• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field*

    2021-05-24 02:22:56ChangChen陳暢YiZhang張燚ZhiGuoWang汪之國QiYuanJiang江奇淵HuiLuo羅暉andKaiYongYang楊開勇
    Chinese Physics B 2021年5期

    Chang Chen(陳暢), Yi Zhang(張燚), Zhi-Guo Wang(汪之國),?, Qi-Yuan Jiang(江奇淵),Hui Luo(羅暉), and Kai-Yong Yang(楊開勇)

    1College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    2Interdisciplinary Center for Quantum Information,National University of Defense Technology,Changsha 410073,China

    Keywords: alkali-metal atomic magnetometer,longitudinal carrier magnetic field,linear-response capacity

    1. Introduction

    Alkali-metal atomic (AMA) magnetometers[1,2]using parametric modulation can achieve ultrahigh sensitivity in the order of nT–fT, due to the advantages of the synchronous demodulation techniques and suppression of low-frequency flicker noise. They have been demonstrated for the detection of biomagnetic signals from the human body,[3]magnetic resonance imaging (MRI),[4]fundamental physics study,[5]the detection of low-field nuclear magnetic resonance (NMR)[6]and other applications. The AMA magnetometer employing an oscillating carrier magnetic field along the z-axis as the longitudinal direction, was first devised in Ref. [7] and used to detect3He nuclear polarization.[8]Later, by applying a static magnetic field and optical pumping light along the same direction of the carrier field, this magnetometer technique was developed and used in spin-exchange[9,10]NMR oscillators or gyroscopes,[11,12]as a vector magnetometer that is maximally sensitive to the low-frequency and very weak magnetic fields BTin the x–y plane caused by the processing nuclear magnetization vector in the alkali vapor cell, and insensitive to Bzalong the rotation axis of the gyroscopes.[13]

    Following the derivations in Ref.[7],the analytical models presented in Ref.[12]describe the rubidium magnetometer signal that is only proportional to small magnetic fields Bxand Bywithin the linewidth of the rubidium magnetization vector, because it is assumed that the longitudinal component of the rubidium magnetization Mzis constant. Reference [14]demonstrated a two-transverse axis atomic magnetometer by utilizing parametric modulation of the z-magnetic field and operating in the spin-exchange relaxation-free regime, under the condition that they also approximated the z-component of the Rb atomic spin polarization Szis S0, which is determined by optical pumping and any magnetic-field-induced changes can be neglected. References [12,14] mainly considered the sensitivity of the magnetometer and they have done little research on its linear-response characteristics. Reference [15]demonstrated a three-axis atomic magnetometer employing longitudinal field modulation,which can not only measure the transverse components, but the longitudinal z-component of the external magnetic field,by extraction from the modulation frequency that tracks the resonance frequency. They modified the expression of the quasi-static magnetic field Btotto explain the reducing orthogonality of the magnetometer for larger transverse fields. However, there are considerable differences between their modified theoretical curve and experimental curve of the magnetometer response when Bxand Byare larger than 100 nT. In practice, we cannot ignore that the longitudinal magnetization Mzwill be influenced by and vary with the magnetic fields BTin the x–y plane, especially for a large measuring range.

    In this work, we study the problem of how large magnetic fields in the x–y plane influence the longitudinal magnetization Mzand study the linear-measurement characteristics of the magnetometer within a relatively large range of BT.We give a detailed and rigorous theoretical derivation by using the perturbation-iteration method to obtain a modified analytical model of this magnetometer. The simulation experiment results are presented to verify our theoretical model.This work will help us to find the factors that influence the linearresponse capacity of the magnetometer and configure proper working conditions for a practical measuring system.

    2. System setup

    A schematic of a typical apparatus of this type of AMA magnetometer is shown in Fig. 1. The sample cell made of glass is placed in magnetic shields, containing a few milligrams of alkali metal and some buffer gas or noble gas. The cell is heated by hot air or non-magnetic electronic heaters driven by high-frequency AC currents, to ensure sufficient number density of alkali-metal atoms.The sum of all of the individual alkali spins in the vapor cell can be represented by the macroscopic magnetization vector M =(Mx,My,Mz) in the xyz-laboratory coordinate system.Uniform static field and carrier field are applied along the z-axis, Bz=B0+Bccos(ωct).A beam of strong circularly polarized laser tuned to an atomic resonance is applied to transmit through the vapor cell along the z-axis,to polarize the alkali spins by optical pumping.[16]A beam of weak linearly polarized laser tuned near an atomic resonance is applied to transmit through the vapor cell along the x-axis and detected by a photodetector, to sense the xcomponent of the alkali spin polarization Mxby the Faraday optical rotation method.[17]The output of the detector is sent to a signal processing system to extract the Bxand Byinformation from the modulated signal Mx.

