• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cathodic shift of onset potential on TiO2 nanorod arrays with significantly enhanced visible light photoactivity via nitrogen/cobalt co-implantation*

    2021-05-24 02:22:32XianyinSong宋先印HongtaoZhou周洪濤andChangzhongJiang蔣昌忠
    Chinese Physics B 2021年5期

    Xianyin Song(宋先印), Hongtao Zhou(周洪濤), and Changzhong Jiang(蔣昌忠)

    College of Materials Science and Engineering,Hunan University,Changsha 410082,China

    Keywords: ion implantation,TiO2,surface sputtering,photo-electrochemical water splitting

    1. Introduction

    Since Fujishima and Honda reported the photo-oxidation of water on TiO2in 1972,[1]TiO2has been extensively investigated as a photoanode material due to its high water-oxidation activity, excellent photostability, and earth abundance.[2–4]However, the poor visible light photo-activity induced by its wide band gap (Eg=3.0 eV) is the major limitation for its further application as photo-anode.[5]Although anionic doping(e.g., N,S)could effectively increase the visible-light response of TiO2, it also causes a significant anodic shift in current onset potential.[6–8]And this can be ascribed to the introduced impurity states above the valence band maximum(VBM)and large number of surface lattice defects,which decrease the oxidative capability and surface transfer dynamics of photo-generated holes.[9,10]Meanwhile,the onset potential of photo-anodes plays a critical role in building highly efficient and unassisted hetero-type PEC water-splitting cells.[11–13]

    To reduce the onset potential, the most commonly used method is loading various oxygen evolution catalysts on anion-doped TiO2.[8,14]This method could efficiently decrease onset potential;however,the loaded electrocatalyst layers were easy to fall off and even affected the light-harvesting of the underneath semiconductor. Besides,Jang et al.reported another re-growth strategy to reduce structural disorders at the surface of photoanodes and had achieved cathodic shift in turn-on voltage.[11]However,this method is uncontrollable.Therefore,a general approach with high controllability is still desired.

    Ion implantation, a typical surface engineering technology,has been widely used to tailor the electronic properties of semiconductor in industry.[15]It is a general method for introducing different and/or multiple elements of interest into semiconductor for systematic studies.[7]The implanted ions are presented in a highly dispersed state in the TiO2lattice.[10,16]Meanwhile,as a compulsive doping approach,high-energy ion bombardment could not only produce lattice defects,but also induce surface sputtering effect.[17–19]

    Herein, considering the high controllability at impurity distribution and surface sputtering effect of ion implantation technology,[16,20]we used ion-implantation approach to codope nitrogen and cobalt into TiO2nanorods for PEC water oxidation (Fig. 1(a)). Our results demonstrate that the surface lattice disorder of N-TiO2can be effectively removed by surface synergic sputtering of nitrogen/cobalt ions. And the surface synergic sputtering endows a cathodic shift of 350 mV in onset potential and more than 6.5 times increase of visible light photo-activity for N/Co-TiO2samples, relative to only nitrogen doping (N-TiO2). Our results demonstrated ion implantation was a novel and useful strategy for cathodic shift of TiO2photo-anode with improved catalytic activity.

    2. Methods

    2.1. Sample preparation

    The TiO2nanorod array was grown on FTO glass via a well-developed hydrothermal method.[21]The obtained TiO2nanorod arrays were then annealed at temperature 550°C for 3 hours in air. The nitrogen ions and cobalt ions were coimplanted into the TiO2nanorod array using a Kaufman ion source and a metal vapor vacuum arc (MEVVA) ion source implanter, respectively. The as-implanted TiO2were finally annealed at 550°C for 3 hours in high vacuum(approximately 10?4Pa) (Fig. 1(b)). The nitrogen-doped and cobalt-doped TiO2nanorod arrays were also prepared via ion implantation and subsequent high-vacuum annealing procedures.

