• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR*

    2021-05-24 02:25:38KeWang王珂XiaopengYan閆曉鵬ZeLi李澤XinhongHao郝新紅andHonghaiYu于洪海
    Chinese Physics B 2021年5期
    關鍵詞:王珂

    Ke Wang(王珂), Xiaopeng Yan(閆曉鵬), Ze Li(李澤), Xinhong Hao(郝新紅), and Honghai Yu(于洪海)

    Science and Technology on Electromechanical Dynamic Control Laboratory,School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China

    Keywords: Duffing oscillator,pseudo-random binary code-linear frequency modulation(PRBC-LFM)signal,blind parameter estimation,low signal-to-noise ratio(SNR)

    1. Introduction

    Parameter estimation plays a significant role in the signal analysis process of both civilian and military communications,and can be used to intercept information or implement jamming in non-cooperative communication.[1,2]Pseudo-random binary code-linear frequency modulation (PRBC-LFM) signals combine the characteristics of PRBC and LFM,resulting in good measurement accuracy of distance and speed, strong anti-interference performance, and low interception probability. At present,these composite signals are used in a variety of areas such as radar and subminiature detectors.[3]Therefore,it is important to study the parameter estimation algorithm for PRBC-LFM signals in modern electronic intelligence reconnaissance.

    Conventional parameter estimation techniques for PRBCLFM signals typically require some prior knowledge. Li et al.[4]used the method of least squares to eliminate the pseudorandom binary code, and then processed the resulting LFM signal by fast linear demodulation. However, this approach requires the pseudo-code width to be known. In other research,[5,6]the time difference of arrival was estimated by a cyclic spectral method, although the code width and carrier frequency were known in advance. Some techniques place high requirements on the signal itself. For instance,Refs. [7,8] proposed a spectrum correlation method, but this only achieves satisfactory parameter estimation performance when the frequency modulation bandwidth is greater than the ratio of the encoding number to the pulse width. Other estimation techniques have high computational complexity. Methods have been proposed in Refs. [9–11] based on the smoothed pseudo Wigner distribution (SPWVD), spectrogram and the generalized time-frequency representation of Zhao,Atlas,and Marks (ZAM-GTFR) respectively, to extract characteristics related to the carrier frequency,coefficient of frequency modulation,and pseudo-code parameter. This time-frequency analysis incurs a heavy computational load. In Ref. [12], the fractional Fourier transform(FRFT)was used to estimate the parameters of the PRBC-LFM signal, resulting in improved noise immunity. However, this approach is relatively slow because FRFT needs to conduct a two-dimensional search.He et al.[13]used the discrete polynomial phase transformation(DPT)and spectrum shift to complete the blind estimation of signals,but the accuracy was negatively affected by the complexity of the procedure. In addition, all of the above studies require the signal-to-noise ratio (SNR) to be above 0 dB for effective performance. Therefore, research on the parameter estimation of PRBC-LFM signals is generally faced with the problems of requiring some prior knowledge, computational complexity,and high SNR requirements.In particular,in complex electromagnetic environments, achieving better parameter estimation performance at low SNRs is an urgent problem.For these reasons, finding out a new blind parameter estimation method with fewer SNR requirements and less computational complexity, as well as without prior knowledge, is of great importance.

    Since the 1970s, the Duffing oscillator has enjoyed widespread application in the field of weak signal detection due to its sensitivity to periodic signals and immunity to noise,[14]attracting many scholars studying its basic characteristics and practical application.[15–20]Wang et al.[21]examined the intermittent chaotic state,which enhanced the practicality of weak signal detection in chaotic systems. A method whereby a chaotic oscillator array was used to detect weak signals of unknown frequency was also described.Costa et al.[22]used the Duffing oscillator array composed of five oscillators to enhance the response of each oscillator through the correlation with the reference signal,and presented a time-frequency description of the chirp signal for SNR as low as ?17 dB.This method outperformed the traditional time-frequency analysis.References [23,24] estimated the PRBC signal with a known carrier frequency. However, under non-cooperative conditions,the carrier frequency of the pseudo-code phase modulation signal is usually unknown. These methods cannot generally be applied to PRBC-LFM signals,which have a changing carrier frequency. To date, there has been little research on the parameter estimation of PRBC-LFM signals based on the Duffing oscillator, so this is an interesting avenue for further study.

    In this paper, a weak signal detection system is established based on the Duffing oscillator to estimate the phase code and carrier frequency of PRBC-LFM signals. The relationship among the output state of the Duffing oscillator excited by a PRBC-LFM signal, the difference frequency, and the phase code is presented. The amplitude (AP) method,short-time Fourier transform(STFT)method,and power spectrum entropy(PSE)method are used to identify different states of the Duffing oscillator. Then, Duffing oscillator array synchronization is used to estimate the pseudo-random sequence.Finally, carrier frequency parameters such as the modulation period, modulation coefficient, initial frequency, and termination frequency of the PRBC-LFM signal are obtained according to the above relationship and the characteristics of the difference frequency in the detection system. This blind parameter estimation method is simulated under different SNR conditions.

    The remainder of this paper is organized as follows. The next section introduces the weak signal detection system based on the Duffing oscillator estimated by the standard sinusoidal signal and PRBC-LFM signal. In Section 3, the associated relational expression is established, Duffing oscillator array synchronization is used to estimate the phase code, and then the carrier frequency is estimated according to the characteristics of the difference frequencies. Section 4 shows the simulation experiment results based on the Duffing oscillator method compared with the SPWVD and FRFT methods. Finally, the conclusions to this study are presented in Section 5.