    Fig.1. Schematic of a typical apparatus of an alkali-metal atomic magnetometer employing a longitudinal carrier magnetic field.

    3. Theoretical derivation

    When the magnetization vector M interacts with the external magnetic fields B=(Bx,By,Bz)and the optical pumping light,the dynamics of the magnetization can be described by the Bloch-like equation[7]

    where,x,y and z are the unit vectors along the x,y and z axis,respectively;γ is the gyro-magnetic ratio of the alkali spin;M0is the longitudinal z-component of the magnetization of alkali spins in the equilibrium state when optical pumping is on, τ1and τ2are the longitudinal relaxation time and the transverse relaxation time of alkali spins, respectively, which are the total time constants that include both the optical pumping and relaxation effects.[18]Under normal conditions,optical pumping is much stronger than the relaxation, and τ1and τ2are in the order ofμs–ms.

    Assuming that the slowly varying magnetic fields to be measured are along the x-axis, By= 0. By setting M+=Mx+iMy,equation(1)now can be written as

    where ω0=γB0and ω1=γBc.

    When ωc?1/τ2(the frequency of the modulation field is much higher than the spin relaxation rate), magnetization M+cannot respond to the modulation field synchronously and will oscillate at various harmonics of modulation frequency ωc(i.e.,M+contains high-frequency components).

    3.1. The fundamental analytical model

    First of all, we give a brief introduction of the existing fundamental model describing the working principle of this type of AMA magnetometer.

    It can be seen that Mxis composed of the various harmonics of modulation, where each signal of pωcresonates at ω0+nωc=0 and the width is Δω0=2/τ2.

    The fundamental model describing the magnetometer signal given by Eq.(7a)shows that,under the condition that the amplitude of the measured magnetic field Bxis very small,the longitudinal magnetization Mz≈M0.Therefore,the amplitude of the magnetometer signal δMxis proportional to the magnetic fields Bx.Hence,Bxcan be extracted from the δMxsignal by in-phase or quadrature demodulation at harmonic pωc.

    3.2. The modified analytical model

    Now,we apply the perturbation-iteration method to solve Eqs.(2a)and(2b).Assuming that M+and Mzcan be expanded as a power series of Bx,let

    In Eq.(2b),let Bx=0,and we have

    We consider the steady-state solution, setting Eq. (9)equal to zero,and we obtain

    For the same reason as in Subsection 3.1, the quantityin Eq.(11)can be treated as a constant quantity compared to the modulation fields. Under these conditions,by the same method as in Subsection 3.1,we can obtain the analytical

    where δMyis the modulation part.

    By the same method as in Subsection 3.2.3, substituting the DC term of Myin Eq.(26)and Mzin Eq.(25)into Eq.(2b),we find that the resulting equation satisfies the conditions for a steady-state solution exactly,

    Therefore, we are assured that Eq. (25) can be used as an approximate steady-state solution for Mzunder the condition τ1τ2γ2·J ≥1. Finally,we obtain the general analytical model describing the relationship between Mzand Bx.It can be seen that when the amplitude of the measured magnetic fields Bxis large enough,the value of Mzwill be significantly influenced by Bx;as the amplitude of Bxincreases,the value of Mzdecreases.

    Substituting the solution for Mzof Eq.(25)into Eq.(2a),we can solve the equation and obtain the magnetometer signal Mxand the modulation part δMxwhich is given by

    According to Eq.(28),the linear-measurement characteristics of the magnetometer have relationships with these working conditions:the amplitude and frequency of the carrier field determining the value of J, longitudinal spin relaxation time τ1and transverse spin relaxation time τ2;the carrier fields can also influence the spin relaxation time.[19]In order to minimize the influence of a large Bxon the value of the modification factor,the smaller the values of J and τ1τ2,the higher the linear-response capacity of the magnetometer.

    4. Numerical simulation and discussion

    To demonstrate the validity of our theoretical modification of Eq.(28),we carry out numerical simulation according to Bloch Eq.(1)with our own simulation system constructed by LabVIEW software. The block diagram of the simulation system is shown in Fig. 2. The values of the parameters can be set by inputting to Bloch Equation Solver in the simulation system, incorporating the magnetic fields applied along three axes,the longitudinal and transverse spin relaxation time. The Bloch Equation Solver outputs the values of Mx, Myand Mzof alkali spins. After being amplified in the gain module, the Mxsignal is multiplied by the reference signal of longitudinal carrier fields with a certain phase delay and then processed in the low-pass filter to generate the in-phase or quadrature demodulation results.

