• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition*

    2021-05-24 02:22:56YanLiLi李艷麗YaBingWang王亞冰WeiErLu盧維爾XiangDongKong孔祥東LiHan韓立andHuiBinZhao趙慧斌
    Chinese Physics B 2021年5期
    關(guān)鍵詞:維爾

    Yan-Li Li(李艷麗), Ya-Bing Wang(王亞冰), Wei-Er Lu(盧維爾),Xiang-Dong Kong(孔祥東), Li Han(韓立), and Hui-Bin Zhao(趙慧斌)

    1Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2College of Nuclear Science and Technology,Beijing Normal University,Beijing 100875,China

    3Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    4University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: x-ray optics,monocapillary,atomic layer deposition,HfO2 film

    1. Introduction

    Monocapillary, a single hollow tube, is a popular device for x-ray focusing and collimation.[1,2]It usually presents a cylindrical, conically tapered, paraboloidal or elliptical shape[3–5]and is mainly used to obtain a small x-ray beam for experiments such as micro-x-ray fluorescence (micro-XRF)instrument[6,7]and x-ray nano-imaging system.[8,9]In monocapillary, only the portion of x-rays with incident angles less than the critical angle can be totally reflected on the inner wall of the tube and transmitted through the hollow core region.The critical angle for total reflection is determined by the complex index of refraction n,

    where Z is the atomic number,A the atomic mass,ρ (in units g/cm3) the density of the reflective material, and E (in unit keV) the energy of the incident x-rays. It can be inferred that for the same monocapillary the higher the value of E,the smaller the value of θcwill be.

    Due to the easy processing and smoothness of surface,glass is the most common material for both monocapillary[11]and polycapillary.[12]However, the glass density is relatively low (2.2 g/cm3), which leads to a small θc, indicating that part of the high energy incident x-rays emitted from an x-ray tube cannot be totally reflected by the inner wall of the monocapillary. Increasing θcis believed to be an efficient way to improve the transmission characteristics by totally reflecting more higher energy x-rays. From this point of view, it can be seen from Eq. (3) that to increase the value of θchighdensity material is an ideal choice for the capillaries. That is why the metal monocapillaries have received wide attention since 1996. Several methods have been developed to produce ‘segmented’ and ‘pressed’ metal monocapillaries. Nevertheless,the shapes of those monocapillaries are far from the design because of narrow etching grooves[10]and horizontal wedges[13]respectively. Although the process of manufacturing‘segmented’monocapillaries is further optimized[14,15]and monocapillaries with precise shape can be obtained, the smoothness of inner surface can still not be well controlled.Therefore another idea is proposed. That is to coat a highdensity film in the inside of capillary and many researchers have tried this method. In 2005 Matsuura et al.[2,16]fabricated nickel-coated monocapillaries by a plating method. In order to achieve better adhesion of the nickel layer onto the glass,the surface of the silica was sensitized with ammonium fluoride solution, which resulted in some clusters of nickel on the surface. In 2010 Nakazawa and Nakano[17]used the same method to gain Au-coated monocapillaries and observed the enhancement of XRF intensity,which implies the performance improvement of metal-coated monocapillaries. Unfortunately,owing to the extremely high length–diameter ratio of the capillary,it is still difficult to obtain thin film with uniform thickness and low roughness.

    Atomic layer deposition (ALD) is a vapor phase deposition technique based on the sequential use of self-limiting chemical reactions, which ensures the conformality, uniformity and atomic level control of film. Compared with other vapor phase thin film growth methods such as chemical vapor deposition (CVD) or physical vapor deposition (PVD),the ALD due to the self-limiting growth, can be used to deposit a highly homogeneous thin film on the surface of curved substrate without additional manipulation such as rotating the substrate. Until now a variety of films have been successfully deposited by the ALD on many types of substrates such as Si wafers,[18,19]Si nanowires,[20]and glass fiber cores.[21,22]Therefore the ALD is a promising way to coat capillary. And through optimizing the process and improving the equipment,the ALD presents potential applications in coating polycapillary with a diameter less than 10 μm or coating multilayerfilm on the inner surface of capillary which is an important x-ray monochromic component. That is of great significance for applying capillaries to more x-ray fields. Our previous work[23]demonstrated that the ALD is a feasible way to coat glass monocapillary with a short length of 5 cm and the coated monocapillary shows an increased acceptance angle for 16.8-keV x-ray while high reflectivity is still retained. Here in this work,the ALD is used to deposit HfO2film on the inner surface of monocapillary which is nearly twice as long as the former one,and possesses a higher length-diameter ratio. Based on the working principle, it is known that generally highdensity-film coated glass monocapillary with a higher lengthdiameter ratio will totally reflect more high-energy x-rays if space allows. And monocapillary with length ~10 cm is commonly used.[2,16,17]The HfO2film is selected considering the fact that its density is higher than that of glass and it is chemically stable with melting temperatures as high as 2758°C.The transmission process of x-ray with energy from 5 keV to 100 keV through the HfO2-coated monocapillary is analyzed in detail. The HfO2-coated monocapillary is used in an XRF system and spectrum of a Mo sample is measured.