    Fig.1. (a)Simplified diagram schematic of N/Co ion co-implantation. (b)Schematic diagram of the fabrication process of N/Co-TiO2 by ion implantation method. (c)SRIM calculated concentration profiles of N ions and damage(Ti recoil and O recoil)in TiO2 at the implantation energy of 30 keV to a dose of 3×1015 ions/cm2. (d)SRIM simulated surface sputtering yield by 30-keV N ions and 119-keV Co ions.

    2.2. Photo-electrochemical measurements

    Photo-electrochemical (PEC) measurements were performed in a three-electrode cell under a solar simulator(a 500-W xenon lamp coupled with an AM 1.5 G filter) at an illumination intensity of 100 mW/cm2. The TiO2photo-anodes were used as working electrodes, and a Pt foil was used as a counter electrode. An Ag/AgCl(saturated KCl)electrode was served as reference electrodes and 1.0-M NaOH aqueous solution(pH=13.6)was used as the electrolyte. The illuminated area was fixed at 0.785 cm2(a sealing ring with 1 cm in diameter). The measured potentials were converted to reversible hydrogen electrode (RHE) potential according to the Nernst equation

    2.3. Material characterization

    Scanning electron microscopy(SEM)was performed on a JEOL S-4800 microscope. Transmission electron microscopy(TEM)were carried out on a JEOL JEM2010. X-ray diffraction (XRD) patterns were recorded using a Bruker AXS, D8 Advance x-ray powder diffractometer with Cu-Kα irradiation(wavelength 1.5418 ?A).Raman spectroscopy was collected using a commercial Raman microscope(HR800, Horiba)and a laser emitting at 488 nm was served as the excitation source.X-ray photoelectron spectroscopy (XPS) experiments were done on a Thermo Scientific ESCALAB 250Xi system using Al Kα radiation source of 1486.6 eV,with C 1s(284.8 eV)as calibration reference.

    3. Results and discussion

    3.1. SRIM simulation

    An implanted high-energy ion will lose its energy through a series of cascade collisions with the target atomic nucleus and extranuclear electrons, and its distribution law in the target material is clearly recognized and well determined. We can accurately design the depth distribution of dopant ions in TiO2through adjusting the ion implantation energy.

    Besides,the atomic collision can transfer enough energy to target atoms to produce irradiation damage and surface sputtering. Figure 1(c)shows the calculated concentration profiles for implanted N ions,as well as damages(Ti recoil and O recoil)in TiO2according to SRIM simulation. The simulations show the maximum defect damage is much closer to the surface than the maximum N ion location. Meanwhile, the simulated surface sputtering yield of TiO2is shown in Fig. 1(d).Clearly, the sputtering yield induced by 119-keV Co ion is much higher than that of 30-keV N ion. In addition,the sputtering yield of lattice oxygens is more than twice than that of Ti atoms,showing preferential sputtering to oxygen atoms. This is consistent with previous experiment reports.[18,20]

    3.2. Structure characterization

    Figures 2(a)–2(h) show the SEM images of the original TiO2, N-TiO2, Co-TiO2, and N/Co-TiO2. The pristine TiO2nanorod presents a smooth side face and rectangular cross section with some bumps at the top. And the morphology of N-TiO2and Co-TiO2do not exhibit obvious changes compared to the pristine TiO2. However, the rough cross-section at the top of nanorods becomes smoother for N/Co-TiO2samples (Figs. 2(g)–2(h)). Meanwhile, the N, Co co-implanted TiO2samples without subsequent annealing treatment (asimplanted N/Co-TiO2)have already presented smoother crosssection at the top, as shown in Fig. S1 in Supporting information. It means TiO2nanorod tip can be effectively etched by the synergic sputtering of high-energy nitrogen ions and cobalt ions. It is worth noting that the irradiation damages at the top of TiO2nanorod have been effectively removed at the same time, confirmed by the HRTEM results as shown in Fig. S2. Besides, figures S3(a)–S3(b) also show that the surface etching become more evident as increasing the cobalt ion dose. The surface sputtering yield and ion irradiation induced surface patterns are affected by multiple factors, such as ion species, ion energy, crystal orientation, temperature of substrate materials,etc.[17,19,21]While,it needs to be emphasized that the surface synergic sputtering of N/Co ions is not the simple dose superimposed effect,as these surface etching is obviously different from our previous C/N ion co-implantation and high-dose Cr ion implantation.[10,16]Even though,the inherent mechanism of synergic sputtering by N/Co ions here needs to be further studied.