    Fig.2. Block diagram of the simulation system.

    The main parameters are as follows: B0=10 μT, γ =2π×3499 Hz/μT (the alkali metal is133Cs). We consider quadrature demodulating the first (p = 1) harmonic of the magnetometer signal Mxand other parameters for different design examples are given in the specific simulations:

    4.1. The n=–1 modulation for different amplitudes of the carrier magnetic field

    We set ωc=ω0=γB0; τ1=200 μs, τ2=100 μs. In Eq.(28),as ωc?1/τ2,and the resonance condition ω0?ωc=0 is satisfied for certain parametric modulation, we can only consider the resonances at n near ?1. The condition that ωc?1/τ1is also satisfied. The parameter of Bcwill be assigned different values. We measure the magnetometer signal response and longitudinal magnetization as the amplitude of the static field Bxis scanned.

    The simulation results and corresponding approximate results of the modified analytic solution are shown in Fig.3.It is clear that the theoretical results agree well with the simulation results.

    Fig. 3. Magnetometer output for n=?1 modulation under different conditions of amplitudes of the carrier magnetic field:(a)the amplitude of magnetometer response;(b)the steady state of longitudinal magnetization Mz. “Sim.” and“App.” in the figure denote numerical simulation and approximate analytical results,respectively.

    Fig. 4. Functions combined according to Eqs. (30) and (32) plotted against β =Bc/B0.

    It can be seen that the relative error depends on the relaxation time τ1τ2,the actual magnetic fields to be measured Bx,and the z-axis magnetic fields Bc/B0. The larger the τ1τ2and Bx, the larger the measurement error. According to Eq. (31),we can plot the curves that the relative errors vary with Bc/B0in the range of (0, 0.9), under different conditions of amplitudes of the actual magnetic fields Bx,as shown in Fig.5.

    Figure 5 clearly indicates that when Bc/B0is greater than a certain value,the error will exceed a certain upper limit and we should apply the modified analytical model to modify the measurement results, in order to meet the required accuracy for the magnetometer.

    Fig. 5. Relative errors vary with Bc/B0 under different conditions of amplitudes of the actual magnetic fields Bx.

    4.2. The n=–2 modulation for different amplitudes of the carrier magnetic field

    Fig.6. Magnetometer output for n=?2 modulation under different conditions of amplitudes of the carrier magnetic field: (a) the amplitude of magnetometer response; (b) the steady state of longitudinal magnetization Mz. “Sim.” and“App.” in the figure denote numerical simulation and approximate analytical results,respectively.

    4.3. The n = –1 modulation for different longitudinal and transverse relaxation time

    Setting ωc=ω0=γB0;Bc/B0=1.5;the parameters of τ1and τ2will be assigned different values and the condition that ωc?1/τ1, ωc?1/τ2should be satisfied for all examples.We measure the magnetometer signal response and longitudinal magnetization as the amplitude of the static field Bxis scanned.

    The simulation results and corresponding approximate results of the modified analytic solution are shown in Fig.7. It is clear that the theoretical results agree well with the simulation results.According to Eq.(30)and Fig.7,it can be seen that the smaller the spin relaxation time,the smaller the signal magnitude but the higher the linear-measurement capacity. When choosing proper parameters for the carrier magnetic fields and spin relaxation time, we should consider the fact that Bcwill also influence the spin relaxation.[19]Furthermore,if the precise values of τ2and other working conditions are known,we can obtain the value of τ1by fitting the magnetometer response curve with our modified theoretical model, which provides a new method to measure the longitudinal spin relaxation time τ1.

    Fig.7. Magnetometer output for n=?1 modulation under different conditions of longitudinal and transverse relaxation time: (a) the amplitude of magnetometer response; (b) the steady state of longitudinal magnetization Mz. “Sim.” and“App.” in the figure denote numerical simulation and approximate analytical results,respectively.

    4.4. The n=–1 modulation for different angular frequency of the rotation field

    As already noted in the beginning, NMR detection in a spin-exchange NMR oscillator can be realized by using the alkali atoms as an integrated magnetometer.In NMR oscillators,by applying a“drive”field that rotates in the same direction as the nuclear spins and at a frequency close to their NMR frequency,the nuclear spins can be induced to precess about the z-axis. Assuming that B1rotates about the z-axis with amplitude B1and angular frequency ωr, the components of the rotation field along x-axis and y-axis are

    Then, a rotating coordinate system x′y′z is introduced to simplify the analysis,as shown in Fig.8. The rotating coordinates are defined by the condition that x′-axis rotates in phase with B1about the z-axis and y′-axis rotates in quadrature. The rotation field is the equivalent of a static field in the rotating coordinate system.