    2. Weak signal detection system based on Duffing oscillator

    2.1. Traditional Duffing oscillator system

    The traditional Duffing oscillator system is excited by a standard sinusoidal signal,which can be expressed as

    where x is the displacement,k is the damping coefficient,and?ax(t)+bx3(t) is the nonlinear restoring force. According to previous researches, the Duffing oscillator system has a good chaotic state when k=0.5,a=b=1.[25,26]Frcos(ωdt)is the periodic driving force signal of the Duffing oscillator.Acos(ω0t+?0) is the to-be-detected signal, and n(t) is the stochastic disturbance, which is Gaussian white noise in this study.

    There is a critical threshold Fcin the Duffing oscillator system. When there is no signal to be detected, if Fr≤Fc,the system will be in a chaotic state; if Fr>Fc, the system will be in a large-scale periodic state. Adding the to-bedetected signal when Fr=Fcresults in two situations. First,|Δω|=|ωd?ω0| denotes the difference frequency of the tobe-detected signal and the periodic driving force signal of the Duffing oscillator. If Δω =0,the system will transform from a chaotic state to a large-scale periodic state; if Δω /=0, the system will be converted to an intermittent chaotic state. If|Δω ≤0.03ωd|, the intermittent chaotic state can be maintained regularly and stably. When Δω exceeds this range,the rule governing the intermittent chaotic state may be broken due to the insufficient maintenance time of the equivalent policy force.[21]Figure 1 illustrates the regular intermittent chaotic state of a traditional Duffing oscillator excited by a sinusoidal signal. Here, we set ωd= 2π×100 MHz,Δω =2π×3 MHz,Fr=0.826,A=0.1,and ? =0.

    Fig.1. Output time domain waveform of the Duffing oscillator excited by a sinusoidal signal.

    2.2. PRBC-LFM signal

    The PRBC signal can be expressed as

    where A is the amplitude. As shown in Eq.(4),we need to estimate three parameters of the PRBC-LFM signal,namely the initial frequency,modulation coefficient,and phase code.

    If we input the PRBC-LFM signal into the Duffing oscillator system,the Duffing oscillator can be written as

    where Δω =ωd?(ω0+πkft). As for the sinusoidal signal,we set Fr=Fc, so that when 0 <|Δω|≤0.03ω, the Duffing oscillator excited by the PRBC-LFM signal will be converted to the regular intermittent chaotic state. However, although there is a certain regularity, the intermittent chaotic state of the PRBC-LFM signal is different from the sinusoidal signal,because of the constantly changing phase and frequency. The time domain waveform is shown in Fig.2. Like the sinusoidal signal,we also fix ωd=2π×100 MHz,ω =2π×100 MHz,kf=3/(1×10?7)MHz/s=3×107MHz/s, Fr=0.826, A=0.1,and ?0=0.

    Fig.2. Output time domain waveform of the Duffing oscillator excited by a PRBC-LFM signal.

    3. Parameter estimation of PRBC-LFM signal based on duffing oscillator array

    3.1. Relationship among functions in duffing oscillator system excited by PRBC-LFM signal

    To determine the rule governing the intermittent chaotic state of the Duffing oscillator stimulated by the PRBC-LFM signal, the output signal needs to be further analyzed. As shown in Eq. (5), the equivalent periodic driving force signal can be represented as Fecos(ωdt+θ) after inputting the PRBC-LFM signal,where

    In this eqnarray, sgn(number)represents the sign function: if number >0, sgn=1; if number=0, sgn=0; if number <0, sgn = ?1. The relationship among the sign function sgn(cos(Δωt+?(t))), phase code ?i, and time t is presented in Table 1, where t1=(2kπ ?π/2 ??0)/|Δω|, t2=(2kπ+π/2??0)/|Δω|,k=0,1,2,...

    Table 1. Relational expression.

    Based on Eq.(9)and Table 1,we can see the implied regularity of the intermittent chaotic state of the Duffing oscillator stimulated by the PRBC-LFM signal. The relationship among the output signal of the Duffing oscillator,phase code ?i,and cosine function of the difference frequency cos(Δωt+?0)can be written as

    When the system is in the large-scale periodic state,Fe>Fc, so sgn(Fe?Fc)=1. When the system is in the chaotic state, Fe≤Fc, so sgn(Fe?Fc)=?1 or 0. Therefore, we can binarize the output state of the Duffing oscillator, Sys(t), as follows:

    The cosine function of the difference frequency between the PRBC-LFM signal and the periodic driving force signal of the Duffing oscillator is also binarized as Df(t)

    We can obtain a pseudo-random sequence Pc(t)by binarizing the phase code of the PRBC-LFM signal:

    After receiving the PRBC-LFM signal in the Duffing oscillator system, there is no stable intermittent chaotic period,where the state at a certain time is determined by both the phase code ?iand the difference frequency Δω,that is,

    As Sys(t),D f(t),and Pc(t)are binary functions taking values of only 1 and ?1,the equivalent form of Eq.(14)is

    Therefore, if any two of the three functions are known, the third one can be obtained using(Eqs.(14)–(16)).

