• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on photonic microwave generation by a sole excited-state emitting quantum dot laser with optical injection and optical feedback*

    2021-05-24 02:25:30ZaiFuJiang蔣再富ZhengMaoWu吳正茂WenYanYang楊文艷ChunXiaHu胡春霞YanHongJin靳艷紅ZhenZhenXiao肖珍珍andGuangQiongXia夏光瓊
    Chinese Physics B 2021年5期
    關(guān)鍵詞:艷紅

    Zai-Fu Jiang(蔣再富), Zheng-Mao Wu(吳正茂), Wen-Yan Yang(楊文艷), Chun-Xia Hu(胡春霞),Yan-Hong Jin(靳艷紅), Zhen-Zhen Xiao(肖珍珍), and Guang-Qiong Xia(夏光瓊),?

    1School of Physical Science and Technology,Southwest University,Chongqing 400715,China

    2School of Mathematics and Physics,Jingchu University of Technology,Jingmen 448000,China

    3School of Physics,Chongqing University of Science and Technology,Chongqing 401331,China

    4College of Mobile Telecommunications,Chongqing University of Posts and Telecom,Chongqing 401520,China

    Keywords: photonic microwave,quantum dot laser,optical injection,optical feedback

    1. Introduction

    Semiconductor lasers (SLs) with external optical perturbations can display rich nonlinear dynamics, such as periodone (P1), multi-period (MP), chaos (CO), switching, and bistability.[1–7]Among these dynamics,the P1 oscillation has been used to generate photonic microwave signals for the development of radio over fiber (ROF) communication networks, sensors and radar systems.[8–10]In particular, the P1 microwave signal generated by an optically injected SL has attracted considerable attention due to its promising advantages,such as a nearly single sideband(SSB)spectrum,which is helpful to mitigating the power penalty in fiber transmission,widely tunable microwave frequency far over the laser’s relaxation oscillation(RO)frequency,and low cost due to alloptical structure.[8]However, the P1 dynamics inherently include phase noise caused by the spontaneous emission noise of the SLs,which could broaden the microwave linewidth and restrict the practical applications of the microwave signals.[11]Therefore, a microwave stabilization scheme with optical feedback is employed to stabilize the P1 dynamics for narrowing the microwave linewidth.[12–16]For instance,Lo et al.numerically reported that the P1 microwave linewidth can be narrowed by up to more than three orders of magnitude for an optically injected distributed-feedback(DFB)laser with ultrashort cavity optical feedback.[13]Zhuang experimentally introduced two optical feedback loops in an optically injected DFB laser to narrow the P1 microwave linewidth, and found that dual-loop optical feedback can effectively reduce the linewidth by at least one order of magnitude.[14]Simpson et al. experimentally observed a feedback-induced reduction of the P1 microwave linewidth by more than two orders of magnitude for an optically injected DFB laser subject to polarization-rotated optical feedback.[15]Ji et al. experimentally explored the effects of single and dual optical feedback on the P1 microwave linewidth of a vertical-cavity surface-emitting laser(VCSEL)under optical injection, and found that both optical feedback structures can effectively compress the linewidth by at least an order of magnitude.[16]

    Additionally,as one type of SLs,a self-assembled quantum dot (QD) laser has received extensive experimental and theoretical study interests.[17–22]Benefiting from the unique nanostructure, the QD lasers possess some excellent performances, such as low relative intensity noise,[23]low sensitivity to external optical perturbation,[24]and better temperature stability.[25,26]Relevant studies have reported the generation of photonic microwave signals through using P1 dynamics in an optically injected QD lasers,[27–30]and obtained a better SSB spectrum than that in a quantum well (QW) laser,[28,30]a large frequency tunable range,[29]a low second harmonic distortion,[30]and a narrowed microwave linewidth.[31]However,these studies are only focused on the case of QD laser operating at the ground-state(GS)emission.In fact,the QD laser is a nanostructured device,which has two lasing thresholds because of its discrete energy levels. As shown in Ref.[19],GS emission and excited-state(ES)emission appear successively with the increase of current. Whereas relevant research shows that,the QD lasers can emit exclusively on the ES versus GS emission is completely suppressed through doping the QD materials,coating the cavity facets,changing the cavity length,or using coupling gratings,[19,32–35]which is named as ES-QD laser in this study. Compared with general QD laser, the ESQD laser possess faster carriers capture rates and higher saturated gains,[35]which are helpful for enhancing the nonlinear dynamical performances.[32–35]However, to our knowledge,the research on the photonic microwaves generated by the ESQD lasers has not been reported. Our earlier work revealed that the ES-QD laser can exhibit rich nonlinear dynamic behaviors under external optical injection,in which a large area of P1 oscillation appears in the positive frequency detuning region.[36]Based on this work, we have studied the distributions of the P1 microwave frequency and microwave intensity within this region,and employed optical feedback technology to stabilize the microwave signal and narrow the microwave linewidth.