    Fig.8. xyz: laboratory coordinate system and x′y′z: rotating coordinate system.

    Therefore,we have the relations

    Substituting Eqs.(33a)and(33b)into Bloch-like Eq.(1),and using Eqs. (34a) and (34b), the following equations are obtained in the rotating coordinate frame:

    where M+′=Mx′+iMy′.

    Comparing Eqs. (35a) and (35b) and Eqs. (2a) and (2b),using the same method to derive the solutions to Eqs.(2a)and(2b),we can obtain the solutions to Eqs.(35a)and(35b).Considering the quadrature demodulation at harmonic pωc, we have

    where

    According to Eq.(34a),we can obtain the magnetometer signal

    Equation (37) shows that the angular frequency ωrnot only influences the amplitude-frequency response,[20]but the linear-measurement characteristics of the magnetometer when measuring the rotation field.

    Then, we conduct the simulation experiments to verify the modified analytical model of Eq. (37). We consider the first (p = 1) harmonics of the modulation and observe the n=?1 modulation,ωc=ω0=γB0,and we set Bc/B0=1.5,τ1=200 μs, τ2=100 μs. As ωr?ωc, ωc?1/τ2, we can only consider the resonances at n near ?1. The condition that ωc?1/τ1is also satisfied. The parameter of ωrwill be assigned different values. We measure the magnetometer signal response and longitudinal magnetization as the amplitude of the rotation field B1is scanned. The simulation results and corresponding approximate results of the modified analytical solution are shown in Fig. 9. It is clear that the theoretical results agree well with the simulation results.

    Fig.9. Magnetometer output for n=?1 modulation under different conditions of angular frequency of the rotation field: (a) the amplitude of magnetometer response; (b) the steady state of longitudinal magnetization Mz. “Sim.” and“App.” in the figure denote numerical simulation and approximate analytical results,respectively.

    Combining Eq. (38) and Fig. 9, it can be clearly seen that the higher the angular frequency ωrof the rotation field,the smaller the signal magnitude but the higher the linearmeasurement capacity of the magnetometer.

    5. Conclusion

    In summary,for the AMA magnetometer employing longitudinal carrier field, the amplitude of the magnetometer response is not proportional to the measured magnetic fields Bxwhen Bxis large, because the longitudinal magnetization Mzwill be influenced by and vary with Bx. By theoretical derivation using the perturbation-iteration method,we present a modified theoretical model to more definitely analyze the practical linear-response characteristics of the magnetometer,which are determined by different working conditions. For the amplitude Bcand frequency ωcof the carrier field, the spin relaxation time τ1and τ2, and the rotation frequency ωrof the measured transverse fields, the smaller the values of|Jn(nBc/B0)|(when ωc=ω0/n)and τ1τ2,and the higher the rotation frequency ωr,leading to higher linear-response capacity of the magnetometer. The larger amplitudes of the actual magnetic fields Bxto be measured,the larger the measurement error based on the existing fundamental model.

    Hence, we can use this modified model to modify the measurement results to obtain more accurate values of the actual Bxand to optimize the working conditions and choose proper system parameters to achieve the desired performance for practical magnetometer systems. This modified theoretical model to describe the linear-response curves also provides a new method to measure the longitudinal relaxation time τ1for the alkali metal magnetometer.