    3.2. Pseudo-random sequence estimation

    When an array of several Duffing oscillators with different periodic driving force frequencies is excited by the PRBCLFM signal, each oscillator will have a different intermittent chaotic period because of the difference in frequency. However,the oscillators are controlled by the same binary pseudorandom sequence Pc(t), and so the state conversion time of the different Duffing oscillators in the array is always the same. Therefore, the moment when the numerical transformation occurs synchronously in different Duffing oscillators corresponds to the numerical transformation in Pc(t). In this paper, we define this characteristic as the Duffing oscillator array synchronicity, which means Sys(t) of each Duffing oscillator in the array varies with change of Pc(t). Sys(t) can be directly obtained by binarizing the Duffing oscillator output signal. As shown in Fig.3,when Sys(t)in any three of the four Duffing oscillators in the array changes at the same time,it corresponds to a change of Pc(t). The Duffing oscillator array synchronicity can be used to estimate the pseudo-random sequence.

    Fig.3. Time domain diagram of Sys(t)of Duffing oscillator array and Pc(t).

    To realize the estimation of the pseudo-random sequence Pc(t)using the array synchronicity,the Duffing oscillator must first be binarized. The key to binarization is distinguishing the chaotic state from the periodic state in the intermittent chaotic state. In this paper,three binarization methods are considered:the AP method, STFT method, and PSE method. As shown in Fig.2,the amplitudes of the chaotic and periodic states are somewhat different,so they can be distinguished according to their amplitudes,except when there is a large amount of noise or the amplitude of the signal to be measured is small. In these cases, the amplitude difference between the two states is not obvious,which may easily lead to misjudgment and affect the blind estimation. The frequencies of different states are also different, so the STFT method can be used to perform timefrequency analysis, and thus identify the states. In addition,entropy is a measure of the degree of chaos,so it can be used to distinguish the chaotic state from the periodic state. Thus,the PSE is proposed to binarize the output of Duffing oscillators and obtain Sys(t).After binarizing the Duffing oscillator’s output,we can estimate the pseudo-random sequence based on the Duffing oscillator array synchronicity.

    3.3. Carrier frequency estimation

    After obtaining the pseudo-random sequence Pc(t) by processing the array of five Duffing oscillators excited by the PRBC-LFM signal in Subsection 3.2, Df(t) was determined based on Eq. (15). Since the carrier frequency of the signal to be measured is constantly changing under the control of the modulation coefficient kf, Df(t) multiplied by Pc(t) and the output Sys(t) of each Duffing oscillator in the array also changes continually. There are four relationships between the frequency of the Duffing oscillator periodic driving force ωdj(j represents the number of oscillators) and the PRBC-LFM signal ω0: (i) ωdj<ω0start, at this time, with the increase of ω0, Δω also increases gradually; (ii) ωdj<ω0end, where Δω decreases as ω increases;(iii)ω0start<ωdj<ω0end,where Δω first decreases, and then increases; and (iv) ωdj=ω0startor ωdj=ω0end,where although Δω increases or decreases gradually, the positive and negative values of the first or last period in the obtained difference frequency diagram vary significantly. Figure 4 illustrates Df(t)in each of these cases.

    In Fig. 4, the dotted red lines divide the Duffing oscillators into three periods. The change in the difference frequency in each period is the same,so the time between every pair of dotted red lines is the modulation period TM. In the figure,the red serial numbers represent the starting period and the ending period of each oscillator,and the frequency corresponding to the red serial number i can be written as Δωi. In Fig. 4(a), the time period from serial number 1 to 2 gradually decreases, which means that the frequency gradually increases, as in case(i). The initial frequency measured by oscillator 1 is ω0start1=ωd1+Δω1, and the terminal frequency is ω0end1=ωd1+Δω2. The time difference between 1 and?1 of the serial number 3 in Fig.4(b)is large,after which the time period returns to normal,corresponding to case(iv),and the initial frequency obtained by oscillator 2 is equal to the periodic driving force frequency of oscillator 2. The termination frequency is ω0end2=ωd2+Δω4according to the serial number 4. In Fig.4(c), the time period from serial number 5 to 6 first rises and then declines, satisfying the case of (iii),with an initial frequency measured by oscillator 3 of ω0start3=ωd3?Δω5, and a terminal frequency of ω0end3=ωd3+Δω6.At the same time, in Fig.4(d), the time difference between 1 and ?1 of serial number 8 is very different,again representing case(iv),so ω0end4=ωd4. According to serial number 7,the termination frequency is ω0start4=ωd4?Δω7. In Fig.4(e),the time period from serial number 9 to 10 gradually increases,so it meets the case of(ii),with an initial frequency based on oscillator 1 of ω0start5=ωd5?Δω9,and a terminal frequency of ω0end5=ωd5?Δω10.

    Fig.4. Time domain diagram of D f(t).

    Fig.5. Flow chart of parameter estimation method.

    The average of the initial frequencies ω0startiand the termination frequencies ω0endimeasured by the five Duffing oscillators gives the final ω0startand ω0end. The modulation frequency can then be written as ΔFM=?(ω0start?ω0end)/(2π),giving a modulation coefficient of kf= ΔFM/TM. A larger number of oscillators would result in higher accuracy,but with correspondingly greater computational complexity.

    In summary,a flow chart of the proposed blind parameter estimation method for PRBC-LFM signal based on a Duffing oscillator array is shown in Fig.5.