    2. Experiments

    2.1. Coating

    A tapered borosilicate glass monocapillary was drawn and used to grow HfO2film on the inner wall. The length(L),input diameter (ID), and output diameter (OD) of the monocapillary are listed in Table 1. And the monocapillary was designed to focus x-rays by single total reflection.The HfO2film was deposited using a commercial Ke-Micro T-ALD 100A setup. The ALD was performed using sequential exposures of TDMAH (Hf(N(CH3)2)4) and H2O separated by a purge of nitrogen with a flow rate of 14 standard cubic centimeters per minute (sccm). The deposition cycle for HfO2consisted of 0.13-s pulse of TDMAH,50 s of purging with nitrogen followed by 0.02-s pulse of H2O and 50 s of purging with nitrogen. The 3000 ALD cycles were set to deposit on the inner wall of glass monocapillary. The typical growth rate for HfO2coating is 0.95 ?A per cycle. The deposition temperature and pressure were 250°C and 0.1 Torr(1 Torr=1.33322×102Pa)respectively. Scanning electron microscope (SEM) was utilized to observe the cross-section of the HfO2-coated monocapillary.

    Table 1. Parameters of tapered monocapillary.

    2.2. Measurement

    The spectra of x-rays focused by the tapered monocapillary before and after coating were measured. Figure 1(a)shows the measurement system consisting of an x-ray tube,a beamstop (a lead round ball with diameter ~300 μm), a monocapillary, a Pb plate, and an x-ray detector. The x-ray tube with a W target(L9631 HAMAMATSU,Japan)was operated at 10 W(100 kV,100μA)and the size of the x-ray source was ~21 μm. The beamstop was used to block the direct xrays. A Pb plate with about 1-mm-diameter pinhole aligning to the exit of the monocapillary could effectively shield the primary x-rays from the source and‘penetration halo’x-rays.[24]A high energy x-ray detector (X-123 CdTe AMETEK, USA)was used to obtain the spectra. F was set to be 20 cm. The detecting time was 5 min.

    The spactra of XRF were detected by using the uncoated and HfO2-coated monocapillarie. Figure 1(b) presents the measurement system. The x-ray tube was operated at 10 W(50 kV,200μA).The beam-stop was used to block the direct x-rays for avoiding the influence of the direct x-rays on the results of XRF.A Mo sample was used and a silicon drift detector system (AXAS-M KETEK, Germany) was utilized to collect the XRF spectrum. The value of F, D, and σ were fixed at 20 cm, 10 cm, and 45°respectively. The detecting time was 10 min.

    Fig.1. Sketch of measurement system of spectra of(a)x-rays and(b)XRF by using monocapillary.