    男女午夜视频在线观看| a级片在线免费高清观看视频| 国产免费一区二区三区四区乱码| xxx大片免费视频| 国产成人免费观看mmmm| 欧美人与性动交α欧美精品济南到 | 欧美国产精品一级二级三级| 亚洲熟女精品中文字幕| 成人毛片60女人毛片免费| 久久久久久久久久人人人人人人| 两个人免费观看高清视频| 国产色婷婷99| 国产淫语在线视频| 久久久久久久大尺度免费视频| 一二三四在线观看免费中文在| 中文字幕精品免费在线观看视频| 欧美 亚洲 国产 日韩一| 久久97久久精品| 国产综合精华液| 青春草亚洲视频在线观看| 国产男人的电影天堂91| 日韩大片免费观看网站| 哪个播放器可以免费观看大片| 深夜精品福利| 婷婷色av中文字幕| av国产久精品久网站免费入址| 久久精品国产自在天天线| 午夜福利,免费看| 男人添女人高潮全过程视频| 韩国精品一区二区三区| 狂野欧美激情性bbbbbb| 国产精品嫩草影院av在线观看| 亚洲成人手机| 亚洲精品av麻豆狂野| 免费不卡的大黄色大毛片视频在线观看| 日韩一卡2卡3卡4卡2021年| 国产欧美日韩综合在线一区二区| 欧美日韩成人在线一区二区| 男女啪啪激烈高潮av片| 国产有黄有色有爽视频| 精品国产一区二区三区久久久樱花| 亚洲第一青青草原| 亚洲,欧美精品.| kizo精华| 亚洲,欧美精品.| 99国产精品免费福利视频| 中文字幕人妻丝袜一区二区 | 波多野结衣av一区二区av| 黄色 视频免费看| 欧美 日韩 精品 国产| 国产精品久久久久久精品古装| 免费看av在线观看网站| 亚洲三区欧美一区| 韩国av在线不卡| a 毛片基地| 国产成人aa在线观看| 国产在视频线精品| 精品久久久精品久久久| 久久久久久久精品精品| 在线观看美女被高潮喷水网站| 高清av免费在线| 国产精品免费大片| 欧美bdsm另类| 中文字幕人妻熟女乱码| 成人手机av| 如日韩欧美国产精品一区二区三区| 国产女主播在线喷水免费视频网站| 天天操日日干夜夜撸| 老鸭窝网址在线观看| 电影成人av| 免费高清在线观看视频在线观看| 国产精品国产三级专区第一集| 久久久亚洲精品成人影院| 久久久久久久久久久久大奶| 天堂中文最新版在线下载| 久久精品亚洲av国产电影网| 18禁国产床啪视频网站| 亚洲欧美成人精品一区二区| 秋霞伦理黄片| 成人午夜精彩视频在线观看| 日本欧美视频一区| 秋霞伦理黄片| 精品人妻熟女毛片av久久网站| 老汉色av国产亚洲站长工具| 日日啪夜夜爽| 国产精品久久久久久精品古装| 国产精品一二三区在线看| 亚洲欧美精品综合一区二区三区 | 老熟女久久久| 久久久久久久大尺度免费视频| 久久久国产欧美日韩av| 国产日韩欧美在线精品| 欧美精品高潮呻吟av久久| 美女中出高潮动态图| 80岁老熟妇乱子伦牲交| 不卡视频在线观看欧美| 成人亚洲欧美一区二区av| 最近最新中文字幕大全免费视频 | 久久国产亚洲av麻豆专区| 国产精品久久久久久av不卡| av卡一久久| a 毛片基地| 中文字幕亚洲精品专区| 女人高潮潮喷娇喘18禁视频| 精品亚洲乱码少妇综合久久| 极品少妇高潮喷水抽搐| 丝袜喷水一区| 80岁老熟妇乱子伦牲交| 老汉色av国产亚洲站长工具| 久久女婷五月综合色啪小说| 国产成人精品久久久久久| 99国产综合亚洲精品| 亚洲欧美一区二区三区黑人 | 午夜老司机福利剧场| 卡戴珊不雅视频在线播放| 啦啦啦中文免费视频观看日本| 性少妇av在线| 日本vs欧美在线观看视频| 18禁裸乳无遮挡动漫免费视频| 午夜久久久在线观看| 精品第一国产精品| 国产精品 欧美亚洲| 国产综合精华液| 欧美日韩国产mv在线观看视频| 丝袜脚勾引网站| 亚洲三区欧美一区| 中文字幕亚洲精品专区| 自线自在国产av| 精品视频人人做人人爽| 午夜免费男女啪啪视频观看| 国产精品.久久久| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区91 | 高清视频免费观看一区二区| 国产精品一区二区在线观看99| a级毛片在线看网站| 国产 一区精品| 亚洲一级一片aⅴ在线观看| 国产精品欧美亚洲77777| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 久久人人爽人人片av| 在线亚洲精品国产二区图片欧美| 日韩制服丝袜自拍偷拍| 日本欧美视频一区| 深夜精品福利| 夫妻性生交免费视频一级片| 久久99一区二区三区| 国产麻豆69| 日韩av免费高清视频| av在线播放精品| 丰满少妇做爰视频| 最近2019中文字幕mv第一页| 欧美 日韩 精品 国产| 国产xxxxx性猛交| 秋霞伦理黄片| 国产在线免费精品| 叶爱在线成人免费视频播放| 2022亚洲国产成人精品| 精品国产乱码久久久久久小说| 欧美中文综合在线视频| 国产1区2区3区精品| www日本在线高清视频| 在线观看www视频免费| av在线老鸭窝| 亚洲成av片中文字幕在线观看 | 亚洲av福利一区| 中国国产av一级| 日日摸夜夜添夜夜爱| 女性被躁到高潮视频| 三级国产精品片| 乱人伦中国视频| 蜜桃在线观看..