    4. Simulation experiment and analysis

    4.1. Pseudo-random sequence estimation simulation

    We fix the amplitude of the PRBC-LFM signal to be 0.1, the initial frequency to be ω0start= 2π ×100 MHz,the terminal frequency to be ω0end= 2π × 103 MHz,and the pseudo-random sequence over 6×10?6s to be 10000111110101001100. The frequency of the periodic driving force of the Duffing oscillator ωdand the frequency of the PRBC-LFM signal ω0have five possible relationships:ωd =ω0start, ωd<ω0start, ω0start<ωd<ω0end, ωd=ω0end,ωd>ω0end. Therefore,we set up an array of five Duffing oscillators to estimate the pseudo-random sequence,and set their ωdvalues to 2π×99 MHz,2π×100 MHz,2π×101.5 MHz,2π×103 MHz,and 2π×104 MHz,respectively.

    Because of the advantages of equal spectrum,simple and convenient in mathematical processing,Gaussian white noise occupies an important position in practical application. Most of the undulating processes in radio equipment can be treated as Gaussian white noise. Many other interfering processes can be also treated as Gaussian white noise as long as their power spectrum is much wider than the passband of the system and their power spectrum density is evenly distributed in and around the passband of the system. Therefore, when detecting weak signals,the detection effect under the background of Gaussian white noise is generally analyzed. To realize signal detection under different SNRs, the variance σ2of the Gaussian noise is adjusted to be 0,0.5,5,15.8114,and 50,respectively, corresponding to the SNR being noiseless, ?20 dB,?30 dB, ?35 dB and ?40 dB. The time domain waveform of Pc(t)is obtained based on Sys(t),using the AP,STFT and PSE methods. The Duffing oscillator array synchronization is shown in Figs.6–10.

    Fig.6. Pc(t)without noise.

    Fig.7. Pc(t)in ?20 dB SNR.

    Fig.8. Pc(t)in ?30 dB SNR.

    Fig.9. Pc(t)in ?35 dB SNR.

    Fig.10. Pc(t)in ?40 dB SNR.

    Pearson’s correlation coefficient is used to compare the correlation between the Pc(t) obtained by each method and the actual Pc(t) under different SNRs. The results are presented in Table 2. Pearson’s correlation coefficient is defined as the quotient of the covariance and the standard deviation between two variables,and its formula is[27]

    From Figs.6–10 and Table 2,it can be seen that all three methods give good estimation results for pseudo-random sequence estimation under an SNR of ?35 dB. As the SNR decreases, the Pearson’s correlation coefficients of all three methods gradually decrease. The AP method exhibits the worst anti-noise performance,with a correlation coefficient of less than 0.8 at ?35 dB. The binarization method based on PSE gives an estimated pseudo-random sequence that is close to the actual sequence, providing the best anti-noise performance.

    Table 2. Simulation results under different SNR.

    Therefore, we use the PSE method to binarize the output of the Duffing oscillator array to get Sys(t). For universality, 100 experiments are conducted under each SNR. We also simulate the SPWVD method in Ref. [9] and FRFT in Ref.[12]method under different SNRs as a contrast;the conditions of these two methods are the same as the Duffing oscillator method.However,the performance of these two methods is poor under ?20 dB;we only compare these three methods at ?20 dB to 5 dB. The normalized root mean squared error(NRMSE)results of pseudo-code width are shown in Fig.11.Here,the NRMSE is defined as[9–12]

    where x is the true value of the parameter,xkis the estimation value of parameter,and N is the estimation time.

    As shown in Fig. 11, the Duffing oscillator method proposed in this paper can estimate the pseudo-random code width more accurately under different SNRs than the SPWVD and FRFT methods. Under an SNR of ?20 dB, NRMSEs based on SPWVD and FRFT methods are both more than 1.5,whereas that based on the Duffing oscillator method is only 0.0445.

    Fig.11. NRMSE of pseudo-random code width based on three methods.

    4.2. Carrier frequency estimation simulation

    After obtaining the Pc(t)by array synchronicity, we can determine Df(t) from Eq. (15), and then estimate the carrier frequency based on the above method; 100 experiments are conducted under each SNR.Like the pseudo-code estimation simulation,we also simulate the SPWVD and FRFT methods at ?20 dB to 5 dB as a contrast,which is shown in Fig.12.

    Fig. 12. NRMSE of carrier frequency based on SPWVD, FRFT and Duffing oscillator. (a)Center frequency. (b)Modulation coefficient.

    In Fig. 12, the blind estimation accuracy of carrier frequency including the center frequency and modulation coefficient based on the Duffing oscillator in this paper is better than the SPWVD and FRFT methods obviously in different SNRs.In addition, the estimation of center frequency is more accurate and stable,and the estimation results have little difference at ?20 dB to 5 dB.

    4.3. Blind parameter estimation results

    The simulation results under other SNRs are presented in Table 3. It can be seen that the center frequency estimation is more accurate than the modulation coefficient and pseudorandom code width. The NRMSE in the center frequency is only 0.107 at ?40 dB,whereas those of the other two parameters are relatively large. In short,the blind parameter estimation method based on the Duffing oscillator can achieve highprecision carrier frequency and pseudo-random code estimation under an SNR of ?35 dB.

    Table 3. Simulation results under different SNR.