    Fig. 2. SEM images of [(a) and (b)] the pristine TiO2, [(c) and (d)] nitrogen-doped TiO2 with a nitrogen dose of 3×1015 ions/cm2 (N-TiO2), [(e)and (f)] cobalt-doped TiO2 with a cobalt dose of 3×1015 ions/cm2 (Co-TiO2), [(g) and (h)] nitrogen/cobalt co-doped TiO2 with a nitrogen dose of 3×1015 ions/cm2 and a cobalt dose of 3×1015 ions/cm2 (N/Co-TiO2). (i)XRD patterns of FTO,pristine TiO2,N-TiO2,Co-TiO2,and N/Co-TiO2. (j)Raman spectra of pristine TiO2,N-TiO2,Co-TiO2,and N/Co-TiO2.

    Figure 2(i) displays the XRD patterns of FTO substrate, pristine TiO2, N-TiO2, Co-TiO2, and N/Co-TiO2. It is indicated that all the samples were rutile phase TiO2[22]and no additional phase was detected after ion implantation and annealing, even for high-dose ion implantation samples(Fig.S3(c)).It further demonstrates that the implanted ions are presented in a highly dispersed state in the TiO2lattice via ionimplantation method. Raman spectroscopy studies also confirmed the conclusion of XRD analysis. There are four typical Raman-active modes with frequencies at 610, 447, 235, and 141 cm?1(Fig.2(j)and Fig.S3(d)),corresponding to the A1g,Eg, multi-photon and B1g modes of the rutile space group(P42/mnm), respectively.[23]However, it is also noteworthy that some new modes emerge at the range from 700 cm?1to 900 cm?1for nitrogen-doped TiO2, suggesting structural changes occurred after doping.[2]

    3.3. Photo-electrochemical measurement

    PEC performances were investigated under a simulated solar irradiation of 100 mW/cm2with or without through a visible-light cutoff filter of 420 nm. Figure 3(a) shows the linear sweep voltammogram collected for pristine TiO2, NTiO2, and N/Co-TiO2under dark and AM 1.5 G irradiation.Compared to the pristine TiO2, the N-TiO2sample exhibits an enhanced photocurrent density under high-bias voltages(>1.6 V versus RHE), but nearly 0.6-V anodic shift in current onset potential is observed,which directly leads to a much lower photocurrent density(0.17 mA/cm2)at the typical voltage of 1.23 V versus RHE.However,as the Co ions was subsequently implanted into N doped TiO2,the photocurrent density of N/Co-TiO2sample reaches 0.73 mA/cm2at 1.23 V versus RHE under simulated solar irradiation, which is more than twice higher than that of the pristine TiO2(0.33 mA/cm2)obtained at the same potential. Most importantly, relative to the negligible visible-light response of pristine TiO2as expected, the N/Co-TiO2sample showed a significant cathodic shift of 350 mV in onset potential and more than 6.5 times increase of visible-light catalytic activity than that of N-TiO2(0.46 mA/cm2versus 0.07 mA/cm2at 1.23 V versus RHE)(Fig. 3(b)). In addition, the visible-light PEC activity of Co-TiO2was also studied. Figure S4 in Supporting information shows the increase of visible-light catalytic activity for Co-TiO2is slight and negligible.