    3. Results and discussion

    3.1. Transmission of x-rays

    Figure 2 shows the primary spectrum of the x-ray tube(through a pinhole) and the spectra of x-rays through monocapillary before and after coating. The normalized energy spectrum is obtained through dividing the counts by the highest count of the spectrum. In area 1 the spectrum of x-rays focused by uncoated monocapillary (blue curve) falls rapidly from the blue point at 13.3 keV to the bottom 18.1 keV and that focused by HfO2-coated monocapillary (red curve) falls from red point at 18.7 keV to the bottom 33.0 keV. Therefore,it can be seen that the energy range of x-rays focused by HfO2-coated monocapillary is broadened obviously. Figure 3 helps to further understand the propagation of x-rays in the monocapillary. Reflex angle of the incident x-rays reflected by inner surface of the monocapillary goes from θ to θ′. The value of θ, which depends on F, L, ID, and OD, determines the highest energy of x-ray that can be totally reflected on the entire inner surface of the monocapillary. And the value of θ′determines the highest energy of x-ray the monocapillary can focus. According to Eq. (3), for the glass monocapillary before being coated in this work, the highest energy of x-ray reflected on the entire inner surface of the monocapillary is calculated to be 12.1 keV and the highest energy the monocapillary can focus is 17.8 keV, which is basically consistent with the blue curve in area 1 in Fig.2. Hence the high energy x-rays in a range between 13.3 keV and 18.1 keV can be completely reflected on the inner surface. However,as the energy goes up in this range,the reflective area of the inner surface decreases,which results in the decreasing of x-ray intensity from 13.3 keV and 18.1 keV presented in the spectrum(blue curve).As for HfO2-coated monocapillary,due to the increase of total reflection critical angle,the energy range of x-rays which can be reflected obviously shifts towards high energy region. Theoretically the highest energy of x-ray reflected on the entire inner surface of the HfO2-coated monocapillary is calculated to be 23.0 keV and the highest energy the monocapillary can focus is 33.8 keV. In Fig. 2, it is not difficult to find that the red curve between 18.7 keV and 33.0 keV includes two pieces of slopes separated at 23.3 keV. Considering the fact that the density of the HfO2film is generally less than 9.85 g/cm3,the theoretically calculated energy range from 23.0 keV to 33.8 keV is basically consistent with the second slope range from 23.3 keV and 33.0 keV.Nevertheless, why the peak appears at 18.7 keV is not known exactly. Maybe it results from the non uniform distribution of HfO2film along the monocapillary and it makes the transmission process of x-rays more complicated. For example, the thicker film on the inner wall of the monocapillary may be right in the path of some totally reflected x-rays and the x-rays have to pass through the film,thereby lead the transmission efficiency and x-ray intensity to decrease.

    Fig. 2. Primary spectrum of x-ray tube, x-rays through HfO2-coated monocapillary and uncoated monocapillary, with area 1 and area 2 indicating relatively low and high energy regions respectively.

    Fig.3. Sketch of reflection of incident x-rays on inner surface of monocapillary,where θ and θ′ are incident angles of x-rays at entrance and exit of monocapillary.

    In addition,in area 2 the spectrum of x-rays through uncoated monocapillary goes up at 35 keV and it has the same trend as the primary spectrum after 35 keV.That is mainly attributed to the effect of‘penetration halo’ which results from the high energy x-rays penetrating through the wall of monocapillary and being detected by the x-ray detector. Therefore some x-rays with energy >35 keV passing through the uncoated monocapillary leads the intensity in the high energy range to increase. At the same time, it can be seen that the spectrum of the HfO2-coated monocapillary presents no significant increase in that range. Based on that, it could be inferred that high-density HfO2film absorbs more high energy x-rays and less x-rays leak outside the monocapillary. And the‘penetration halo’is suppressed to some extent.

    3.2. XRF spectrum

    Figure 4 shows the XRF spectrum of the Mo sample obtained by using uncoated(green curve)and HfO2-coated(red curve) monocapillary. The normalized energy spectrum is acquired through dividing the counts by the highest count of the spectrum. In Fig. 4, it can be seen that the two spectra present many peaks,which is because the Mo sample contains a variety of impurity elements. As it is known that only the x-rays with energy higher than the absorption edge of some element can go through monocapillary,the characteristic peaks can appear on the spectrum. The two spectra present peaks at the same positions in the range with x-ray energy <15 keV,which means that the uncoated and coated monocapillary both can focus x-rays whose energy is high enough to excite these characteristic peaks. However,the key difference between the two spectra is that two more peaks occur at ~17.4 keV and~19.6 keV on the red curve. Considering the influence of the energy resolution of the detector,these two peaks are regarded as the characteristic x-rays of Mo Kα(17.48 keV) and Kβ(19.606 keV).[25]To excite these two characteristic x-rays of Mo, the energy of the incident x-ray on the sample must be higher than the absorption edge of Mo (20.0 keV). From the analysis in Subsection 3.1, the highest energy the uncoated monocapillary can focus is 18.1 keV,which leads no K-series characteristic x-rays of Mo to appear on the green curve. The highest energy the HfO2-coated monocapillary can focus is 33.0 keV and hence two strong peaks occur on the red curve.Therefore the ability of HfO2-coated monocapillary to focus more higher energy x-rays can help to improve XRF measurement.

    Fig.4. Sspectrum of XRF obtained by uncoated monocapillary and HfO2-coated monocapillary.