    In order to verify that this method can solve the problem of computational complexity,the computing time for parameter estimation of PRBC-LFM based on the Duffing oscillator under sampling number P is compared with the SPWVD and FRFT methods. All of the conditions of these three methods are the same. The simulation results are shown in Table 4.With the growth of P,the calculation time of both methods increases. However,the SPWVD method cannot compute more than the P of 3×104, which limits its application and antinoise performance. Besides,the calculation time based on the Duffing oscillator is much less than that of the SPWVD and FRFT methods,especially when the value of P is large,which proves that the method presented in this paper is simpler.

    Table 4. Computing time of three methods.

    5. Conclusions

    In this study, by analyzing the output characteristics of a Duffing oscillator excited by a PRBC-LFM signal,we have derived the relationship among the output of the Duffing oscillator, pseudo-random sequence and cosine function of the difference frequency, which provides a theoretical basis for the blind estimation of PRBC-LFM signals. After binarizing the output of the Duffing oscillator array,we can estimate the pseudo-random sequence based on the Duffing oscillator array synchronicity. According to the obtained pseudo-random sequence and the multiplication relation, we obtained the binary cosine function of the difference frequency, and realized blind estimation of the carrier frequency by analyzing the time-domain diagrams of the difference frequency.Simulation results show that this method can estimate the pseudo-random sequence, carrier frequency, and frequency modulation coefficient with high accuracy, with better simulation results and less computing time than traditional methods like SPWVD and FRFT, and maintain good performance up to an SNR of?35 dB.

    However, the estimation result of the carrier frequency is greatly influenced by the pseudo-random sequence,and the key is the binarization by state identification. In future work,we will attempt to find a more effective method that improves the accuracy of binarization.