    The dosage effects of N/Co ions on PEC performance were also studied (Fig. 3(c)). The optimized PEC performance for N/Co co-implanted TiO2was obtained with an implantation ion fluence of 3×1015ions/cm2nitrogen and 3×1015ions/cm2cobalt. Further increase of cobalt implantation dose can induce a decrease in photo-activity. The excessive Co ion implantation could produce other irreparable surface lattice damages that also can act as the recombination centers to degrade the overall photo-activity,despite high-dose Co doped TiO2(Co+-TiO2)shows enhanced visible-light catalytic activity(see Fig.S5).

    Fig.3. (a)Linear sweep voltammetry of TiO2,N-TiO2,and N/Co-TiO2 under AM 1.5 G irradiation. (b)Linear sweep voltammetry of TiO2,N-TiO2,and N/Co-TiO2 under visible light irradiation. (c) The histograms of AM 1.5 G and visible-light photocurrent density for N/Co co-doped TiO2 with different cobalt doses to the same nitrogen dose of 3×1015 ions/cm2.

    3.4. Chemical state analysis

    XPS measurements were carried out to further investigate the chemical states of N and Co atoms in TiO2, particularly for N-TiO2and N/Co-TiO2samples. The survey spectrum of N/Co-TiO2sample shows the presence of weak N and Co signals (Fig. S6(a)), and the carbon signals were used for calibration of the binding energy(Fig.S6(b)). Figure 4(a)shows N 1s spectra of N-TiO2and N/Co-TiO2samples. There are several broad peaks from 394 eV to 404 eV,which can be deconvolved into three peaks located at around 402, 400, and 396 eV corresponding to the chemical bonding of N–N,N–O,and N-Ti bonds, respectively.[7,8]Between them, the substitution N-Ti states are mainly responsible for the visible light absorption according to previous theoretical and experimental evidences.[8,24,25]A negative shift (~0.26 eV) of N-Ti peak can be observed in N/Co-TiO2samples, suggesting the increasing electron density around N atoms. However,this shift cannot be ascribed to the N–Co interaction,because the binding energy of N–Co is stronger than N-Ti bonding.[8,26]

    Figure 4(b) shows the XPS Co 2p spectra of Co-TiO2and N/Co-TiO2. Two peaks centered at 781 eV and 796.5 eV are observed, which can be assigned to Co 2p3/2and Co 2p1/2of Co2+in TiO2, respectively.[27,28]And it can be seen that two satellite peaks located at approximately 786.6 eV and 802.8 eV appeared, which also can be ascribed to Co2+species,[27]consistent with the literature values of Co-doped TiO2.[29,30]Impressively, the Co 2p spectrum of N/Co-TiO2also exhibits a negative shift in binding energy. Meanwhile,similar shift to lower energy region for N/Co-TiO2samples is also observed in XPS Ti 2p and O 1s spectra, compared to N-TiO2as shown in Figs. 4(c)–4(d). The negative shift in XPS spectra of N/Co-TiO2can be ascribed to the excess electrons from oxygen vacancies transferring to other atoms. And the more oxygen vacancies incorporated into N/Co-TiO2can arise from the preferential sputtering of lattice oxygen in TiO2by high-energy N/Co ions,which has confirmed in Figs.1(d)and 2(g)–2(h).

    Fig.4. (a)XPS N 1s spectra of N-TiO2 and N/Co-TiO2,(b)XPS Co 2p spectra of Co-TiO2 and N/Co-TiO2,(c)XPS Ti 2p spectra,and(d)O 1s spectra of N-TiO2 and N/Co-TiO2.

    3.5. Electrochemical characterization

    To further clarify the intrinsic electronic properties of N-TiO2and N/Co-TiO2, we have performed electrochemical impedance investigations. The Mott–Schottky plots was used to calculate the carrier densities and flat band potential at the electrode/electrolyte interface according to the equations given below:

    where ε is the dielectric constant of rutile TiO2(ε =170),[5]ε0is the permittivity of vacuum, e0is the electron charge,V is the applied potential, C is the capacitance between TiO2and electrolyte(in units of F·cm?2), Ndis the carrier density,VFBis the flat band potential, K is the Boltzmann constant,and T is the absolute temperature (in unit K). In Fig. 5(a)and Fig. S7, the positive slope of Mott–Schottky plots indicates the n-type semiconductor characteristics. Obviously,the N/Co-TiO2exhibits a smaller slope than TiO2and NTiO2, indicating a much higher donor density. The carrier densities of TiO2, N-TiO2, and N/Co-TiO2calculated from Eq. (1) are 1.88×1017, 1.21×1021, and 2.43×1021cm?3, respectively. The increased donor concentration of N/Co-TiO2is mainly attributed to the incorporated oxygen vacancies by high-vacuum annealing and preferential sputtering of lattice oxygen. And these oxygen vacancies could serve as electron donors in TiO2[5,7]and enhance the charge separation efficiency from bulk to surface.[7,8]

    However, large numbers of surface and bulk defects are also introduced during the ion implantation. Although partial of lattice defects have been repaired after subsequent heat treatments, many defects still survived at the surface of Ndoped TiO2(Fig. S2(b)), especially under high-dose ion implantation. These surface lattice disorders act as deep energy level, which can result in Fermi level pinning and a significant anodic shift of the flat band potential (VFB).[11,20,31]Fortunately, these surface defects have been effectively removed through the surface synergic sputtering induced by high-energy N/Co ions (Fig. S2). Therefore, the N/Co-TiO2sample displays a huge cathodic shift of VFBand onset potential,relative to the N-TiO2(Figs.5(a)and 3(a)).

    Fig. 5. (a) Mott–Schottky curves for N-TiO2 and N/Co-TiO2 samples collected at the frequency of 1 kHz in dark. (b) Nyquist plots obtained at a potential of 1.23 V(versus RHE)under AM 1.5G irradiation.

    Finally, we will further investigate the charge transfer properties at the TiO2/electrolyte interfaces for N-TiO2and N/Co-TiO2through the electrochemical impedance spectroscopy(EIS).Figures 5(b)and S8 show the Nyquist plots of N-TiO2and N/Co-TiO2acquired from EIS measurements. All the Nyquist plots exhibited semi-circles and the data were well fitted by a typical Randles circuit model (insets, Fig. 5(b)),which consisted of the total series resistance (RS), constant phase angle element (CPECT), and charge-transfer resistance(RCT)at the TiO2/electrolyte interfaces.[7,32]The fitted charge transfer resistance (RCT) for N/Co-TiO2was less than half than that of N-TiO2(detailed values, see Table S1), indicating superior charge transfer kinetics of photo-generated carriers at the electrode/electrolyte interface for N/Co co-implanted TiO2. As a consequence, the N/Co-TiO2samples show obviously increased PEC performances, compared to the N-TiO2(Fig.3).

    4. Conclusion

    In summary, we have successfully achieved a huge cathodic shift in onset potential for TiO2photo-anode with significantly enhanced visible light photo-electrochemical performances through N/Co co-implantation. Due to the synergic sputtering of implanted N/Co ions,the surface lattice disorder induced by ion bombardment has been effectively removed.As a consequence,the N/Co co-implanted TiO2exhibits a cathodic shift of 350 mV in onset potential and more than 6.5 times increase of visible-light photocurrent density at 1.23 V versus RHE relative to only N-implanted TiO2. Our work demonstrates that ion implantation technology is a powerful method to modulate the band structure of photo-electrodes,and thus improve their PEC performances. We believe ion implantation is a general strategy which can be extended to introduce different dopants into different semiconductor materials for PEC water splitting and possibly other applications such as solar cells and photodetectors.