    3.3. HfO2 film

    Figure 5 shows SEM images of the cross-section of HfO2-coated monocapillary in the middle area. The close up and overall view of monocapillary center hole are presented in the left image and the right image. The thickness of HfO2film is ~150 nm. In addition, film thickness values at other two positions,~2 cm from input/output end of the monocapillary,are presented in Fig. 6 and they are both ~200 nm. It can be seen that the film thickness varies along the monocapillary and the specific thickness distribution needs to be further investigated in future. The thickness is less than 300 nm which is the theoretical value of the HfO2film considering the fact that the typical growth rate of HfO2on a flat substrate is about 0.95 ?A per cycle. The main reason may be that the ALD setup used in this experiment is a common equipment designed for growing film on flat or regular curved substrates. The high length-to-diameter ratio of the monocapillary makes it difficult to control the growth process. The precursor gases,TDMAH(Hf(N(CH3)2)4)and H2O,may be not uniformly adsorbed to the inner surface during every cycle and non-uniform HfO2film forms along the monocapillary.

    Fig. 5. SEM images of cross-section of HfO2-coated monocapillary in the middle area.

    Fig.6. SEM images of cross-section of HfO2-coated monocapillary near the two ends.

    4. Conclusions and prospects

    The results described in this work validate the feasibility of ALD to grow HfO2film on the inner wall of larger lengthto-diameter ratio monocapillary with length 9.9 cm, entrance diameter 596.4 μm, and exit diameter 402.3 μm. And the HfO2-coated monocapillary shows improved properties. The energy upper limit of focused x-rays increases from 18.1 keV to 33.0 keV and the ‘penetration halo’ is suppressed to some extent. When the HfO2-coated monocapillary is used in XRF system, more high energy characteristic x-rays are obtained without changing any parameters of the measurement system.Due to the film growth mechanism, the ALD is a promising method to grow single or multilayer film on the inner surface of monocapillary and even polycapillary,which is of great significance for expanding the application field of capillary x-ray optics. In future, research will focus on the growth of film and more applications of the coated capillary. In order to allow the uniform growth of film in a controlled way, critical components of the ALD setup and the deposition process will need to be redesigned and optimized. And the thickness distribution of the film along the monocapillary and its influence on the transmission process will need to be investigated in detail. Besides, some more high-density films such as Ir and Pt can also be deposited inside the capillary to further explore the transmission properties.