| 夫妻性生交免费视频一级片| 日韩一本色道免费dvd| 26uuu在线亚洲综合色| 免费观看av网站的网址| 电影成人av| 亚洲欧洲国产日韩| 色哟哟·www| 国产av国产精品国产| 亚洲欧美一区二区三区国产| 久久人人97超碰香蕉20202| 男女无遮挡免费网站观看| 成人亚洲精品一区在线观看| 亚洲精品aⅴ在线观看| 欧美bdsm另类| 一区二区av电影网| 欧美少妇被猛烈插入视频| 中国国产av一级| 超碰成人久久| 建设人人有责人人尽责人人享有的| 在线观看人妻少妇| 在线天堂中文资源库| 国产福利在线免费观看视频| 看非洲黑人一级黄片| 激情五月婷婷亚洲| videossex国产| 丝袜在线中文字幕| 精品一品国产午夜福利视频| 18禁国产床啪视频网站| 亚洲av日韩在线播放| 哪个播放器可以免费观看大片| 多毛熟女@视频| 又黄又粗又硬又大视频| 国产精品蜜桃在线观看| 亚洲视频免费观看视频| 欧美精品一区二区大全| 亚洲av男天堂| xxxhd国产人妻xxx| 在现免费观看毛片| 久久精品国产亚洲av天美| 国产精品国产av在线观看| 免费观看在线日韩| 亚洲av成人精品一二三区| 9色porny在线观看| 中文乱码字字幕精品一区二区三区| 日韩制服丝袜自拍偷拍| 日本黄色日本黄色录像| 母亲3免费完整高清在线观看 | 亚洲 欧美一区二区三区| 亚洲欧美日韩另类电影网站| 日韩精品免费视频一区二区三区| 欧美日韩综合久久久久久| 欧美日韩视频精品一区| av一本久久久久| 五月天丁香电影| 美女国产高潮福利片在线看| 激情视频va一区二区三区| 在线观看人妻少妇| 看十八女毛片水多多多| 捣出白浆h1v1| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区黑人 | 久久午夜福利片| 韩国高清视频一区二区三区| 秋霞伦理黄片| 岛国毛片在线播放| 亚洲熟女精品中文字幕| 亚洲成国产人片在线观看| 免费久久久久久久精品成人欧美视频| 久久午夜福利片| 亚洲成人一二三区av| 日韩欧美一区视频在线观看| 国产在线免费精品| av免费观看日本| 天美传媒精品一区二区| 国产无遮挡羞羞视频在线观看| 亚洲精品久久成人aⅴ小说| 国产男女超爽视频在线观看| 久久精品亚洲av国产电影网| 男女高潮啪啪啪动态图| 国产 精品1| 国产日韩欧美亚洲二区| 亚洲国产日韩一区二区| 日韩av在线免费看完整版不卡| xxx大片免费视频| 男男h啪啪无遮挡| 欧美 日韩 精品 国产| 人人妻人人爽人人添夜夜欢视频| 91午夜精品亚洲一区二区三区| 777米奇影视久久| 最近手机中文字幕大全| 亚洲欧美精品综合一区二区三区 | 久热这里只有精品99| 国产免费现黄频在线看| 午夜日本视频在线| 亚洲精品自拍成人| 亚洲成国产人片在线观看| 一区二区三区乱码不卡18| 蜜桃国产av成人99| 午夜福利一区二区在线看| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久国产亚洲av麻豆专区| 欧美 日韩 精品 国产| 男女无遮挡免费网站观看| 黑丝袜美女国产一区| 久久99蜜桃精品久久| 91久久精品国产一区二区三区| 亚洲欧美一区二区三区国产| 亚洲精品久久成人aⅴ小说| 91午夜精品亚洲一区二区三区| www.精华液| 777久久人妻少妇嫩草av网站| tube8黄色片| 精品国产露脸久久av麻豆| 成人国产麻豆网| 看免费av毛片| 18禁观看日本| 免费高清在线观看日韩| 搡女人真爽免费视频火全软件| 91精品伊人久久大香线蕉| 春色校园在线视频观看| 日韩 亚洲 欧美在线| 两个人免费观看高清视频| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 亚洲欧美日韩另类电影网站| 亚洲精品久久成人aⅴ小说| 亚洲第一区二区三区不卡| av又黄又爽大尺度在线免费看| 高清欧美精品videossex| 亚洲少妇的诱惑av| 一级毛片黄色毛片免费观看视频| 精品国产一区二区久久| 亚洲国产精品一区三区| 国产精品久久久久久精品电影小说| h视频一区二区三区| 亚洲激情五月婷婷啪啪| av一本久久久久| 国产 精品1| 在线观看一区二区三区激情| 午夜福利在线观看免费完整高清在| 一级毛片 在线播放| 免费在线观看视频国产中文字幕亚洲 | 久久99热这里只频精品6学生| 精品国产超薄肉色丝袜足j| 岛国毛片在线播放| 亚洲av男天堂| 曰老女人黄片| 欧美+日韩+精品| 五月伊人婷婷丁香| 久久精品国产综合久久久| 国产免费又黄又爽又色| 午夜福利网站1000一区二区三区| av天堂久久9| 国产黄色视频一区二区在线观看| 两个人免费观看高清视频| 中文欧美无线码| 亚洲,一卡二卡三卡| 十八禁高潮呻吟视频| 亚洲第一区二区三区不卡| 久久久精品94久久精品| 亚洲av综合色区一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美最新免费一区二区三区| 丝袜人妻中文字幕| 成人漫画全彩无遮挡| 晚上一个人看的免费电影| 夫妻性生交免费视频一级片| 亚洲欧美成人综合另类久久久| 99久久精品国产国产毛片| 亚洲国产看品久久| 久久99蜜桃精品久久| 国产成人a∨麻豆精品| 丝袜喷水一区| 天天操日日干夜夜撸| 国产精品一区二区在线不卡| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| xxx大片免费视频| 麻豆乱淫一区二区| 九草在线视频观看| 看非洲黑人一级黄片| 日本欧美国产在线视频| 亚洲精华国产精华液的使用体验| 成人手机av| 日本爱情动作片www.在线观看| 女的被弄到高潮叫床怎么办| 夫妻性生交免费视频一级片| 精品久久蜜臀av无| 亚洲国产最新在线播放| 精品国产一区二区三区四区第35| 男的添女的下面高潮视频| 男女边吃奶边做爰视频| 亚洲成人一二三区av| 国产精品一区二区在线观看99| 又粗又硬又长又爽又黄的视频| 亚洲精品成人av观看孕妇| 人妻 亚洲 视频| 五月伊人婷婷丁香| 精品久久久精品久久久| 秋霞伦理黄片| 99热国产这里只有精品6| 大片免费播放器 马上看| 国产日韩欧美在线精品| 国产黄频视频在线观看| 午夜日韩欧美国产| 久久国产精品男人的天堂亚洲| 久久精品亚洲av国产电影网| 国产免费视频播放在线视频| 美女中出高潮动态图| 熟女电影av网| 亚洲av欧美aⅴ国产| 国产成人一区二区在线| 天堂8中文在线网| 飞空精品影院首页| 国产极品天堂在线| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 两个人免费观看高清视频| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| 在线观看一区二区三区激情| 只有这里有精品99| 亚洲综合精品二区| kizo精华| 精品久久久久久电影网| 美女国产高潮福利片在线看| 国产在线视频一区二区| 十分钟在线观看高清视频www| 秋霞在线观看毛片| 亚洲经典国产精华液单| 国产亚洲欧美精品永久| 国产一级毛片在线| 国产成人精品久久久久久| 观看美女的网站| 日韩视频在线欧美| 黄片无遮挡物在线观看| 一级毛片我不卡| 欧美黄色片欧美黄色片| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡 | 少妇被粗大的猛进出69影院| 亚洲天堂av无毛| av不卡在线播放| 欧美激情 高清一区二区三区| 精品一区二区三区四区五区乱码 | 久久av网站| 亚洲国产av影院在线观看| 国产黄色免费在线视频| 国产成人av激情在线播放| 尾随美女入室| www.熟女人妻精品国产| 久久婷婷青草| 精品午夜福利在线看| 97在线人人人人妻| 久久精品久久久久久噜噜老黄| 成人二区视频| 日韩av在线免费看完整版不卡| www日本在线高清视频| 国产高清不卡午夜福利| 在线观看免费高清a一片| 人妻一区二区av| 国产片内射在线| 美女午夜性视频免费| 美女国产视频在线观看| 三上悠亚av全集在线观看| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 国产在线一区二区三区精| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 国产精品香港三级国产av潘金莲 | 欧美av亚洲av综合av国产av | 成人毛片60女人毛片免费| 日韩成人av中文字幕在线观看| 午夜福利乱码中文字幕| 久久精品久久久久久噜噜老黄| 在线免费观看不下载黄p国产| 一级毛片黄色毛片免费观看视频| 国产日韩一区二区三区精品不卡| 欧美中文综合在线视频| 色婷婷av一区二区三区视频| a级毛片黄视频| 日韩熟女老妇一区二区性免费视频| 久久ye,这里只有精品| 丁香六月天网| 日本午夜av视频| 日韩一区二区三区影片| 精品国产一区二区三区久久久樱花| 久久综合国产亚洲精品| 在线观看免费视频网站a站| 