in an InAs HQD with R=10 nm at various values of α.

    In order to investigate the influence of the Stark effect on the optical properties of the HQD, the exciton Stark shift ΔEexand overlap of electron and hole ground-state in an InAs HQD with R=10 nm are shown in Fig. 5. The subband energy values are much larger than the exciton binding energy and therefore we may restrict ourselves to the exciton groundstate. It is found that the exciton Stark redshift is quadratically dependent on F. The calculation details of the Stark shift of the exciton ground-state by a perturbation theory are given in Appendix B.The energy change of exciton can be described as ΔE(F)=pF+βF2,where p is the permanent dipole moment,and β is the polarizability of electron–hole wave function and a measure of the rate of separation of the electron and hole by an electric field. Due to the the fact that the infinite confinement potential, p is zero and does not possess a permanent dipole moment,the linear Stark shift can be neglected,hence the exciton Stark shift could be well described by the purely quadratic term, i.e., ΔE(F)=βF2. The quadratic Stark shift arises from the fact that the applied electric field is able to induce electron–hole polarization because the field spatially separates the electron wave function from hole wave function.

    At a small α, the variation of the exciton Stark shift is more pronounced than at large α with F increasing. This is because the geometry of the HQD lacks inversion symmetry,resulting in the modification of the displacement rule of the wave functions to the higher orbital states in response to the electric fields along Faraday geometry. With F increasing,the overlap of electron wave function and hole wave function rapidly decreases,which weakens the radiative recombination of electron and hole.As α increases,the exciton Stark shift decreases and the electron–hole wave function overlap increases,and hence reducing the QCSE.The direction-dependent Stark shift can provide an insight into the anisotropy of QDs. Furthermore, it also adds an additional degree of freedom when using the HQDs in device design, for they can be controlled not only by the field strength, but also by the field direction.The QCSE in Faraday geometry decreases and the radiative recombination rate increases markedly because the recombination rate is proportional to the electron–hole overlap. The QCSE can significantly deteriorate the radiative recombination efficiency in the polar optoelectronic devices. From this application point of view, this feature of the diminishing of exciton Stark shift in Faraday geometry is extremely useful for achieving the ultra-high brightness of the polar optoelectronic devices. When a strong internal polarized electric field is polarized along the Faraday geometry, the hemispherical shapes can reduce the QCSE significantly and thus resulting in a higher radiative recombination efficiency. Furthermore, the hemispherical shapes can also be used to enhance the carrier localization effect and improve the light extraction efficiencies of optical devices.

    Fig. 5. Exciton Stark shift ΔEex and eletron–hole overlap of ground-state versus F in InAs HQD with R=10 nm for various values of α.

    To show clearly the roles of electron and hole in the exciton Stark shift,the Stark shift ΔEe(ΔEh)of the electron(hole)ground-state in an InAs HQD with R=10 nm is shown in Fig.6. At a small α,the variation of electron energy is more pronounced than at large α with F increasing. The Stark shift in Faraday geometry is partly suppressed. This is because the geometry of the HQD lacks inversion symmetry, resulting in the modification of the displacement rule of the wave functions in response to the electric fields. As the tilt angle α increases,the electron energy transfers from this redshift to a blueshift,which compensates for the hole contributions to the redshift of the exciton energy. However, a clear redshift of the hole energy is found all the time. The effect of electric field orientation on the energy level of electron is much larger than on that of hole. The blueshifts or redshifts are determined by the orientation and strength of the electric field, which arises from the competition between the linear term and the quadratic term (see Appendix B for details). Therefore, the Stark shift is asymmetric with respect to the applied electric field. For electrons, the effect of the linear term on ΔEebecomes dominant. However, for holes, the effect of the quadratic term on ΔEhbecomes more significant. This is due to the much larger effective mass for hole than for electron.

    Fig.6. Stark shift ΔEe (ΔEh)of the electron(hole)ground-state versus F in an HQD with R=10 nm for various values of α.