    In this study, the photonic microwave generated by the P1 dynamics of an optically injected ES-QD laser is numerically studied.The microwave frequency and microwave intensity distributions in the injection parameter space are given.Considering that the generated microwave signal has a wide linewidth of about 2 MHz, an optical feedback loop is further employed to compress the linewidth. The effects of the feedback delay time and feedback strength on the linewidth compression are discussed. Through appropriately adjusting the feedback parameters, the linewidth can be reduced by up to more than one order of magnitude.

    2. Theoretical model

    where N, S, φ are the carrier number, photon number, and phase, respectively. GS, ES, and RS represent the groundstate, excited-state, and reservoir, respectively. The superscript spon represents the spontaneous emission. I is the bias current,ρGS(=NGS/2NB)and ρES(=NES/4NB)denote occupancy probabilities in the GS and ES respectively. gESis the gain,τinis the round trip time in the cavity,ω0is the angular frequency of the laser,VSis volume of the laser field. k1and Δν denote injection strength and frequency detuning between the TSL and the solitary ES-QD laser,S0is the photon number output from solitary ES-QD laser. k2and τ represent the feedback strength and feedback delay time. Spontaneous emission noise is considered by adding Langevin noise sources FS(Fφ)in the photon number (electric field phase).[38]The physical meanings and values of other parameters are given in Table 1.The fourth-order Runge–Kutta algorithm with a time step of 1 ps is adopted for numerical simulation, and a time span of 0.5 ms is used to calculate the microwave linewidth.

    Fig.1. (a)Energy band model and carrier dynamics of the ES-QD laser and(b)scheme of an optically injected ES-QD laser with optical feedback. GS:ground-state;ES:excited-state;RS:reservoir;BS:beam splitter;TSL:tunable semiconductor laser.

    Table 1. Physical parameters of the QD lasers.[35]

    3. Results and discussion

    Figure 2 exhibits the power–current (P–I) curve and the variation of relaxation oscillation(RO)frequency with current for a solitary ES-QD laser. It can be seen from Fig. 2(a)that the threshold current of the laser is 92.0 mA, after exceeding this value the output power increases linearly with the increase of bias current. In Fig.2(b),the RO frequencies under different currents are obtained through small signal analysis,which increase nonlinearly with the increase of the bias current. In the following simulations,unless stated otherwise,the current is fixed at 184.0 mA,and corresponding RO frequency is 7.60 GHz.The dots in the figure mark the operation position of the ES-QD laser.

    First,we discuss the variations of microwave frequency f and microwave intensity P with the injection parameters, the feedback strength k2is set to 0. Figure 3 shows the mappings of f and P as a function of the injection strength k1and frequency detuning Δν. The large colored region represents the P1 states,which are excited by the undamped relaxation oscillation when the laser passes through the Hopf bifurcation line by increasing the frequency detuning.[30]The white part represents other dynamic states. It can be seen from Fig.3(a)that the microwave frequency f is continuously tunable by adjusting the frequency detuning Δν and the injection strength k1.For Δν <22.00 GHz, the microwave frequency f gradually increases with the increase of the injection strength, which is caused by the gradually enhanced redshifting effect of the cavity resonance frequency.[12]However, for Δν >22.00 GHz,the microwave frequency is almost stable with respect to injection strength and approximately equal to the Δν, which is helpful to stabilize the f against injection strength fluctuations in practical applications.[30]As shown in Fig.3(b),for a fixed Δν,as the injection strength increases,the microwave intensity P gradually increases,but slightly decreases near the boundary of the Hopf bifurcation line. It is noted that in the following discussion,for a given Δν,the injection strength k1is selected as the optimal value to maximize the output microwave intensity P.[14]

    Fig.2. The P–I curve(a)and relaxation oscillation(RO)frequency as a function of current(b).

    Fig. 3. Distributions of microwave frequency f (a) and microwave intensity P(b)in the parameter space of frequency detuning Δν against injection strength k1.

    The above results exhibit the variations of f and P with the injection parameters. In addition,the microwave linewidth is another important indicator to quantify the quality of microwave signals.[12–16]Next, we will focus on the properties of microwave linewidth and further employ optical feedback technology to narrow the linewidth. Due to the randomness of the spontaneous emission noise,the power spectrum output from the optically injected ES-QD laser has irregular fluctuations. Therefore, we use the standard deviation of the frequency distributions with powers in the power spectrum to calculate the microwave linewidth[35]

    where Δf is the microwave linewidth, ν and P(ν)denote the frequency and corresponding power respectively.