    猜你喜歡
    王珂
    《遨游太空》
    Parameterized monogamy and polygamy relations of multipartite entanglement
    魚目混珠
    校園偵探隊之紅帽子先生
    水龍之怒
    真是個小傻能
    Word Puzzle
    When Christmas Comes
    倒計時,與夢想訣別
    倒計時
    国产精品九九99| 久久中文字幕人妻熟女| 桃红色精品国产亚洲av| 多毛熟女@视频| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 黄色怎么调成土黄色| 91麻豆av在线| 欧洲精品卡2卡3卡4卡5卡区| svipshipincom国产片| 亚洲成国产人片在线观看| 十分钟在线观看高清视频www| 国内久久婷婷六月综合欲色啪| 伦理电影免费视频| 中文字幕最新亚洲高清| 99久久综合精品五月天人人| 精品福利永久在线观看| 日韩欧美三级三区| 涩涩av久久男人的天堂| 好看av亚洲va欧美ⅴa在| 麻豆久久精品国产亚洲av | 国产激情久久老熟女| 久久午夜亚洲精品久久| 欧美乱码精品一区二区三区| 级片在线观看| 国产av又大| 久久天堂一区二区三区四区| 99精品在免费线老司机午夜| 国产精品日韩av在线免费观看 | 免费搜索国产男女视频| 天天添夜夜摸| 欧美+亚洲+日韩+国产| 久久人人爽av亚洲精品天堂| 欧美激情高清一区二区三区| 神马国产精品三级电影在线观看 | 久久久久国产一级毛片高清牌| 久9热在线精品视频| 亚洲一码二码三码区别大吗| 在线观看一区二区三区激情| 久久久久久免费高清国产稀缺| 欧美乱码精品一区二区三区| 亚洲欧美日韩高清在线视频| www.精华液| 中文字幕色久视频| 女警被强在线播放| av超薄肉色丝袜交足视频| 国产欧美日韩一区二区三区在线| 成年版毛片免费区| 黄色怎么调成土黄色| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人av教育| 香蕉丝袜av| 国产精品影院久久| 亚洲专区国产一区二区| 成人18禁高潮啪啪吃奶动态图| 免费观看人在逋| 身体一侧抽搐| 久久精品国产综合久久久| 后天国语完整版免费观看| 久久久久九九精品影院| 日韩欧美免费精品| 亚洲熟妇中文字幕五十中出 | 村上凉子中文字幕在线| 亚洲三区欧美一区| 岛国在线观看网站| 欧美乱色亚洲激情| 又黄又爽又免费观看的视频| 人人妻人人添人人爽欧美一区卜| 日韩一卡2卡3卡4卡2021年| www.999成人在线观看| avwww免费| 午夜视频精品福利| 女同久久另类99精品国产91| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区免费欧美| 最新在线观看一区二区三区| 两人在一起打扑克的视频| x7x7x7水蜜桃| xxx96com| 久久精品亚洲熟妇少妇任你| 在线十欧美十亚洲十日本专区| 久久国产亚洲av麻豆专区| 最近最新中文字幕大全电影3 | 亚洲欧美日韩另类电影网站| 亚洲人成伊人成综合网2020| 日韩有码中文字幕| 国产一卡二卡三卡精品| 成人av一区二区三区在线看| 怎么达到女性高潮| 老司机午夜十八禁免费视频| 国产精品久久久久久人妻精品电影| 日韩 欧美 亚洲 中文字幕| 久久久久久人人人人人| 无限看片的www在线观看| av天堂久久9| 国产精品偷伦视频观看了| 99精品欧美一区二区三区四区| 99久久久亚洲精品蜜臀av| 欧美日韩av久久| 精品高清国产在线一区| 国产av一区在线观看免费| 日日夜夜操网爽| 香蕉久久夜色| 亚洲专区国产一区二区| 自线自在国产av| 国产精品久久久人人做人人爽| 琪琪午夜伦伦电影理论片6080| 夜夜爽天天搞| 国产成人精品无人区| 中文字幕人妻丝袜一区二区| 黄色 视频免费看| 久久 成人 亚洲| av天堂久久9| 欧美大码av| 校园春色视频在线观看| 精品日产1卡2卡| 麻豆国产av国片精品| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区中文字幕在线| 大码成人一级视频| 亚洲人成77777在线视频| 少妇粗大呻吟视频| 午夜免费鲁丝| av超薄肉色丝袜交足视频| 亚洲精品一区av在线观看| 久久青草综合色| 日本免费a在线| 老汉色∧v一级毛片| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 成人黄色视频免费在线看| 久久人人精品亚洲av| 国产av一区在线观看免费| 99国产综合亚洲精品| 最近最新中文字幕大全电影3 | 午夜免费鲁丝| 国产一区二区激情短视频| netflix在线观看网站| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 黄色视频不卡| 精品福利观看| 国内久久婷婷六月综合欲色啪| 日日干狠狠操夜夜爽| 亚洲成av片中文字幕在线观看| 久久中文字幕人妻熟女| 日韩人妻精品一区2区三区| 1024视频免费在线观看| 视频区图区小说| 国产亚洲欧美98| 亚洲精品国产一区二区精华液| 成人影院久久| 一级毛片精品| 激情在线观看视频在线高清| 亚洲 欧美 日韩 在线 免费| 国产视频一区二区在线看| 一边摸一边做爽爽视频免费| 九色亚洲精品在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 12—13女人毛片做爰片一| 日韩免费av在线播放| 男人舔女人的私密视频| xxxhd国产人妻xxx| 91精品国产国语对白视频| 91精品国产国语对白视频| 两个人看的免费小视频| 久久午夜综合久久蜜桃| 国产1区2区3区精品| 久久久久久久久中文| 国产精品 欧美亚洲| 日韩精品免费视频一区二区三区| 嫩草影视91久久| 亚洲 国产 在线| 人人妻,人人澡人人爽秒播| 久久久久久人人人人人| 免费看a级黄色片| 国产精品久久久av美女十八| 国产真人三级小视频在线观看| 黄色 视频免费看| 三上悠亚av全集在线观看| 日韩欧美国产一区二区入口| 美女大奶头视频| 欧美在线黄色| 在线观看一区二区三区激情| 男人舔女人下体高潮全视频| 深夜精品福利| 国产亚洲欧美在线一区二区| 国产成人精品在线电影| 90打野战视频偷拍视频| 精品乱码久久久久久99久播| 一区福利在线观看| 久久国产精品男人的天堂亚洲| 欧美黑人精品巨大| 免费在线观看完整版高清| 精品一品国产午夜福利视频| 