    As is well known, an electric field strongly modifies exciton states in semiconductor nanostructures via the QCSE,resulting in the electron–hole polarization.[40–43]The applied electric field pushes the electron and hole in the opposite directions and thus resulting in their spatial separation,followed by the buildup of an internal electric field that opposes the external field,which results in the electron–hole polarization.In order to understand the origin of the anisotropy of exciton Stark shift, figure 7 shows the expectation values and the degree of the electron–hole polarization versus F in an HQD with R=10 nm for different values of α. The expectation values of the electron–hole separation of exciton ground-state along the x axis and z axis are defined as

    respectively. Then the polarization degree(anisotropy)is defined as P=(〈x〉?〈z〉)/(〈x〉+〈z〉). It is found that the polarization degree shows a positive sign,indicating that the direction of the dominant polarization is along the Voigt geometry.The electron–hole polarization is highly anisotropic with respect to the electric field orientation. When α is less than a certain angle, 〈x〉and P increase with F increasing. When α is more than a certain angle,〈x〉and P decrease with F increasing.However,〈z〉is found to increase with F increasing all the time. At a small α, the variations of the electron–hole polarization and polarization degree are more pronounced than at a large α with F increasing. It is clear that electric field applied along the Voigt geometry affects more the exciton polarization,consequently,leading to higher exciton Stark shift than a field applied along the Faraday geometry. This is because that the dimension along the Voigt geometry is much larger than along the Faraday geometry, and it is therefore more difficult to polarize the exciton along the Faraday geometry than along the Voigt geometry.

    Fig. 7. Expectation values and polarization degree of the electron–hole at exciton ground-state versus F in an HQD with R=10 nm for various values of α.

    In order to show more intuitively the effect of the electric field orientation on the distribution of electrons and the distribution of holes,figure 8 shows the contours of the conditional probability densities|ψ(x,z)|2of the electron ground-state and hole ground-state on the cross section at y=0 in an HQD with R=10 nm at F=0,200 kV/cm and five different values of the electric field orientation, i.e., α =0°, 30°, 45°, 60°, and 90°with the same color scale plotted on right side. In the absence of electric field,the distribution of ground-state electrons and the distribution of ground-state holes each are well-localized and preserve a pz-like shaped distribution. When the electric field is oriented in the Voigt geometry,it splits the hole distribution into two segments situated at the vicinity of the HQD edges (dxy-like shaped distribution). However, the electrons are not pulled away from the HQD center,and are compressed into a smaller range,which results in a reduced spatial overlap of the electron wave function and hole wave function and the quenching of optical emission. When F is oriented in Faraday geometry,no significant change is observed in the distribution of electrons between without and with the field,and the electrons are not pulled away from the HQD center. However,two segments of the hole distribution are close to each other and merge together, and are pushed towards the top of the HQD.The hole distribution is much more sensitive to the electric field than the electron distribution due to the much larger effective mass of hole. The symmetric breaking of the HQDs restrains the displacement of the wave functions to a smaller range in response to the electric field. The field-induced coupling between φ1p0and φ1d±1in the Voigt geometry is much stronger since their level spacing is much smaller than that between φ1p0and φ1f0in the Faraday geometry. Thus φ1p0is rigid only slightly modified by the electric field in the Faraday geometry. In the Voigt geometry, the electric field strongly couples φ1p0to φ1d±1, leading the higher φ1d±1orbital states to be transferred into φ1p0. Thus this is a purely quantummechanical effect and leads the number of nodes to increase in the wave function.

    Fig. 8. Contours of conditional probability densities |ψ(x,z)|2 of electron(left panel)and hole(right panel)ground-state on the cross section at y=0 in InAs HQD with R=10 nm with the same color scale plotted on right side. First row: F =0 kV/cm. The other rows: F =200 kV/cm applied at α =0°,30°,45°,60°,and 90° from the second row to sixth row.