    Figure 4 shows the power spectra of the optically injected ES-QD laser operating at P1 dynamics without optical feedback (first column) and with optical feedback (second column) for different injection parameters. Here, the feedback delay time τ is fixed at 2.4 ns. Figure 4(a1)shows the scenario with(Δν, k1)=(10.00 GHz, 0.42), the microwave linewidth is about 2.0 MHz for optical injection only, which is wide.Similar to Ref. [16], we use the optical feedback technology to compress the microwave linewidth. As can be seen from Fig. 4(a2), the linewidth is reduced to 41.6 kHz when the feedback strength k2is equal to 0.022, which is evidently narrowed. It is indicated that the P1 dynamic generated from the optically injected ES-QD laser is locked by its own optical feedback signal.[13]For (Δν, k1)=(18.00 GHz, 0.71),as can be seen in Fig.4(b), the linewidth is compressed from 1.8 MHz to 37.7 kHz when k2is equal to 0.019. Moreover,for(Δν,k1)=(26.00 GHz,0.92),as can be seen in Fig.4(c),the linewidth is compressed from 2.1 MHz to 46.5 kHz when k2is equal to 0.021. These results indicate that the linewidth is effectively compressed by introducing optical feedback. Additionally,as shown in Figs.4(a2),(b2),and(c2),some strong sidebands can be observed around the microwave frequency f,which are attributed to the external cavity modes(ECMs)excited by the external optical feedback.[12,14,39]The frequency interval between two adjacent sidebands is about 416.7 MHz,which is approximately equal to the reciprocal of the feedback time τ (=2.4 ns).

    Fig. 4. Power spectra of the optically injected ES-QD laser emissions in P1 dynamics without optical feedback (first column) and with optical feedback (second column). Here the parameters are set as (Δν, k1, k2)= (a)(10.00 GHz, 0.42, 0.022), (b) (18.00 GHz, 0.71, 0.019), (c) (26.00 GHz,0.92,0.021),and the feedback delay time is fixed at τ =2.4 ns.

    In the following discussion,the effect of feedback parameters on the microwave linewidth is studied systematically.We first fix the feedback delay time τ to discuss the effect of feedback strength k2. It is worth noting that the relatively large feedback strength could destroy the stability of P1 oscillation and drive the laser to enter other dynamics.[12,13]Therefore,it is necessary to calculate the bifurcation diagram to determine the range of stable P1 oscillations. Figure 5 shows the bifurcation diagrams(first column)and the variation of microwave linewidths(second column)with feedback strength k2for different injection conditions when τ is equal to 2.4 ns. For(Δν,k1)=(10.00 GHz, 0.42), as can be seen from Fig.5(a1), the laser remains in the P1 oscillations when k2increases from 0 to about 0.60. Within this range, the microwave linewidth is calculated and displayed in Fig.5(a2). It can be seen that the linewidth gradually reduces from 2.0 MHz to 41.6 kHz when k2increases from 0 to 0.022. The mechanism of linewidth reduction is that the P1 dynamics is locked by its own optical feedback signal more strongly as the feedback strength increases.[13]Further increasing k2from 0.022 to 0.060, the microwave linewidth increases slowly accompanied by slight fluctuations. The reason is that the P1 dynamic is destroyed gradually with the increase of k2, when k2is over 0.060, the ES-QD laser starts to work in the other dynamics. In addition,according to the dotted line in the figure,one can observe that the linewidth of the P1 microwave is narrowed up to more than one order of magnitude as k2is within[0.012,0.060]. For(Δν,k1)=(18.00 GHz,0.71),as can be seen in Fig.5(b),the laser remains in the P1 oscillations when k2increases from 0 to about 0.080.Within this range,as k2increases from 0 to 0.019,the linewidth Δf gradually reduces from 1.8 MHz to 37.7 kHz,further increasing k2, Δf increases slowly. Moreover, the linewidth is narrowed up to more than one order of magnitude as k2is within[0.01,0.080]. For(Δν,k1)=(26.00 GHz,0.92),as can be seen in Fig.5(c),the ES-QD laser remains in P1 oscillation when k2is increased from 0 to 0.097. Within this range, the linewidth gradually reduces from 2.1 MHz to 46.5 kHz when k2is increased from 0 to 0.021, continue increasing k2,Δ f rises again. Additionally,from the dotted line in the figure, the linewidth is narrowed up to more than one order of magnitude as k2is within [0.011,0.076]. Therefore,the introduction of optical feedback has two effects on the linewidth. On the one hand, the P1 dynamics can be locked on to its own optical feedback signal, which is conducive to narrowing the microwave linewidth.On the other hand,for the relatively large feedback strength, the optical feedback could destroy the P1 dynamics and deteriorate the linewidth narrowing.

    Fig. 5. Bifurcation diagrams (first column) and variation of microwave linewidths Δf with feedback strength k2 (second column) under different injection conditions(Δν,k1)=(a)(10.00 GHz,0.42),(b)(18.00 GHz,0.71),and(c)(26.00 GHz,0.92)for τ =2.4 ns. Where the dotted line denotes 1/10 of the Δ f of the microwave generated by optical injection only.