国产蜜桃级精品一区二区三区| 亚洲熟妇熟女久久| 51午夜福利影视在线观看| 国产亚洲欧美在线一区二区| 欧美激情高清一区二区三区| 午夜免费激情av| 久久这里只有精品19| 夫妻午夜视频| netflix在线观看网站| 久久精品91蜜桃| 一级a爱视频在线免费观看| 日本黄色视频三级网站网址| 久久国产乱子伦精品免费另类| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片 | 亚洲人成电影观看| 久久久久久久精品吃奶| 天天添夜夜摸| 日日干狠狠操夜夜爽| 国产极品粉嫩免费观看在线| 精品一区二区三区av网在线观看| 国产片内射在线| 国产亚洲精品一区二区www| 18禁观看日本| 亚洲激情在线av| 高清毛片免费观看视频网站 | 夜夜躁狠狠躁天天躁| 我的亚洲天堂| √禁漫天堂资源中文www| 国产高清国产精品国产三级| 超碰成人久久| 亚洲一区二区三区色噜噜 | 欧美日本中文国产一区发布| 精品国产乱码久久久久久男人| 午夜福利在线观看吧| 三级毛片av免费| 最新美女视频免费是黄的| 午夜福利影视在线免费观看| 桃红色精品国产亚洲av| 国产成人av教育| 亚洲国产中文字幕在线视频| 亚洲va日本ⅴa欧美va伊人久久| 在线观看一区二区三区激情| 精品免费久久久久久久清纯| 欧美丝袜亚洲另类 | 视频在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 女人精品久久久久毛片| 精品国产乱子伦一区二区三区| 精品国产国语对白av| 日本黄色视频三级网站网址| 久久精品国产亚洲av香蕉五月| 久久久久久久午夜电影 | 免费一级毛片在线播放高清视频 | 91大片在线观看| 咕卡用的链子| 午夜激情av网站| 欧美亚洲日本最大视频资源| 纯流量卡能插随身wifi吗| 日韩欧美一区二区三区在线观看| 精品国产乱码久久久久久男人| 美女 人体艺术 gogo| 9191精品国产免费久久| 亚洲国产精品999在线| 香蕉丝袜av| 亚洲人成电影观看| 很黄的视频免费| 国内久久婷婷六月综合欲色啪| 午夜日韩欧美国产| 国产免费男女视频| 欧美成人午夜精品| 在线永久观看黄色视频| 亚洲国产欧美一区二区综合| 搡老乐熟女国产| a级毛片黄视频| 亚洲成人久久性| 神马国产精品三级电影在线观看 | 免费日韩欧美在线观看| 亚洲 欧美 日韩 在线 免费| 婷婷六月久久综合丁香| 欧美乱妇无乱码| 亚洲色图综合在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品一二三| 久久午夜亚洲精品久久| 窝窝影院91人妻| 亚洲精品在线观看二区| 18禁美女被吸乳视频| 十分钟在线观看高清视频www| 男女高潮啪啪啪动态图| 在线国产一区二区在线| 日韩免费av在线播放| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 久久久久九九精品影院| 日本精品一区二区三区蜜桃| 91成人精品电影| 啦啦啦 在线观看视频| 久久精品91无色码中文字幕| 国产精品秋霞免费鲁丝片| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| 一进一出抽搐gif免费好疼 | 一进一出好大好爽视频| 成熟少妇高潮喷水视频| 高清黄色对白视频在线免费看| 99精国产麻豆久久婷婷| 欧美日韩视频精品一区| 国产三级在线视频| 亚洲伊人色综图| 亚洲一区中文字幕在线| 国产成人精品久久二区二区91| 最近最新免费中文字幕在线| 十八禁网站免费在线| 一个人免费在线观看的高清视频| 亚洲精品中文字幕一二三四区| 久久精品国产清高在天天线| 国产成人精品久久二区二区91| 这个男人来自地球电影免费观看| 日日干狠狠操夜夜爽| 叶爱在线成人免费视频播放| 成年人免费黄色播放视频| 精品国产乱码久久久久久男人| 99久久国产精品久久久| 中文字幕最新亚洲高清| 韩国av一区二区三区四区| 亚洲色图av天堂| 99国产精品一区二区三区| 一级a爱视频在线免费观看| 老司机亚洲免费影院| 老司机靠b影院| 亚洲午夜理论影院| 亚洲欧美精品综合一区二区三区| 麻豆一二三区av精品| 亚洲专区字幕在线| 丰满饥渴人妻一区二区三| 丁香欧美五月| 在线天堂中文资源库| 母亲3免费完整高清在线观看| 99久久综合精品五月天人人| 免费在线观看视频国产中文字幕亚洲| 欧美一区二区精品小视频在线| 久久精品影院6| 亚洲专区国产一区二区| 午夜日韩欧美国产| 亚洲精品在线美女| 在线永久观看黄色视频| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 97人妻天天添夜夜摸| 自线自在国产av| 亚洲性夜色夜夜综合| 大香蕉久久成人网| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 久久人人精品亚洲av| 久久久久久久久久久久大奶| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 欧美av亚洲av综合av国产av| 久久人妻福利社区极品人妻图片| 免费搜索国产男女视频| 久久精品亚洲av国产电影网| 免费在线观看亚洲国产| 丰满迷人的少妇在线观看| 欧美中文日本在线观看视频| 亚洲国产中文字幕在线视频| 看免费av毛片| 精品国产超薄肉色丝袜足j| 一级a爱视频在线免费观看| www.自偷自拍.com| 精品人妻1区二区| 国产亚洲欧美在线一区二区| av在线天堂中文字幕 | 亚洲中文字幕日韩| 亚洲国产毛片av蜜桃av| 亚洲第一青青草原| 久久99一区二区三区| 黄色片一级片一级黄色片| 制服人妻中文乱码| 老司机在亚洲福利影院| 日韩精品中文字幕看吧| 99久久人妻综合| 亚洲中文av在线| 久久性视频一级片| 久9热在线精品视频| 大码成人一级视频| 免费一级毛片在线播放高清视频 | 丁香六月欧美| 亚洲av成人一区二区三| 黑人操中国人逼视频| 又黄又爽又免费观看的视频| 久久人人97超碰香蕉20202| 大型黄色视频在线免费观看| 日韩欧美三级三区| 亚洲七黄色美女视频| 一区在线观看完整版| 国产成人啪精品午夜网站| 真人做人爱边吃奶动态| 精品一区二区三区视频在线观看免费 | 国产亚洲av高清不卡| 窝窝影院91人妻| 亚洲欧美精品综合一区二区三区| 亚洲美女黄片视频| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 国产成人av激情在线播放| 免费日韩欧美在线观看| 