    4. Conclusions

    In this work,we investigate theoretically the exciton Stark shift and polarization in HQDs for various strengths and orientations of an applied electric field by an exact diagonalization method. The exciton Stark effect is highly anisotropic and dependent on the electric field orientation due to the anisotropy of the geometric structure. When the electric field is rotated from the Voigt to Faraday geometries, the exciton Stark shift decreases gradually. The electric field along the Voigt geometry leads to much more pronounced Stark effects than along the Faraday geometry. This is because the field-induced coupling in the Voigt geometry is much stronger than that in the Faraday geometry. A redshift of the hole energy is found all the time while a transition of the electron energy from this redshift to a blueshift is found as the electric field is rotated from Voigt to Faraday geometries. Due to the diminishing of the Stark effect in Faraday geometry, the HQD structures can be used to improve significantly the emission properties of the polar optoelectronic devices if the strong internal polarized electric field is along the Faraday geometry.

    Appendix A: Derivation of exciton Hamiltonian matrix elements

    In this appendix,we derive the analytical solutions of the matrix elements Hn′l′,nlof the exciton Hamiltonian in the presence of an arbitrary tilted electric field.

    The spherical Bessel function of the first kind jv(z)is defined by

    Then equation(5a)becomes

    Then the integral of radial part in Eq.(10a)becomes

    From the feature of the spherical harmonic,we have

    The integral identity is obtained as follows:

    Then the integral of angular part in Eq.(10a)becomes

    where Γ(x)is the Gamma function.

    For spherical harmonics Ylm(θ,?),we have

    We can obtain the following expression:

    where Max[]is the function which yields the maximum value of a set of elements,and the term()is the 3-j symbol.

    To calculate the Coulomb potential described in Eq.(10b),the 1/|re?rh|can be expanded in spherical harmonics