    Besides the feedback strength k2,the feedback delay time τis another important parameter that affects the microwave linewidth Δ f.[12]Figure 6 shows the variation of Δf with τ for three different injection parameters (Δν, k1). It is worth mentioning that the injection strength k1is taken at the maximum microwave intensity for a fixed frequency detuning Δν, and the feedback strength k2is taken at the optimal microwave linewidth for the fixed τ =2.4 ns. Therefore, from Fig. 5, for the injection parameters (Δν, k1)=(10.00 GHz,0.5),(18.00 GHz,0.71),and(26.00 GHz,0.92),the feedback strength k2are taken as 0.022, 0.019, and 0.021 to obtain the optimal linewidths,respectively. As shown in Fig.6,for three different parameters, the microwave linewidth gradually decreases with the increase of the feedback delay time until it reaches the optimal value. After reaching the optimal value,it gradually increases as the feedback delay time increases. In order to explore the physical mechanism of the microwave linewidth variation with the feedback delay time, the power spectra for three different feedback delay times under the conditions of(Δν,k1,k2)=(18.00 GHz,0.71,0.019)are given in Fig.7. It can be seen from the figure that the employing of optical feedback can generate the ECMs close to the microwave frequency f,[39]and the mode interval is approximately equal to 1/τ. As the τ increases, the ECMs will become denser.Therefore, the P1 dynamics is locked on to its own optical feedback more strongly.[14]However, as shown in Fig. 7, for a relatively large τ, the intensity of the ECMs is increased,which will destroy the stability of the P1 oscillation and increase the microwave linewidth.

    Fig. 6. Microwave linewidth Δf versus feedback delay time τ for the parameters(Δν,k1,k2)=(a)(10.00 GHz,0.42,0.022),(b)(18.00 GHz,0.71,0.019),and(c)(26.00 GHz,0.92,0.021),where the dotted line denotes 1/10 of the Δf of the microwave generated by optical injection only.

    Fig.7. Power spectra of P1 microwave under different feedback delay times for the parameters(Δν,k1,k2)=(18.00 GHz,0.71,0.019).

    Then, to fully understand the effect of optical feedback on the linewidth Δ f for different microwave frequencies f,figure 8 shows the variation of Δf with f. Where the black circle represents the Δf obtained by optical injection only,the blue square represents the minimum Δ f obtained by optimizing the feedback strength k2after introducing optical feedback,and the red asterisk represents the optimal value of k2to obtain the minimum linewidth. In addition, the parameters are determined by the following methods, the frequency detuning Δνis increased from 10 GHz to 30 GHz. The injection strength k1is selected as the optimal value to maximize the microwave intensity for each frequency detuning Δν,and the feedback delay time τ is fixed at 2.4 ns. The microwave frequency f is determined by the frequency at the optimum microwave linewidth corresponding to each frequency detuning.As can be seen in Fig.8,before introducing optical feedback,the microwave linewidths for different f vary in the range of 1.4 MHz to 2.1 MHz, which are wide. After introducing optical feedback,the microwave linewidths vary from 34.5 kHz to 46.9 kHz and are evidently narrowed. In addition,the optimal values of k2are different for different f,which are varied within the range of[0.017,0.033]. Therefore,the microwave linewidth can be narrowed by up to more than an order of magnitude by appropriately selecting the feedback parameters for different microwave frequencies.

    Fig. 8. Linewidth Δf as a function of microwave frequency f 0 for optical injection only(black circle)and both optical injection and optical feedback(blue square)under τ=2.4 ns,where the red asterisk denotes the optimized feedback strength k2.

    The above results are obtained under a fixed current value of 184.0 mA. Finally, we discuss the effect of laser current.Figure 9 shows the optimal values of k1and k2for different laser currents and the variation of microwave linewidth with the current when k1and k2take their optimal values. As shown in Figs.9(a)and 9(b),when the bias current varies from 138 mA to 276 mA, the optimal values of k1and k2are different for different laser currents, they vary within the ranges of 0.35–0.57 and 0.022–0.031, respectively. As shown in Fig. 9(c), before employing optical feedback, the microwave linewidth Δ f varies within the range of 1.3 MHz–3.6 MHz when the bias current changes from 138 mA to 276 mA. After employing optical feedback,the microwave linewidths under different laser currents can be compressed to 23.7 kHz–86.0 kHz.

    Fig.9.(a)Optimized injection strength k1 for different laser currents,(b)optimized feedback strength k2 for different laser currents,and(c)microwave linewidth Δf as a function of current under k1 and k2 taken their optimal values. Here,Δν =10 GHz and τ =2.4 ns.

    4. Conclusion

    In summary, the enhanced photonic microwave signal generated by an optically injected ES-QD laser operating at the P1 oscillation through optical feedback stabilization is numerically researched. Within the range of the P1 dynamics caused by the optical injection, the distributions of microwave frequency and microwave intensity in injection parameter space are exhibited. It is shown that the frequency of the microwave signal can be continuously tuned by changing the frequency detuning and injection strength. For a relatively large frequency detuning, the microwave frequency is almost stable with respect to the injection strength and it approximately equal to frequency detuning, which helps to prevent frequency fluctuations in practical applications. In addition,for a fixed frequency detuning,the microwave intensity can be enhanced by changing the injection strength,which increases with the increase of the injection strength and then slowly decreases close to the Hopf bifurcation line. Moreover, in order to narrow the linewidth of the microwave signal, an optical feedback loop is further employed to the system, and the effect of feedback parameters on the linewidth is discussed.The results show that, as the feedback strength or delay time increases, owing to gradually enhanced self-injection locking effect, the linewidth gradually decreases until it reaches the optimal value. After reaching the optimal value, it gradually increases because of the gradually destroyed P1 dynamics.Additionally,through selecting the suitable feedback parameters, the microwave linewidth can be reduced by up to more than an order of magnitude for different microwave frequencies. Besides, the microwave linewidths under different laser currents can also be evidently narrowed by employing optical feedback.This research can provide theoretical support for the generation of photonic microwave signals based on the ES-QD lasers.