    猜你喜歡
    維爾
    弗蘭克·維爾切克博士獲得2022年坦普爾頓獎(jiǎng)
    著名詩(shī)人、畫(huà)家、翻譯家漢妮·魯維爾(荷蘭)
    鴨綠江(2021年17期)2021-10-13 07:05:22
    科爾維爾作品中的繪畫(huà)構(gòu)成分析
    深耕環(huán)保細(xì)分領(lǐng)域,維爾利為環(huán)保注入新動(dòng)力
    中再生紐維爾資源回收設(shè)備(江蘇)有限公司
    資源再生(2019年1期)2019-03-04 01:57:10
    奇妙的維爾康圖書(shū)館之旅(二)
    麥克維爾斬獲4000萬(wàn)元大單
    賈維爾·巴登征服好萊塢
    禁无遮挡网站| 国产精品久久久久久av不卡| 悠悠久久av| 在线播放无遮挡| 日韩一区二区三区影片| 少妇猛男粗大的猛烈进出视频 | 在线国产一区二区在线| 日本黄色片子视频| 天美传媒精品一区二区| 亚洲欧美日韩无卡精品| 国产毛片a区久久久久| 日韩欧美国产在线观看| 国产精品久久视频播放| 免费不卡的大黄色大毛片视频在线观看 | 99精品在免费线老司机午夜| 亚洲成人久久爱视频| 精品久久国产蜜桃| 成人三级黄色视频| 变态另类成人亚洲欧美熟女| 国产成人精品一,二区 | 成人毛片60女人毛片免费| 精品久久久久久久人妻蜜臀av| 亚洲成a人片在线一区二区| 一夜夜www| 婷婷六月久久综合丁香| 中文亚洲av片在线观看爽| 久久亚洲国产成人精品v| 中文字幕免费在线视频6| 麻豆成人午夜福利视频| a级毛片免费高清观看在线播放| 自拍偷自拍亚洲精品老妇| 特级一级黄色大片| 日韩欧美国产在线观看| 99久久人妻综合| 最近手机中文字幕大全| a级毛片免费高清观看在线播放| 国产精品一及| ponron亚洲| 内射极品少妇av片p| 国产av一区在线观看免费| 青春草国产在线视频 | 非洲黑人性xxxx精品又粗又长| 天美传媒精品一区二区| 国产高清视频在线观看网站| 免费观看a级毛片全部| 日本免费一区二区三区高清不卡| 国产熟女欧美一区二区| 99久久精品一区二区三区| 免费看日本二区| 国产精品久久久久久精品电影小说 | av卡一久久| 麻豆国产97在线/欧美| 中文欧美无线码| 亚洲成人av在线免费| 欧美一级a爱片免费观看看| 婷婷色av中文字幕| 欧美激情在线99| 色哟哟·www| 日产精品乱码卡一卡2卡三| 免费一级毛片在线播放高清视频| 啦啦啦啦在线视频资源| 毛片一级片免费看久久久久| 国产国拍精品亚洲av在线观看| 亚洲av中文av极速乱| 麻豆成人av视频| 麻豆av噜噜一区二区三区| 欧美成人一区二区免费高清观看| 国产精品日韩av在线免费观看| 精品久久久久久久久亚洲| 国产精品一区二区性色av| 久久久久国产网址| 国产伦精品一区二区三区四那| 精品99又大又爽又粗少妇毛片| 午夜福利视频1000在线观看| 嫩草影院精品99| 国产成年人精品一区二区| 18禁黄网站禁片免费观看直播| 99视频精品全部免费 在线| 人人妻人人看人人澡| 亚洲在线自拍视频| 如何舔出高潮| 狂野欧美白嫩少妇大欣赏| 日韩欧美精品免费久久| 少妇裸体淫交视频免费看高清| 一区福利在线观看| 波多野结衣高清无吗| 成人特级黄色片久久久久久久| 久久鲁丝午夜福利片| 精品国内亚洲2022精品成人| 一卡2卡三卡四卡精品乱码亚洲| 麻豆乱淫一区二区| 最近手机中文字幕大全| 国产黄色小视频在线观看| 婷婷六月久久综合丁香| 自拍偷自拍亚洲精品老妇| 日韩欧美 国产精品| 九草在线视频观看| a级一级毛片免费在线观看| 精品99又大又爽又粗少妇毛片| 国产人妻一区二区三区在| 黄色视频,在线免费观看| 国产成人精品婷婷| 国产成人91sexporn| 亚洲精品日韩av片在线观看| 国产一级毛片七仙女欲春2| 内射极品少妇av片p| 国产精品电影一区二区三区| 成年av动漫网址| 热99re8久久精品国产| 一本久久精品| 综合色丁香网| 国产精品日韩av在线免费观看| 久久久久久伊人网av| 日韩一本色道免费dvd| .国产精品久久| kizo精华| 青春草视频在线免费观看| 国产大屁股一区二区在线视频| 国产精品久久久久久久久免| 国产片特级美女逼逼视频| 嫩草影院新地址| 中文字幕熟女人妻在线| av免费在线看不卡| 日韩精品有码人妻一区| 国产午夜精品久久久久久一区二区三区| 日本-黄色视频高清免费观看| 在线观看66精品国产| 岛国毛片在线播放| 亚洲在久久综合| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦啦在线视频资源| 国产单亲对白刺激| 一进一出抽搐动态| 久久6这里有精品| 最近中文字幕高清免费大全6| 中文字幕熟女人妻在线| 久久久久久久午夜电影| 精品久久久久久久久av| 深夜精品福利| 国产私拍福利视频在线观看| av免费观看日本| 