    Appendix B:Derivation of exciton Stark shift in HQDs

    where

    高清在线国产一区| 亚洲激情在线av| 欧美黄色淫秽网站| 亚洲美女黄片视频| 欧洲精品卡2卡3卡4卡5卡区| 99热只有精品国产| 精品久久久久久久人妻蜜臀av | 色综合亚洲欧美另类图片| 露出奶头的视频| 中文字幕久久专区| 免费高清视频大片| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 色综合欧美亚洲国产小说| 久久国产乱子伦精品免费另类| 两人在一起打扑克的视频| 国产亚洲精品第一综合不卡| e午夜精品久久久久久久| 精品人妻在线不人妻| 国产成人免费无遮挡视频| АⅤ资源中文在线天堂| 一级毛片高清免费大全| 久久中文字幕人妻熟女| 又黄又爽又免费观看的视频| 久久性视频一级片| 波多野结衣av一区二区av| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 国产亚洲欧美精品永久| 在线观看免费视频网站a站| 777久久人妻少妇嫩草av网站| 成人永久免费在线观看视频| 亚洲中文日韩欧美视频| 亚洲欧美日韩高清在线视频| 国产成人啪精品午夜网站| 狂野欧美激情性xxxx| 亚洲成a人片在线一区二区| 日韩有码中文字幕| 欧美色视频一区免费| 夜夜爽天天搞| 高清黄色对白视频在线免费看| 成人亚洲精品一区在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲久久久国产精品| 国产精品二区激情视频| 在线永久观看黄色视频| 精品国产一区二区三区四区第35| 成人三级黄色视频| 久久久国产欧美日韩av| 日韩精品青青久久久久久| 亚洲成人久久性| 久久婷婷成人综合色麻豆| 女同久久另类99精品国产91| 亚洲一区中文字幕在线| 亚洲专区字幕在线| netflix在线观看网站| 亚洲午夜理论影院| 欧美日本视频| 麻豆一二三区av精品| 真人做人爱边吃奶动态| 波多野结衣巨乳人妻| 日日夜夜操网爽| 久久 成人 亚洲| 免费观看精品视频网站| 国产成人av激情在线播放| 黑人欧美特级aaaaaa片| 久久人人爽av亚洲精品天堂| 丰满人妻熟妇乱又伦精品不卡| 人妻久久中文字幕网| 中文字幕色久视频| 国产成人欧美在线观看| 首页视频小说图片口味搜索| 欧美丝袜亚洲另类 | 亚洲自拍偷在线| 亚洲国产精品999在线| 国产精品香港三级国产av潘金莲| 欧美日本亚洲视频在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品中文字幕在线视频| 成人av一区二区三区在线看| 日韩欧美国产一区二区入口| 久久久国产欧美日韩av| 乱人伦中国视频| 中文字幕人成人乱码亚洲影| 91麻豆精品激情在线观看国产| www.999成人在线观看| 国产一区二区三区综合在线观看| 国产一区二区三区在线臀色熟女| 黄频高清免费视频| 69av精品久久久久久| 日韩高清综合在线| 欧美乱妇无乱码| 午夜精品国产一区二区电影| 一级a爱视频在线免费观看| 亚洲中文字幕日韩| 午夜福利高清视频| 久久久久亚洲av毛片大全| 亚洲国产精品999在线| 国产高清激情床上av| 巨乳人妻的诱惑在线观看| 婷婷六月久久综合丁香| 亚洲男人天堂网一区| 亚洲精品国产精品久久久不卡| 国产成人精品在线电影| 久久精品国产亚洲av高清一级| 69av精品久久久久久| 亚洲五月婷婷丁香| 国产精品秋霞免费鲁丝片| 首页视频小说图片口味搜索| 色综合欧美亚洲国产小说| 日本在线视频免费播放| 看黄色毛片网站| 欧美最黄视频在线播放免费| 精品国内亚洲2022精品成人| 丝袜美足系列| 国产免费男女视频| 欧美精品亚洲一区二区| 999久久久精品免费观看国产| 久久欧美精品欧美久久欧美| 99re在线观看精品视频| 午夜免费观看网址| 亚洲精品国产精品久久久不卡| av视频在线观看入口| 一区二区三区精品91| 黄色片一级片一级黄色片| 欧美色欧美亚洲另类二区 | 成人av一区二区三区在线看| 精品久久久久久,| 91麻豆精品激情在线观看国产| 男女床上黄色一级片免费看| 视频区欧美日本亚洲| 母亲3免费完整高清在线观看| а√天堂www在线а√下载| 免费人成视频x8x8入口观看| 欧美成人一区二区免费高清观看 | 最新在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| av天堂久久9| 午夜福利影视在线免费观看| 岛国在线观看网站| 精品不卡国产一区二区三区| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 国产91精品成人一区二区三区| 国产一区二区在线av高清观看| 99国产精品一区二区蜜桃av| a在线观看视频网站| 