    猜你喜歡
    艷紅
    怎樣圍繞中心意思寫
    馮艷紅設(shè)計作品欣賞
    參花(上)(2022年12期)2022-12-16 03:00:28
    難忘的一天
    馮艷紅作品
    馮艷紅作品
    大眾文藝(2021年20期)2021-11-10 06:04:54
    與祖國同行
    力薦《星際小螞蟻》
    A Note on Stage Structure Predator-Prey Model with Prey Refuge
    向日葵
    老實的微笑
    国产熟女欧美一区二区| 亚洲精品久久午夜乱码| 亚洲中文av在线| 亚洲成色77777| 欧美激情高清一区二区三区 | 久久精品国产亚洲av高清一级| 亚洲人成77777在线视频| 欧美最新免费一区二区三区| 国产精品av久久久久免费| 国产成人精品无人区| 午夜av观看不卡| 日本vs欧美在线观看视频| www.精华液| 日本av手机在线免费观看| 春色校园在线视频观看| 精品少妇内射三级| 欧美另类一区| 男人操女人黄网站| 十分钟在线观看高清视频www| 精品久久久久久电影网| 国产精品人妻久久久影院| 熟女少妇亚洲综合色aaa.| 制服人妻中文乱码| 国产精品 欧美亚洲| 午夜久久久在线观看| 咕卡用的链子| 亚洲成人一二三区av| 午夜影院在线不卡| 国产成人精品在线电影| 国产精品一国产av| 国产精品欧美亚洲77777| 丰满少妇做爰视频| 妹子高潮喷水视频| 国产色婷婷99| 黄色配什么色好看| 你懂的网址亚洲精品在线观看| 中文字幕人妻丝袜制服| 男女免费视频国产| 亚洲欧美一区二区三区黑人 | 欧美少妇被猛烈插入视频| 亚洲精品国产色婷婷电影| 国产片内射在线| 精品福利永久在线观看| 久久婷婷青草| 亚洲人成网站在线观看播放| 深夜精品福利| 精品人妻熟女毛片av久久网站| 成人毛片60女人毛片免费| 国产精品偷伦视频观看了| 一级片'在线观看视频| 大片免费播放器 马上看| 亚洲av综合色区一区| 欧美av亚洲av综合av国产av | 欧美老熟妇乱子伦牲交| 欧美最新免费一区二区三区| a级毛片在线看网站| 久久99蜜桃精品久久| 五月伊人婷婷丁香| 高清av免费在线| 观看美女的网站| a级毛片黄视频| 狠狠精品人妻久久久久久综合| 久久国产精品男人的天堂亚洲| 在线精品无人区一区二区三| 亚洲国产精品一区二区三区在线| 日本色播在线视频| 亚洲一级一片aⅴ在线观看| 黄片播放在线免费| 久久国内精品自在自线图片| 侵犯人妻中文字幕一二三四区| 老汉色∧v一级毛片| 亚洲图色成人| 国产黄色视频一区二区在线观看| www.精华液| 国产男女内射视频| 街头女战士在线观看网站| 精品一区二区三区四区五区乱码 | 久久韩国三级中文字幕| 水蜜桃什么品种好| 日韩电影二区| 国产免费现黄频在线看| 亚洲天堂av无毛| 亚洲情色 制服丝袜| 久久精品夜色国产| 男女无遮挡免费网站观看| 黄色一级大片看看| 国产精品成人在线| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 亚洲三区欧美一区| 欧美精品高潮呻吟av久久| 熟女av电影| 美女脱内裤让男人舔精品视频| 熟女电影av网| 天美传媒精品一区二区| 观看美女的网站| 侵犯人妻中文字幕一二三四区| 精品人妻一区二区三区麻豆| 成人午夜精彩视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩精品有码人妻一区| 久久午夜综合久久蜜桃| 一区二区三区乱码不卡18| 久久久久久免费高清国产稀缺| 在线观看一区二区三区激情| 尾随美女入室| 久久精品人人爽人人爽视色| 欧美亚洲 丝袜 人妻 在线| 自拍欧美九色日韩亚洲蝌蚪91| 日日爽夜夜爽网站| 日韩 亚洲 欧美在线| 如何舔出高潮| 国产极品天堂在线| 1024视频免费在线观看| 性少妇av在线| 91久久精品国产一区二区三区| 丝袜美足系列| 在线 av 中文字幕| 啦啦啦啦在线视频资源| 国产精品女同一区二区软件| 五月开心婷婷网| 国产白丝娇喘喷水9色精品| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| 国产免费一区二区三区四区乱码| 亚洲精品国产av蜜桃| 捣出白浆h1v1| 午夜日本视频在线| 最近最新中文字幕免费大全7| 久久午夜福利片| 国产日韩欧美亚洲二区| 欧美日韩综合久久久久久| 视频区图区小说| 欧美日韩亚洲国产一区二区在线观看 | 精品第一国产精品| 色视频在线一区二区三区| 亚洲国产欧美网| 欧美亚洲日本最大视频资源| 精品人妻熟女毛片av久久网站| 亚洲av欧美aⅴ国产| 亚洲综合色惰| 性色avwww在线观看| 国产日韩欧美亚洲二区| 日本免费在线观看一区| 亚洲天堂av无毛| 日本爱情动作片www.