    女人被狂操c到高潮| www.自偷自拍.com| 亚洲人成电影免费在线| 亚洲性夜色夜夜综合| 亚洲伊人色综图| 岛国在线观看网站| 中文字幕最新亚洲高清| 欧美乱妇无乱码| 亚洲精品国产精品久久久不卡| 国产成人系列免费观看| 九色亚洲精品在线播放| 搡老乐熟女国产| 午夜老司机福利片| 免费人成视频x8x8入口观看| 久久久久久大精品| 巨乳人妻的诱惑在线观看| 精品电影一区二区在线| a级毛片黄视频| 窝窝影院91人妻| 亚洲五月婷婷丁香| 亚洲熟妇熟女久久| 精品久久久久久,| 激情在线观看视频在线高清| 91精品国产国语对白视频| 亚洲精品国产一区二区精华液| 18禁裸乳无遮挡免费网站照片 | 999久久久国产精品视频| 超碰97精品在线观看| 黑人巨大精品欧美一区二区mp4| 99riav亚洲国产免费| 亚洲av电影在线进入| 亚洲av成人av| 亚洲中文av在线| 日本精品一区二区三区蜜桃| 在线视频色国产色| 每晚都被弄得嗷嗷叫到高潮| 国产精品亚洲一级av第二区| 热99国产精品久久久久久7| 精品一区二区三区av网在线观看| 国产成人啪精品午夜网站| 国产熟女午夜一区二区三区| 99国产精品一区二区蜜桃av| 女生性感内裤真人,穿戴方法视频| 巨乳人妻的诱惑在线观看| 精品一区二区三区视频在线观看免费 | 国产有黄有色有爽视频| 91精品三级在线观看| 在线视频色国产色| 身体一侧抽搐| 欧美性长视频在线观看| 中文字幕最新亚洲高清| 操美女的视频在线观看| 电影成人av| 99国产综合亚洲精品| 99精品欧美一区二区三区四区| 国产亚洲精品第一综合不卡| 黄色成人免费大全| 中文字幕高清在线视频| 制服人妻中文乱码| 一级作爱视频免费观看| 一个人观看的视频www高清免费观看 | 伊人久久大香线蕉亚洲五| 国产精品国产高清国产av| 久久久久久久久免费视频了| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉国产在线看| av超薄肉色丝袜交足视频| 99精国产麻豆久久婷婷| 国产一卡二卡三卡精品| 在线观看一区二区三区激情| 亚洲一区二区三区色噜噜 | 久久人人97超碰香蕉20202| av免费在线观看网站| 欧美日韩瑟瑟在线播放| 亚洲午夜理论影院| 亚洲 欧美一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲欧美精品永久| aaaaa片日本免费| tocl精华| 欧美在线一区亚洲| 精品久久久久久久毛片微露脸| 国产成年人精品一区二区 | 国产成人一区二区三区免费视频网站| 日韩人妻精品一区2区三区| 老汉色av国产亚洲站长工具| 一级a爱片免费观看的视频| 午夜视频精品福利| 日韩精品中文字幕看吧| 女性被躁到高潮视频| 九色亚洲精品在线播放| 欧美最黄视频在线播放免费 | 欧美乱码精品一区二区三区| 亚洲情色 制服丝袜| 丰满人妻熟妇乱又伦精品不卡| 色综合欧美亚洲国产小说| 国产极品粉嫩免费观看在线| 制服诱惑二区| 两性夫妻黄色片| 午夜福利在线观看吧| 色精品久久人妻99蜜桃| 国产有黄有色有爽视频| 91av网站免费观看| а√天堂www在线а√下载| 久久久精品欧美日韩精品| 亚洲熟妇熟女久久| 国产精品二区激情视频| 国产成年人精品一区二区 | 国产区一区二久久| 女人精品久久久久毛片| 极品人妻少妇av视频| 人人妻人人澡人人看| 欧美精品一区二区免费开放| 国产av又大| 成熟少妇高潮喷水视频| 一边摸一边抽搐一进一小说| 亚洲av熟女| 大型av网站在线播放| 最近最新免费中文字幕在线| 中国美女看黄片| av网站免费在线观看视频| 日本免费a在线| 