麻豆国产av国片精品| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 热re99久久国产66热| 中文字幕精品免费在线观看视频| 九色亚洲精品在线播放| 老汉色∧v一级毛片| 村上凉子中文字幕在线| 日韩欧美三级三区| 叶爱在线成人免费视频播放| 麻豆av在线久日| 亚洲成av人片免费观看| 国产成人av教育| 国产亚洲欧美精品永久| 午夜免费鲁丝| 看黄色毛片网站| www日本在线高清视频| 在线观看66精品国产| 亚洲国产欧美日韩在线播放| 亚洲美女黄片视频| 人人妻人人爽人人添夜夜欢视频| 亚洲av电影在线进入| 日本 欧美在线| tocl精华| 少妇的丰满在线观看| 久久国产精品人妻蜜桃| 99国产精品一区二区三区| 久久久久久免费高清国产稀缺| 999精品在线视频| 男女下面进入的视频免费午夜 | 久久香蕉精品热| 欧美+亚洲+日韩+国产| 国产免费av片在线观看野外av| videosex国产| 久久精品91无色码中文字幕| 99久久国产精品久久久| 亚洲欧洲精品一区二区精品久久久| 国产成人免费无遮挡视频| 国语自产精品视频在线第100页| 欧美一区二区精品小视频在线| 欧美在线黄色| 99热只有精品国产| 国产精品精品国产色婷婷| 色播亚洲综合网| 国产精品秋霞免费鲁丝片| 伦理电影免费视频| 精品国产国语对白av| 一级a爱视频在线免费观看| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免费看| 久久人妻福利社区极品人妻图片| 久久亚洲真实| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 一本综合久久免费| 999久久久精品免费观看国产| 日本欧美视频一区| 国产欧美日韩精品亚洲av| 狠狠狠狠99中文字幕| 午夜精品久久久久久毛片777| www.精华液| 精品国产乱子伦一区二区三区| 亚洲午夜理论影院| 精品国产亚洲在线| 久久狼人影院| 亚洲精品粉嫩美女一区| 久久亚洲真实| av福利片在线| 级片在线观看| 99国产精品一区二区三区| 精品一区二区三区视频在线观看免费| 久久人人精品亚洲av| 免费高清视频大片| 国产精品精品国产色婷婷| 麻豆av在线久日| 国产97色在线日韩免费| 两个人看的免费小视频| 91九色精品人成在线观看| 在线观看www视频免费| 人人妻人人澡欧美一区二区 | 女人被狂操c到高潮| 高潮久久久久久久久久久不卡| 欧美日韩瑟瑟在线播放| 欧美日本亚洲视频在线播放| 成人免费观看视频高清| 在线观看免费日韩欧美大片| 亚洲欧美精品综合久久99| 中文字幕av电影在线播放| 国产99白浆流出| 国产精品香港三级国产av潘金莲| 欧美黑人欧美精品刺激| 电影成人av| 国产97色在线日韩免费| 看片在线看免费视频| 亚洲欧美日韩另类电影网站| 涩涩av久久男人的天堂| 国产一区二区激情短视频| 久久久久国内视频| av片东京热男人的天堂| 怎么达到女性高潮| 一边摸一边做爽爽视频免费| 国产真人三级小视频在线观看| 嫩草影院精品99| 日本一区二区免费在线视频| 国产精品一区二区免费欧美| 国产熟女xx| 国产一区二区三区视频了| 久久国产乱子伦精品免费另类| 亚洲欧美精品综合一区二区三区| 亚洲欧洲精品一区二区精品久久久| 亚洲精华国产精华精| 亚洲中文字幕日韩| 制服诱惑二区| 国产成人欧美| 波多野结衣高清无吗| 91麻豆精品激情在线观看国产| 国产亚洲欧美在线一区二区| 亚洲精品久久国产高清桃花| 老司机福利观看| 一区二区三区国产精品乱码| 老汉色∧v一级毛片| 亚洲国产看品久久| 美女高潮到喷水免费观看| 黄片大片在线免费观看| 人妻久久中文字幕网| 国产亚洲精品一区二区www| 嫩草影视91久久| 黄色视频不卡| 黄片大片在线免费观看| 亚洲男人的天堂狠狠| 欧美 亚洲 国产 日韩一| 国产av在哪里看| 久久精品人人爽人人爽视色| 午夜精品在线福利| 久久人妻av系列| av免费在线观看网站| 搡老岳熟女国产| 国产一区二区三区在线臀色熟女| 午夜精品久久久久久毛片777| 淫妇啪啪啪对白视频| 麻豆成人av在线观看| 日韩精品免费视频一区二区三区| 亚洲九九香蕉| 一进一出抽搐动态| 亚洲在线自拍视频| 午夜激情av网站| 精品久久久久久,| 亚洲人成77777在线视频| av福利片在线| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 精品一品国产午夜福利视频| 搡老妇女老女人老熟妇| 日韩一卡2卡3卡4卡2021年| 丝袜美足系列| ponron亚洲| 欧美激情极品国产一区二区三区| 禁无遮挡网站| 伦理电影免费视频| 女性被躁到高潮视频| 波多野结衣高清无吗| 国产一区二区激情短视频| 香蕉国产在线看| 淫妇啪啪啪对白视频| 亚洲国产欧美日韩在线播放| 日本精品一区二区三区蜜桃| 男人的好看免费观看在线视频 | 国产精品二区激情视频| 丝袜人妻中文字幕| 