在线观看| 97人妻天天添夜夜摸| 天天影视国产精品| 女人久久www免费人成看片| 亚洲精品自拍成人| 亚洲综合色惰| 成人影院久久| 久久人人爽人人片av| 国产午夜精品一二区理论片| 男的添女的下面高潮视频| 国产精品欧美亚洲77777| 一本大道久久a久久精品| 国产亚洲av片在线观看秒播厂| 夫妻性生交免费视频一级片| 又大又黄又爽视频免费| 嫩草影院入口| 啦啦啦啦在线视频资源| 1024香蕉在线观看| 在线天堂最新版资源| 日本av免费视频播放| 精品第一国产精品| 另类精品久久| 亚洲欧美成人精品一区二区| 永久网站在线| 免费不卡的大黄色大毛片视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品999| videosex国产| 黄片无遮挡物在线观看| av网站在线播放免费| 丰满少妇做爰视频| 欧美日韩亚洲高清精品| 亚洲人成网站在线观看播放| 成人免费观看视频高清| a级毛片在线看网站| 欧美亚洲 丝袜 人妻 在线| 久久久久久伊人网av| 亚洲 欧美一区二区三区| 久久久久久人人人人人| 黄片小视频在线播放| 国产极品天堂在线| 大片电影免费在线观看免费| 美国免费a级毛片| 国产亚洲精品第一综合不卡| 久久久久久久久久久免费av| 亚洲精品美女久久久久99蜜臀 | 免费高清在线观看视频在线观看| 亚洲美女视频黄频| 美女国产视频在线观看| 2021少妇久久久久久久久久久| 在线观看免费视频网站a站| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 国产深夜福利视频在线观看| 久久精品国产亚洲av高清一级| 亚洲精品国产一区二区精华液| 亚洲精品日本国产第一区| 极品少妇高潮喷水抽搐| 在线天堂最新版资源| www.精华液| 国产乱来视频区| 亚洲精品美女久久av网站| 亚洲国产av影院在线观看| 一本久久精品| 美女午夜性视频免费| 视频在线观看一区二区三区| 欧美另类一区| 午夜激情av网站| 久久久精品区二区三区| 看免费av毛片| 少妇人妻精品综合一区二区| 男女午夜视频在线观看| 久久精品人人爽人人爽视色| 日韩伦理黄色片| 国产免费视频播放在线视频| 婷婷成人精品国产| 99re6热这里在线精品视频| 国产极品天堂在线| 亚洲色图综合在线观看| 晚上一个人看的免费电影| 国产精品国产av在线观看| 免费高清在线观看视频在线观看| 男人操女人黄网站| 中文字幕人妻丝袜一区二区 | 久久人人97超碰香蕉20202| 午夜福利,免费看| 黄频高清免费视频| 一级毛片 在线播放| 天天躁日日躁夜夜躁夜夜| 久久国内精品自在自线图片| 晚上一个人看的免费电影| 欧美人与善性xxx| 欧美精品人与动牲交sv欧美| 在线观看三级黄色| 水蜜桃什么品种好| 久久久欧美国产精品| 亚洲美女黄色视频免费看| 一区在线观看完整版| av免费观看日本| 国产免费视频播放在线视频| 在线免费观看不下载黄p国产| 亚洲婷婷狠狠爱综合网| 久久国产精品男人的天堂亚洲| 男女免费视频国产| 国产男女内射视频| 久久久久国产精品人妻一区二区| 午夜福利乱码中文字幕| 亚洲人成电影观看| 久久午夜福利片| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 美国免费a级毛片| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看| 九色亚洲精品在线播放| 国产在线免费精品| 啦啦啦在线观看免费高清www| 麻豆乱淫一区二区| 色94色欧美一区二区| 2018国产大陆天天弄谢| 建设人人有责人人尽责人人享有的| 久久精品人人爽人人爽视色| 日韩大片免费观看网站| 男人爽女人下面视频在线观看| 两个人免费观看高清视频| 曰老女人黄片| 欧美日韩av久久| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 性色avwww在线观看| 午夜免费观看性视频| 伊人亚洲综合成人网| 人人澡人人妻人| 在线观看人妻少妇| 在线观看免费日韩欧美大片| 91精品伊人久久大香线蕉| 天天躁狠狠躁夜夜躁狠狠躁| 电影成人av| 欧美精品av麻豆av| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| 大码成人一级视频| 亚洲精品中文字幕在线视频| 免费女性裸体啪啪无遮挡网站| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 看十八女毛片水多多多| 99香蕉大伊视频| 亚洲 欧美一区二区三区| 韩国av在线不卡| 赤兔流量卡办理| 街头女战士在线观看网站| 午夜福利视频精品| 国产又爽黄色视频| 边亲边吃奶的免费视频| 国产高清国产精品国产三级| 