哪个播放器可以免费观看大片| 国产av在哪里看| 男女啪啪激烈高潮av片| 大型黄色视频在线免费观看| 三级国产精品欧美在线观看| 夫妻性生交免费视频一级片| 成人永久免费在线观看视频| 亚洲丝袜综合中文字幕| 男女那种视频在线观看| 一本精品99久久精品77| 99久久成人亚洲精品观看| 直男gayav资源| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久成人av| 中出人妻视频一区二区| 久久人人爽人人片av| 欧美色视频一区免费| 男插女下体视频免费在线播放| 岛国在线免费视频观看| 91在线精品国自产拍蜜月| 日韩av在线大香蕉| 岛国在线免费视频观看| 国产成人a∨麻豆精品| 岛国在线免费视频观看| 亚洲色图综合在线观看| 91久久精品国产一区二区三区| 亚洲精品乱久久久久久| 爱豆传媒免费全集在线观看| 亚洲伊人久久精品综合| 免费不卡的大黄色大毛片视频在线观看| 日韩大片免费观看网站| 97超视频在线观看视频| 久久久久久久久大av| 美女国产视频在线观看| 又大又黄又爽视频免费| 国产一区二区在线观看av| 亚洲国产av影院在线观看| 亚洲怡红院男人天堂| 啦啦啦在线观看免费高清www| av又黄又爽大尺度在线免费看| 少妇的逼好多水| 成人影院久久| 中文字幕最新亚洲高清| 国产高清国产精品国产三级| 最近最新中文字幕免费大全7| 九九久久精品国产亚洲av麻豆| 久久久久久久久大av| 国产精品欧美亚洲77777| 国产精品免费大片| √禁漫天堂资源中文www| 中文精品一卡2卡3卡4更新| 国产国拍精品亚洲av在线观看| 国国产精品蜜臀av免费| 精品久久久久久久久av| 制服人妻中文乱码| 亚洲色图综合在线观看| 好男人视频免费观看在线| 成年人午夜在线观看视频| 国产成人aa在线观看| 亚洲成人一二三区av| 91精品国产九色| 久久精品国产a三级三级三级| av黄色大香蕉| 免费少妇av软件| 赤兔流量卡办理| 精品少妇黑人巨大在线播放| 免费av不卡在线播放| 久久人妻熟女aⅴ| 中文天堂在线官网| av在线观看视频网站免费| 只有这里有精品99| 街头女战士在线观看网站| 亚洲熟女精品中文字幕| 亚洲国产av影院在线观看| 高清av免费在线| 日韩成人av中文字幕在线观看| 国产免费视频播放在线视频| 蜜桃国产av成人99| 中文字幕制服av| 亚洲少妇的诱惑av| 午夜免费观看性视频| 亚洲av二区三区四区| 免费观看av网站的网址| 女性生殖器流出的白浆| 欧美日韩一区二区视频在线观看视频在线| 欧美xxⅹ黑人| freevideosex欧美| av在线观看视频网站免费| 久久久久精品久久久久真实原创| 国产成人免费观看mmmm| 一级a做视频免费观看| 午夜91福利影院| 婷婷成人精品国产| 久久精品久久久久久久性| 嘟嘟电影网在线观看| 精品亚洲乱码少妇综合久久| 日韩视频在线欧美| 亚洲久久久国产精品| 99国产综合亚洲精品| av网站免费在线观看视频| 制服诱惑二区| 久久久久视频综合| 久久综合国产亚洲精品| 插阴视频在线观看视频| 久久人人爽人人片av| 中文字幕制服av| 欧美一级a爱片免费观看看| 国产精品不卡视频一区二区| 女性生殖器流出的白浆| 两个人的视频大全免费| 成人黄色视频免费在线看| 99热网站在线观看| 大片电影免费在线观看免费| 成人漫画全彩无遮挡| 美女内射精品一级片tv| 简卡轻食公司| 91精品国产九色| 国产淫语在线视频| 少妇高潮的动态图| 寂寞人妻少妇视频99o| 超色免费av| 免费播放大片免费观看视频在线观看| 亚洲综合色网址| 亚洲欧美日韩卡通动漫| 欧美精品亚洲一区二区| 999精品在线视频| 国产在线一区二区三区精| 日韩欧美一区视频在线观看| 日韩在线高清观看一区二区三区| 欧美激情极品国产一区二区三区 | 91精品一卡2卡3卡4卡| 夜夜看夜夜爽夜夜摸| 国产一区二区三区av在线| 国产成人免费观看mmmm| 精品少妇久久久久久888优播| 亚洲,一卡二卡三卡| 我要看黄色一级片免费的| 妹子高潮喷水视频| 大又大粗又爽又黄少妇毛片口| 久久亚洲国产成人精品v| 国产在线免费精品| 国产熟女欧美一区二区| 国产精品成人在线| 亚洲av.av天堂| 国产综合精华液| 亚洲欧美清纯卡通| 国产无遮挡羞羞视频在线观看| 黄色欧美视频在线观看| 成人亚洲精品一区在线观看| 汤姆久久久久久久影院中文字幕| 亚洲国产精品专区欧美| 亚洲av电影在线观看一区二区三区| 国内精品宾馆在线| 亚洲av不卡在线观看| 国产淫语在线视频| 国产成人精品在线电影| 大香蕉久久成人网| 国产成人精品婷婷| 亚洲成人手机| 日本黄色片子视频| 欧美一级a爱片免费观看看| 色94色欧美一区二区| 在线观看免费日韩欧美大片 | 久久久久久久国产电影| 日本欧美视频一区| 免费av不卡在线播放| 一级,二级,三级黄色视频| 七月丁香在线播放| av在线播放精品| 