高清在线国产一区| 变态另类成人亚洲欧美熟女 | 久久久久国产一级毛片高清牌| 免费在线观看视频国产中文字幕亚洲| 大型黄色视频在线免费观看| 成人亚洲精品一区在线观看| 国产精品美女特级片免费视频播放器 | 亚洲国产精品999在线| 日本a在线网址| 成年女人毛片免费观看观看9| 曰老女人黄片| 欧美黑人精品巨大| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 国产亚洲精品久久久久久毛片| 88av欧美| 国产成人av教育| 熟妇人妻久久中文字幕3abv| 国产又爽黄色视频| 51午夜福利影视在线观看| 久久久久国产一级毛片高清牌| 国产乱人伦免费视频| 丰满的人妻完整版| 亚洲五月婷婷丁香| 高潮久久久久久久久久久不卡| 97碰自拍视频| 精品国产乱码久久久久久男人| 中文字幕色久视频| 国产精品国产高清国产av| 午夜福利欧美成人| 亚洲国产精品成人综合色| 国产亚洲欧美精品永久| 久热爱精品视频在线9| 他把我摸到了高潮在线观看| 久久九九热精品免费| 国内精品久久久久精免费| 男人舔女人的私密视频| videosex国产| 大码成人一级视频| 精品少妇一区二区三区视频日本电影| 欧美黄色片欧美黄色片| x7x7x7水蜜桃| 韩国av一区二区三区四区| 亚洲国产精品sss在线观看| 亚洲黑人精品在线| 黄片播放在线免费| 日韩欧美国产一区二区入口| 欧美激情高清一区二区三区| 女人被狂操c到高潮| 欧美不卡视频在线免费观看 | 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 久久精品国产亚洲av香蕉五月| 男人操女人黄网站| 老司机深夜福利视频在线观看| 精品久久久久久,| 久久精品91无色码中文字幕| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯| 国产精品一区二区在线不卡| 国产一级毛片七仙女欲春2 | 视频区欧美日本亚洲| 亚洲成国产人片在线观看| 色老头精品视频在线观看| 91麻豆精品激情在线观看国产| 一级作爱视频免费观看| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区三| 如日韩欧美国产精品一区二区三区| 波多野结衣巨乳人妻| 久久国产乱子伦精品免费另类| 1024视频免费在线观看| 国产在线精品亚洲第一网站| 每晚都被弄得嗷嗷叫到高潮| 亚洲无线在线观看| 熟女少妇亚洲综合色aaa.| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 中文字幕久久专区| 国产成人欧美| 人人妻人人爽人人添夜夜欢视频| 欧美激情 高清一区二区三区| av超薄肉色丝袜交足视频| 制服人妻中文乱码| 亚洲欧美日韩另类电影网站| 精品人妻在线不人妻| 久久久国产成人免费| 9色porny在线观看| 国产精品 欧美亚洲| 欧美精品亚洲一区二区| 精品国产一区二区三区四区第35| 日韩欧美免费精品| 国产高清videossex| 精品电影一区二区在线| 性色av乱码一区二区三区2| 亚洲avbb在线观看| 日韩国内少妇激情av| 在线永久观看黄色视频| 麻豆av在线久日| 成熟少妇高潮喷水视频| 欧美日韩瑟瑟在线播放| 女人被躁到高潮嗷嗷叫费观| 天堂√8在线中文| 国产麻豆69| 午夜免费鲁丝| 色在线成人网| 亚洲性夜色夜夜综合| 精品久久久久久成人av| www日本在线高清视频| 男女床上黄色一级片免费看| 波多野结衣一区麻豆| 99国产精品一区二区三区| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 婷婷丁香在线五月| 身体一侧抽搐| 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 91老司机精品| 天天躁夜夜躁狠狠躁躁| 狠狠狠狠99中文字幕| 法律面前人人平等表现在哪些方面| 久久国产乱子伦精品免费另类| 国产欧美日韩一区二区三区在线| 亚洲激情在线av| 免费在线观看亚洲国产| 在线国产一区二区在线| 一区福利在线观看| a在线观看视频网站| 亚洲av成人一区二区三| 老熟妇仑乱视频hdxx| 日韩三级视频一区二区三区| 日本三级黄在线观看| 悠悠久久av| 黄色视频,在线免费观看| 99在线视频只有这里精品首页| 欧美性长视频在线观看| 美女免费视频网站| 午夜精品久久久久久毛片777| 看片在线看免费视频| 18禁国产床啪视频网站| 一本久久中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲第一av免费看| 欧美日韩福利视频一区二区| 99精品在免费线老司机午夜| 亚洲片人在线观看| 69av精品久久久久久| 欧美成人免费av一区二区三区| 麻豆成人av在线观看| 国产免费av片在线观看野外av| 非洲黑人性xxxx精品又粗又长| 