在线免费观看不下载黄p国产| 99久久精品国产国产毛片| 亚洲精品久久成人aⅴ小说| 精品国产一区二区三区久久久樱花| 日本-黄色视频高清免费观看| 男女高潮啪啪啪动态图| 国产一级毛片在线| 精品酒店卫生间| 日韩中字成人| 国产 精品1| 熟女电影av网| 亚洲精品久久午夜乱码| 秋霞伦理黄片| 亚洲美女视频黄频| 激情视频va一区二区三区| 久久精品国产亚洲av高清一级| 色视频在线一区二区三区| 老女人水多毛片| 国产精品国产三级专区第一集| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 在线看a的网站| 国产精品久久久久久av不卡| 日韩在线高清观看一区二区三区| 精品国产乱码久久久久久小说| 国语对白做爰xxxⅹ性视频网站| 欧美变态另类bdsm刘玥| 观看av在线不卡| 国语对白做爰xxxⅹ性视频网站| 又大又黄又爽视频免费| 亚洲内射少妇av| 丰满饥渴人妻一区二区三| 亚洲人成77777在线视频| 久久久久视频综合| 美女视频免费永久观看网站| 色网站视频免费| 午夜激情久久久久久久| 免费黄色在线免费观看| 日韩,欧美,国产一区二区三区| 亚洲国产欧美在线一区| 精品少妇一区二区三区视频日本电影 | 在线免费观看不下载黄p国产| 国产一区有黄有色的免费视频| 国产欧美日韩一区二区三区在线| 80岁老熟妇乱子伦牲交| 日韩电影二区| 这个男人来自地球电影免费观看 | 亚洲精品久久成人aⅴ小说| 午夜日本视频在线| 精品国产国语对白av| 久久毛片免费看一区二区三区| 26uuu在线亚洲综合色| 中文字幕精品免费在线观看视频| 亚洲精品一二三| 桃花免费在线播放| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 各种免费的搞黄视频| 黄网站色视频无遮挡免费观看| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区大全| 我的亚洲天堂| 精品一品国产午夜福利视频| 日韩av在线免费看完整版不卡| 亚洲成人手机| 午夜福利一区二区在线看| 国产国语露脸激情在线看| a 毛片基地| 久久国产精品大桥未久av| 啦啦啦在线观看免费高清www| 国产精品一二三区在线看| 在线天堂最新版资源| 午夜免费鲁丝| 女人高潮潮喷娇喘18禁视频| 黄片无遮挡物在线观看| 一级a爱视频在线免费观看| 久久精品人人爽人人爽视色| 青青草视频在线视频观看| 国产xxxxx性猛交| 日韩不卡一区二区三区视频在线| 国产亚洲一区二区精品| 成人毛片a级毛片在线播放| 亚洲欧美一区二区三区久久| 十八禁网站网址无遮挡| 制服人妻中文乱码| 在线观看免费视频网站a站| 一本—道久久a久久精品蜜桃钙片| 狠狠精品人妻久久久久久综合| 汤姆久久久久久久影院中文字幕| 午夜福利影视在线免费观看| 伦理电影大哥的女人| 天美传媒精品一区二区| 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 女人高潮潮喷娇喘18禁视频| 成人国产麻豆网| 香蕉精品网在线| 免费高清在线观看视频在线观看| 老司机影院成人| 色94色欧美一区二区| 国产精品女同一区二区软件| 巨乳人妻的诱惑在线观看| 99热国产这里只有精品6| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 日日爽夜夜爽网站| 亚洲视频免费观看视频| 国产激情久久老熟女| 老女人水多毛片| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| 亚洲精品久久久久久婷婷小说| 九色亚洲精品在线播放| 亚洲一码二码三码区别大吗| 女性被躁到高潮视频| 永久网站在线| 婷婷色综合www| 成人亚洲精品一区在线观看| xxxhd国产人妻xxx| 久久久久国产网址| 久久99热这里只频精品6学生| 午夜免费观看性视频| 色婷婷av一区二区三区视频| 在线亚洲精品国产二区图片欧美| 国产黄频视频在线观看| 亚洲精品第二区| 久久久亚洲精品成人影院| 中文字幕精品免费在线观看视频| 看免费成人av毛片| 十分钟在线观看高清视频www| 中文乱码字字幕精品一区二区三区| 99国产精品免费福利视频| 国产麻豆69| 亚洲欧美一区二区三区国产| 成人免费观看视频高清| av天堂久久9| kizo精华| 男女国产视频网站| 日韩欧美一区视频在线观看| 一级片'在线观看视频| 日本-黄色视频高清免费观看| 久久99热这里只频精品6学生| 人妻一区二区av| 成人影院久久| a级片在线免费高清观看视频| 国产精品免费大片| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 女人被躁到高潮嗷嗷叫费观| 老鸭窝网址在线观看| 日本欧美国产在线视频| 欧美日韩综合久久久久久| 久久99热这里只频精品6学生| 免费在线观看完整版高清| 久久久精品94久久精品| 一区福利在线观看| 成年女人毛片免费观看观看9 | 亚洲av综合色区一区| 男的添女的下面高潮视频| 一本大道久久a久久精品| 精品酒店卫生间| 在线观看国产h片| 久热这里只有精品99| 女人精品久久久久毛片| 超碰97精品在线观看| 边亲边吃奶的免费视频| 国产成人a∨麻豆精品| 欧美+日韩+精品| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 熟女少妇亚洲综合色aaa.