日韩一区二区三区影片| 欧美一级a爱片免费观看看| 性高湖久久久久久久久免费观看| 日韩一本色道免费dvd| 精品久久蜜臀av无| 亚洲色图综合在线观看| 少妇人妻精品综合一区二区| 精品亚洲成国产av| 国产探花极品一区二区| 22中文网久久字幕| 中国三级夫妇交换| 免费观看性生交大片5| 麻豆精品久久久久久蜜桃| 欧美97在线视频| 99精国产麻豆久久婷婷| 在线观看免费日韩欧美大片 | 久久精品国产亚洲av天美| 十八禁网站网址无遮挡| 国产精品国产三级专区第一集| 亚洲人成77777在线视频| 亚洲精品日韩在线中文字幕| 国产高清国产精品国产三级| 熟女人妻精品中文字幕| 国产日韩欧美在线精品| 男女免费视频国产| 色婷婷av一区二区三区视频| 热re99久久国产66热| 妹子高潮喷水视频| 在线精品无人区一区二区三| 成人黄色视频免费在线看| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频 | 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 人体艺术视频欧美日本| 亚洲精品色激情综合| 少妇熟女欧美另类| 欧美变态另类bdsm刘玥| 精品熟女少妇av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 免费观看的影片在线观看| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 日产精品乱码卡一卡2卡三| 制服人妻中文乱码| 少妇熟女欧美另类| 精品一品国产午夜福利视频| 男女边摸边吃奶| 一级毛片电影观看| 国产成人aa在线观看| 精品视频人人做人人爽| 在线看a的网站| 日韩av免费高清视频| 在线免费观看不下载黄p国产| 久热这里只有精品99| 22中文网久久字幕| av一本久久久久| 啦啦啦啦在线视频资源| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 美女福利国产在线| 久久久精品区二区三区| 日韩在线高清观看一区二区三区| 亚洲av二区三区四区| 国产极品天堂在线| 国产国拍精品亚洲av在线观看| 中文字幕最新亚洲高清| 日韩亚洲欧美综合| 日韩视频在线欧美| 永久免费av网站大全| 日韩av免费高清视频| 国产精品一区www在线观看| 18+在线观看网站| 91国产中文字幕| 亚洲精品av麻豆狂野| 亚洲国产精品国产精品| 高清午夜精品一区二区三区| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 亚洲性久久影院| 99热国产这里只有精品6| 热re99久久国产66热| 嘟嘟电影网在线观看| 免费大片黄手机在线观看| 亚洲美女视频黄频| 亚洲国产最新在线播放| 天天影视国产精品| 男的添女的下面高潮视频| 亚洲欧洲精品一区二区精品久久久 | 在线播放无遮挡| 久久99精品国语久久久| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 波野结衣二区三区在线| 成人国语在线视频| 简卡轻食公司| 国产精品不卡视频一区二区| 国产一区二区在线观看av| 国产日韩一区二区三区精品不卡 | 80岁老熟妇乱子伦牲交| 国产永久视频网站| 热re99久久国产66热| 亚洲av在线观看美女高潮| a级毛片在线看网站| 人妻人人澡人人爽人人| 人妻制服诱惑在线中文字幕| 97在线视频观看| 天天影视国产精品| 久久精品久久久久久噜噜老黄| 春色校园在线视频观看| 国产成人精品福利久久| 伦理电影免费视频| 午夜福利视频在线观看免费| 久久精品国产自在天天线| 一级黄片播放器| www.av在线官网国产| 一级毛片电影观看| 国产在线一区二区三区精| 18在线观看网站| 国产免费一区二区三区四区乱码| 在线播放无遮挡| 日韩大片免费观看网站| 性色av一级| 国产av码专区亚洲av| av免费在线看不卡| 国产精品嫩草影院av在线观看| 国产成人精品一,二区| 精品熟女少妇av免费看| 中文精品一卡2卡3卡4更新| 美女国产高潮福利片在线看| 日韩电影二区| 国产免费福利视频在线观看| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 欧美最新免费一区二区三区| 日韩三级伦理在线观看| 久久精品夜色国产| 熟女av电影| 国产伦精品一区二区三区视频9| 青春草国产在线视频| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区四区激情视频| 久久久午夜欧美精品| 精品国产一区二区三区久久久樱花| 欧美另类一区| 国产亚洲精品第一综合不卡 | 22中文网久久字幕| 高清av免费在线| 99九九线精品视频在线观看视频| 丝袜在线中文字幕| 成人毛片a级毛片在线播放| 亚洲经典国产精华液单| 