色播在线永久视频| 午夜福利,免费看| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 久久中文看片网| 操美女的视频在线观看| 国产伦一二天堂av在线观看| 18禁国产床啪视频网站| 后天国语完整版免费观看| 国产成人av激情在线播放| 亚洲自拍偷在线| 欧美在线一区亚洲| 精品国产乱子伦一区二区三区| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 精品久久蜜臀av无| 色哟哟哟哟哟哟| 90打野战视频偷拍视频| 色尼玛亚洲综合影院| 悠悠久久av| 欧美在线一区亚洲| 国产日韩一区二区三区精品不卡| 丁香欧美五月| 午夜福利在线观看吧| 搞女人的毛片| 一a级毛片在线观看| 18美女黄网站色大片免费观看| 香蕉久久夜色| 国产一卡二卡三卡精品| 国产欧美日韩一区二区精品| 国产精品99久久99久久久不卡| 午夜a级毛片| 免费看十八禁软件| 免费在线观看视频国产中文字幕亚洲| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 一本大道久久a久久精品| 国产精品影院久久| 国产精华一区二区三区| 精品高清国产在线一区| 久久人人精品亚洲av| 一级作爱视频免费观看| 国产熟女xx| 长腿黑丝高跟| 免费在线观看亚洲国产| 激情在线观看视频在线高清| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| av免费在线观看网站| 亚洲,欧美精品.| 免费搜索国产男女视频| 成人18禁在线播放| 亚洲 欧美 日韩 在线 免费| 精品国产美女av久久久久小说| 波多野结衣一区麻豆| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 亚洲精品国产色婷婷电影| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 国产精品野战在线观看| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久精品电影 | 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| 悠悠久久av| 51午夜福利影视在线观看| 看黄色毛片网站| 成人三级黄色视频| 母亲3免费完整高清在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 成人国语在线视频| 老汉色∧v一级毛片| 久久久久久久精品吃奶| 天堂影院成人在线观看| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 成人18禁高潮啪啪吃奶动态图| 精品国产美女av久久久久小说| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线播放一区| 18禁裸乳无遮挡免费网站照片 | 91成年电影在线观看| 国产日韩一区二区三区精品不卡| 日本免费一区二区三区高清不卡 | 久久久久精品国产欧美久久久| 一区二区三区激情视频| 麻豆av在线久日| 国产精品亚洲美女久久久| 嫩草影院精品99| 人人澡人人妻人| 国产精品免费一区二区三区在线| 欧美人与性动交α欧美精品济南到| 久久香蕉精品热| 天天添夜夜摸| 男男h啪啪无遮挡| 国产一卡二卡三卡精品| 国产片内射在线| 操出白浆在线播放| 日韩中文字幕欧美一区二区| 大香蕉久久成人网| 97人妻天天添夜夜摸| 亚洲狠狠婷婷综合久久图片| 看黄色毛片网站| 国产成人精品在线电影| 国产精品 欧美亚洲| 999精品在线视频| 色精品久久人妻99蜜桃| 亚洲 欧美一区二区三区| 国产精品一区二区三区四区久久 | 国产野战对白在线观看| 99国产精品一区二区蜜桃av| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三| 中文字幕色久视频| 精品国产超薄肉色丝袜足j| 亚洲五月婷婷丁香| 色综合婷婷激情| 淫秽高清视频在线观看| 可以在线观看的亚洲视频| 久久欧美精品欧美久久欧美| 人人妻人人澡人人看| 变态另类成人亚洲欧美熟女 | 黄色a级毛片大全视频| av中文乱码字幕在线| 午夜福利视频1000在线观看 | 在线视频色国产色| 如日韩欧美国产精品一区二区三区| 国产亚洲精品一区二区www| 精品乱码久久久久久99久播| 久久人妻av系列| 日本五十路高清| 国产精品亚洲av一区麻豆| 美女免费视频网站| av福利片在线| 神马国产精品三级电影在线观看 | 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 很黄的视频免费| 欧美日韩黄片免| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费|