| 国产精品久久久av美女十八| 亚洲国产av影院在线观看| 欧美 日韩 精品 国产| 亚洲一区二区三区欧美精品| 在线 av 中文字幕| 色网站视频免费| 国产av国产精品国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 交换朋友夫妻互换小说| 久久韩国三级中文字幕| 亚洲精品美女久久av网站| 中国国产av一级| 亚洲视频免费观看视频| 久久久国产一区二区| 在线观看一区二区三区激情| 日韩大片免费观看网站| 十八禁高潮呻吟视频| 亚洲美女黄色视频免费看| 人妻少妇偷人精品九色| 亚洲国产精品一区二区三区在线| 99久国产av精品国产电影| 国产成人精品久久久久久| 免费在线观看视频国产中文字幕亚洲 | 久久久久久人人人人人| 欧美日韩视频精品一区| 超碰97精品在线观看| 两性夫妻黄色片| 啦啦啦啦在线视频资源| 只有这里有精品99| 三级国产精品片| 一区二区三区精品91| 韩国高清视频一区二区三区| 一区二区三区精品91| 韩国高清视频一区二区三区| 91国产中文字幕| 人妻系列 视频| 国产精品偷伦视频观看了| 久久久精品区二区三区| 青草久久国产| 另类精品久久| 五月伊人婷婷丁香| 久久人人97超碰香蕉20202| 少妇人妻 视频| 久久人人97超碰香蕉20202| 国产精品秋霞免费鲁丝片| 九九爱精品视频在线观看| 极品人妻少妇av视频| 国产乱人偷精品视频| 99热网站在线观看| 97在线人人人人妻| 亚洲av男天堂| 久久精品国产亚洲av天美| 人人妻人人澡人人看| 亚洲国产成人一精品久久久| 中文字幕人妻熟女乱码| 999精品在线视频| 美女主播在线视频| 免费黄网站久久成人精品| 欧美bdsm另类| 天天躁夜夜躁狠狠躁躁| 一级毛片 在线播放| 亚洲第一av免费看| 欧美少妇被猛烈插入视频| 亚洲视频免费观看视频| 精品第一国产精品| 99re6热这里在线精品视频| 天堂8中文在线网| 精品人妻熟女毛片av久久网站| 一区二区三区四区激情视频| 亚洲在久久综合| 亚洲 欧美一区二区三区| 日本黄色日本黄色录像| 久久青草综合色| 色94色欧美一区二区| 一本久久精品| 国产成人精品无人区| 一级a爱视频在线免费观看| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的| 午夜av观看不卡| 亚洲美女搞黄在线观看| 成人国语在线视频| 男女无遮挡免费网站观看| 精品一区在线观看国产| 欧美+日韩+精品| 久久 成人 亚洲| 夫妻性生交免费视频一级片| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 观看av在线不卡| av在线app专区| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 美女xxoo啪啪120秒动态图| 免费大片黄手机在线观看| 人妻人人澡人人爽人人| 国产成人精品久久二区二区91 | 欧美亚洲日本最大视频资源| 国产激情久久老熟女| 午夜福利在线免费观看网站| 久久久精品区二区三区| 中文精品一卡2卡3卡4更新| 国产精品.久久久| 侵犯人妻中文字幕一二三四区| 色吧在线观看| 精品人妻熟女毛片av久久网站| 欧美日韩精品网址| 日日撸夜夜添| 久久久久精品人妻al黑| 国产成人aa在线观看| 久久久久久伊人网av| 亚洲精品美女久久久久99蜜臀 | 亚洲综合精品二区| 国产精品一国产av| 久久精品aⅴ一区二区三区四区 | 99国产精品免费福利视频| 亚洲国产精品成人久久小说| 精品一区二区免费观看| 亚洲久久久国产精品| 成年人午夜在线观看视频| 一区二区av电影网| 国产成人一区二区在线| 9热在线视频观看99| 日日撸夜夜添| 日韩,欧美,国产一区二区三区| 一级a爱视频在线免费观看| 18禁裸乳无遮挡动漫免费视频| 岛国毛片在线播放| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 国产免费现黄频在线看| 热re99久久精品国产66热6| 国产激情久久老熟女| 丝袜美腿诱惑在线| 中文字幕制服av| 成人18禁高潮啪啪吃奶动态图|