日韩一卡2卡3卡4卡2021年| 999精品在线视频| 日韩一本色道免费dvd| 午夜91福利影院| 国产成人午夜福利电影在线观看| 日韩中文字幕视频在线看片| 狠狠精品人妻久久久久久综合| 日韩av在线免费看完整版不卡| 春色校园在线视频观看| 看免费成人av毛片| 青春草亚洲视频在线观看| 午夜影院在线不卡| 日韩不卡一区二区三区视频在线| 丰满饥渴人妻一区二区三| 男女下面插进去视频免费观看| 天天躁日日躁夜夜躁夜夜| 捣出白浆h1v1| 久久ye,这里只有精品| 欧美在线黄色| 国产精品亚洲av一区麻豆 | 亚洲欧美精品综合一区二区三区 | 最近最新中文字幕免费大全7| 在线观看www视频免费| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 国产高清不卡午夜福利| 伦理电影免费视频| 国产亚洲精品第一综合不卡| 亚洲欧洲国产日韩| 在线观看www视频免费| 男女啪啪激烈高潮av片| 国产在视频线精品| 五月开心婷婷网| 日本av手机在线免费观看| 亚洲欧美成人精品一区二区| 久久久精品94久久精品| 国产成人精品一,二区| 少妇人妻久久综合中文| 蜜桃国产av成人99| 只有这里有精品99| 最近2019中文字幕mv第一页| 男女免费视频国产| 久久韩国三级中文字幕| 岛国毛片在线播放| 91在线精品国自产拍蜜月| 免费看不卡的av| 欧美另类一区| 在线观看一区二区三区激情| 日本vs欧美在线观看视频| 亚洲精品国产av蜜桃| 日本午夜av视频| 亚洲欧美精品综合一区二区三区 | 七月丁香在线播放| 国产乱人偷精品视频| 亚洲美女视频黄频| 天天躁夜夜躁狠狠躁躁| 国产 一区精品| 久久精品久久久久久久性| 麻豆av在线久日| 一本大道久久a久久精品| 亚洲成色77777| 美女福利国产在线| 91精品三级在线观看| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 国产精品人妻久久久影院| 十八禁高潮呻吟视频| 日韩不卡一区二区三区视频在线| 三级国产精品片| 国产精品国产三级专区第一集| 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产欧美网| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 国产在线视频一区二区| 欧美日韩视频高清一区二区三区二| 蜜桃在线观看..| 久久影院123| 蜜桃在线观看..| 国产亚洲最大av| 国产精品麻豆人妻色哟哟久久| av片东京热男人的天堂| 久久精品国产鲁丝片午夜精品| 极品人妻少妇av视频| 97在线人人人人妻| 少妇人妻久久综合中文| 伊人久久国产一区二区| 亚洲av男天堂| 亚洲av在线观看美女高潮| 日韩伦理黄色片| 欧美成人午夜免费资源| 人人妻人人澡人人看| 九九爱精品视频在线观看| 一区二区av电影网| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 天天躁夜夜躁狠狠躁躁| 日韩中字成人| 999久久久国产精品视频| 日韩伦理黄色片| 香蕉精品网在线| 中文字幕人妻熟女乱码| 晚上一个人看的免费电影| 观看av在线不卡| 狠狠精品人妻久久久久久综合| 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 亚洲国产色片| 久久久久久久久久久久大奶| 九色亚洲精品在线播放| 电影成人av| 久久久久国产精品人妻一区二区| 永久免费av网站大全| 老司机影院成人| 永久免费av网站大全| 97人妻天天添夜夜摸| a级毛片在线看网站| 国产老妇伦熟女老妇高清| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 男女啪啪激烈高潮av片| 黄网站色视频无遮挡免费观看| 汤姆久久久久久久影院中文字幕| 韩国高清视频一区二区三区| 香蕉国产在线看| 亚洲国产欧美日韩在线播放| 亚洲精品视频女| 麻豆乱淫一区二区| 一区在线观看完整版| av线在线观看网站| 99热网站在线观看| 国产色婷婷99| 丰满乱子伦码专区| 久久久欧美国产精品| 青青草视频在线视频观看| 亚洲中文av在线| 丰满少妇做爰视频| 高清黄色对白视频在线免费看| 国产片特级美女逼逼视频| 亚洲精品视频女| 丝袜在线中文字幕| 日韩制服骚丝袜av| 精品国产一区二区三区四区第35| 欧美国产精品一级二级三级| 人妻一区二区av| 91精品国产国语对白视频| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 91午夜精品亚洲一区二区三区| 欧美亚洲日本最大视频资源|