国产免费一级a男人的天堂| 777米奇影视久久| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 日韩中字成人| 国产在视频线精品| 人妻 亚洲 视频| 成人国语在线视频| 精品卡一卡二卡四卡免费| 久久毛片免费看一区二区三区| 欧美bdsm另类| 王馨瑶露胸无遮挡在线观看| 成年女人在线观看亚洲视频| 18禁裸乳无遮挡动漫免费视频| 男女无遮挡免费网站观看| 狂野欧美激情性xxxx在线观看| 国产伦理片在线播放av一区| 久久精品久久精品一区二区三区| 波野结衣二区三区在线| 中文乱码字字幕精品一区二区三区| 久久久亚洲精品成人影院| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 两个人免费观看高清视频| 国产成人av激情在线播放 | 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃| 成人国语在线视频| 在线观看免费高清a一片| 少妇精品久久久久久久| 搡女人真爽免费视频火全软件| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 国产精品久久久久成人av| 考比视频在线观看| 爱豆传媒免费全集在线观看| 乱人伦中国视频| 亚洲欧洲国产日韩| 91精品国产九色| 成人手机av| a级毛色黄片| 天天躁夜夜躁狠狠久久av| 欧美日韩国产mv在线观看视频| 精品人妻熟女毛片av久久网站| 久久久久人妻精品一区果冻| 日韩电影二区| 五月玫瑰六月丁香| 久久精品国产鲁丝片午夜精品| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| 黑丝袜美女国产一区| 欧美性感艳星| 免费少妇av软件| 国产成人91sexporn| 香蕉精品网在线| 久久久久久久久久久久大奶| av国产久精品久网站免费入址| 国产一区二区三区综合在线观看 | 免费观看av网站的网址| 9色porny在线观看| 久久婷婷青草| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 日本与韩国留学比较| 精品人妻熟女av久视频| 国产免费福利视频在线观看| 美女内射精品一级片tv| 99国产精品免费福利视频| 国产视频首页在线观看| 久久婷婷青草| 国产精品人妻久久久影院| 日本91视频免费播放| 亚洲国产精品专区欧美| 亚洲av在线观看美女高潮| 国产国语露脸激情在线看| 亚洲成人一二三区av| 午夜av观看不卡| 亚洲成人一二三区av| 免费高清在线观看视频在线观看| 水蜜桃什么品种好| 久久99一区二区三区| videossex国产| 久久免费观看电影| 内地一区二区视频在线| 日本猛色少妇xxxxx猛交久久| 伊人久久精品亚洲午夜| 国产精品嫩草影院av在线观看| 国产午夜精品久久久久久一区二区三区| av在线app专区| 免费大片18禁| 一级毛片黄色毛片免费观看视频| 国产无遮挡羞羞视频在线观看| 成人国产av品久久久| 亚洲综合色惰| 18+在线观看网站| 亚洲高清免费不卡视频| 国产极品天堂在线| 中文字幕人妻熟人妻熟丝袜美| 中文字幕最新亚洲高清| 日本免费在线观看一区| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 久久久久久久久久成人| 99久国产av精品国产电影| 国产精品一国产av| 夜夜爽夜夜爽视频| 久久97久久精品| 中文天堂在线官网| 亚洲美女搞黄在线观看| a级毛片免费高清观看在线播放| 成人亚洲精品一区在线观看| 狂野欧美白嫩少妇大欣赏| 日韩制服骚丝袜av| 亚洲欧美成人精品一区二区| 丰满少妇做爰视频| 日本与韩国留学比较| 黄色欧美视频在线观看| 国产高清有码在线观看视频| 人成视频在线观看免费观看| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 人人妻人人澡人人爽人人夜夜| 少妇人妻精品综合一区二区| 国产成人91sexporn| 欧美激情国产日韩精品一区| 色婷婷久久久亚洲欧美| 26uuu在线亚洲综合色| 国产不卡av网站在线观看| 一本久久精品| 欧美日韩视频精品一区| 日韩电影二区| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 亚洲精品成人av观看孕妇| av免费观看日本| 亚洲精品久久成人aⅴ小说 | 内地一区二区视频在线| 777米奇影视久久| 久久精品人人爽人人爽视色| 99热这里只有是精品在线观看| 亚州av有码| 免费大片黄手机在线观看| 亚洲欧美一区二区三区国产| 亚洲国产精品专区欧美| 久久精品国产亚洲av涩爱| 美女国产高潮福利片在线看| 亚洲国产精品专区欧美| 伊人久久精品亚洲午夜| 久久久久国产精品人妻一区二区| 99热网站在线观看|