亚洲专区中文字幕在线| 天天添夜夜摸| 国产精品久久久久久人妻精品电影| 性欧美人与动物交配| 日韩大尺度精品在线看网址 | 12—13女人毛片做爰片一| 亚洲精品久久成人aⅴ小说| 欧美激情高清一区二区三区| 如日韩欧美国产精品一区二区三区| 亚洲av熟女| 性少妇av在线| 一区二区三区国产精品乱码| 日本免费一区二区三区高清不卡 | 十分钟在线观看高清视频www| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 亚洲精品国产区一区二| 精品国产美女av久久久久小说| 成在线人永久免费视频| 久9热在线精品视频| 99久久国产精品久久久| 最新美女视频免费是黄的| 欧美日韩福利视频一区二区| 久久伊人香网站| 欧美人与性动交α欧美软件| 亚洲成人精品中文字幕电影 | 成年人黄色毛片网站| 国产片内射在线| 免费日韩欧美在线观看| 一区福利在线观看| 极品教师在线免费播放| 真人一进一出gif抽搐免费| 99re在线观看精品视频| 99国产精品一区二区三区| 久久人人精品亚洲av| 国产精品日韩av在线免费观看 | 亚洲一区二区三区不卡视频| 亚洲三区欧美一区| 久久亚洲精品不卡| 久久亚洲真实| 国产精品 欧美亚洲| 欧美精品亚洲一区二区| 精品国产美女av久久久久小说| 久久性视频一级片| 99riav亚洲国产免费| 黄色毛片三级朝国网站| 午夜福利欧美成人| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 操美女的视频在线观看| 久久午夜综合久久蜜桃| 国产成人啪精品午夜网站| 久久久国产成人精品二区 | www.www免费av| 久久亚洲真实| 老鸭窝网址在线观看| 性色av乱码一区二区三区2| 欧美黄色片欧美黄色片| av欧美777| av天堂在线播放| 国产精品亚洲一级av第二区| 国产精品野战在线观看 | 搡老乐熟女国产| 美女 人体艺术 gogo| 日韩大码丰满熟妇| 99精品欧美一区二区三区四区| 日韩中文字幕欧美一区二区| 精品日产1卡2卡| 欧美精品一区二区免费开放| 亚洲精品中文字幕一二三四区| 亚洲熟妇熟女久久| 久久精品aⅴ一区二区三区四区| ponron亚洲| 天堂俺去俺来也www色官网| 91在线观看av| 国产精品 欧美亚洲| 大码成人一级视频| 欧美丝袜亚洲另类 | 久久午夜亚洲精品久久| 亚洲aⅴ乱码一区二区在线播放 | 交换朋友夫妻互换小说| 叶爱在线成人免费视频播放| 美女高潮喷水抽搐中文字幕| 久久狼人影院| 精品人妻1区二区| 久久久久久人人人人人| 日本黄色视频三级网站网址| 少妇 在线观看| 欧美激情久久久久久爽电影 | 999精品在线视频| 欧美精品啪啪一区二区三区| 在线观看舔阴道视频| 窝窝影院91人妻| 精品日产1卡2卡| 成人国语在线视频| 日本撒尿小便嘘嘘汇集6| 久久精品91无色码中文字幕| 51午夜福利影视在线观看| 欧美激情极品国产一区二区三区| 99精品欧美一区二区三区四区| 国产成人系列免费观看| 欧美一区二区精品小视频在线| 色哟哟哟哟哟哟| 日韩中文字幕欧美一区二区| 亚洲精品久久午夜乱码| 桃色一区二区三区在线观看| 免费看十八禁软件| 搡老岳熟女国产| 97人妻天天添夜夜摸| 黄色a级毛片大全视频| 黑人猛操日本美女一级片| 丰满人妻熟妇乱又伦精品不卡| www国产在线视频色| 国产亚洲欧美98| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 国产成人av教育| 国产精品亚洲一级av第二区| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区| 亚洲精品一二三| 欧美成人免费av一区二区三区| 999久久久精品免费观看国产| 亚洲激情在线av| 久9热在线精品视频| 看片在线看免费视频| 另类亚洲欧美激情| 国产精品美女特级片免费视频播放器 | 99热只有精品国产| 性少妇av在线| 九色亚洲精品在线播放| 在线观看免费视频网站a站| 亚洲专区中文字幕在线| av有码第一页| 国产精品一区二区在线不卡| 国产高清视频在线播放一区| 最近最新中文字幕大全免费视频| 制服人妻中文乱码| 91成人精品电影| 午夜精品久久久久久毛片777| 超碰成人久久| 国产免费现黄频在线看| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 男女午夜视频在线观看| 亚洲人成电影观看| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 久久亚洲真实| 欧美性长视频在线观看| 亚洲精品一二三| 99久久精品国产亚洲精品| 亚洲国产欧美日韩在线播放| 交换朋友夫妻互换小说| 亚洲av成人一区二区三| 久久亚洲精品不卡| 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 色综合站精品国产| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 日韩av在线大香蕉| 午夜日韩欧美国产| 亚洲成人国产一区在线观看| 久久久国产一区二区| 精品一区二区三区视频在线观看免费 | 91大片在线观看| 国产亚洲精品第一综合不卡| 久久人妻熟女aⅴ| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区中文字幕在线| 色综合站精品国产| 亚洲欧美日韩高清在线视频| 国产真人三级小视频在线观看| 成人国语在线视频| 亚洲专区中文字幕在线| 视频区图区小说| 夜夜看夜夜爽夜夜摸 | 亚洲人成电影观看| 亚洲一区二区三区不卡视频| 日本免费a在线| 亚洲在线自拍视频| 欧美日本中文国产一区发布| 99精品在免费线老司机午夜| 精品国产美女av久久久久小说| 97超级碰碰碰精品色视频在线观看| 国产欧美日韩一区二区三区在线| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 两性夫妻黄色片| 免费在线观看影片大全网站| 交换朋友夫妻互换小说| 美女国产高潮福利片在线看| 丝袜美腿诱惑在线| 日日夜夜操网爽| 成人亚洲精品一区在线观看| 怎么达到女性高潮| 国产精品二区激情视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲激情在线av| 国产精品一区二区免费欧美| 中文字幕人妻丝袜一区二区| 国产激情欧美一区二区| 99国产精品免费福利视频| 在线国产一区二区在线|