一夜夜www| 久久人妻福利社区极品人妻图片| 嫩草影院精品99| 99热只有精品国产| 亚洲av美国av| 亚洲精品美女久久久久99蜜臀| 久久久久久大精品| 琪琪午夜伦伦电影理论片6080| 两个人免费观看高清视频| 黄片小视频在线播放| 色综合站精品国产| 亚洲精品美女久久av网站| 99re在线观看精品视频| 亚洲美女黄片视频| 99久久人妻综合| 亚洲国产欧美日韩在线播放| 国产亚洲精品久久久久久毛片| 国产精品98久久久久久宅男小说| av免费在线观看网站| 久久国产精品影院| 亚洲色图av天堂| 水蜜桃什么品种好| 亚洲专区国产一区二区| 曰老女人黄片| 国产精品1区2区在线观看.| 搡老乐熟女国产| 首页视频小说图片口味搜索| 精品免费久久久久久久清纯| 大型av网站在线播放| 亚洲欧美日韩高清在线视频| 午夜成年电影在线免费观看| 精品欧美一区二区三区在线| 中文字幕色久视频| 免费不卡黄色视频| 色综合欧美亚洲国产小说| 成人亚洲精品av一区二区 | 精品国内亚洲2022精品成人| 亚洲成国产人片在线观看| 高清av免费在线| 在线观看免费高清a一片| 国产精品一区二区精品视频观看| 日本黄色视频三级网站网址| 国产精品免费视频内射| 亚洲五月色婷婷综合| 精品国产超薄肉色丝袜足j| 成人特级黄色片久久久久久久| 不卡一级毛片| 18禁观看日本| 国产精品影院久久| av天堂在线播放| 最好的美女福利视频网| 涩涩av久久男人的天堂| 久久人人精品亚洲av| 搡老岳熟女国产| 他把我摸到了高潮在线观看| 黄片小视频在线播放| 视频区欧美日本亚洲| 欧美日韩乱码在线| 午夜亚洲福利在线播放| 母亲3免费完整高清在线观看| 日韩人妻精品一区2区三区| 日韩大码丰满熟妇| 国产精品美女特级片免费视频播放器 | 18禁黄网站禁片午夜丰满| 精品久久久久久电影网| 性少妇av在线| 一级片'在线观看视频| 亚洲情色 制服丝袜| 国产亚洲精品一区二区www| 不卡av一区二区三区| 国产亚洲精品久久久久久毛片| 精品电影一区二区在线| 免费少妇av软件| 国产不卡一卡二| 欧美黄色片欧美黄色片| 女生性感内裤真人,穿戴方法视频| 欧美激情高清一区二区三区| 电影成人av| 久久久国产成人免费| 可以免费在线观看a视频的电影网站| 成人影院久久| 99久久99久久久精品蜜桃| 欧美人与性动交α欧美软件| 午夜两性在线视频| 好男人电影高清在线观看| 国产在线观看jvid| 国产91精品成人一区二区三区| 天堂√8在线中文| 日日干狠狠操夜夜爽| 亚洲人成电影观看| 国产成人一区二区三区免费视频网站| 国产精品电影一区二区三区| 国产熟女xx| 国产精品99久久99久久久不卡| 麻豆久久精品国产亚洲av | 成人黄色视频免费在线看| 99精品久久久久人妻精品| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 色综合婷婷激情| 国产精品99久久99久久久不卡| 韩国精品一区二区三区| 国产免费av片在线观看野外av| 大陆偷拍与自拍| 大香蕉久久成人网| 欧美黄色淫秽网站| 亚洲欧美日韩高清在线视频| 又黄又粗又硬又大视频| 动漫黄色视频在线观看| 无遮挡黄片免费观看| 国产精品二区激情视频| 亚洲狠狠婷婷综合久久图片| 91国产中文字幕| 国产成人欧美在线观看| 91老司机精品| 国产亚洲精品一区二区www| 日本黄色视频三级网站网址| 国产精品久久久av美女十八| 亚洲久久久国产精品| 久久99一区二区三区| 高清毛片免费观看视频网站 | 国产激情欧美一区二区| 亚洲色图av天堂| 亚洲精品在线观看二区| 亚洲男人天堂网一区| 免费观看人在逋| 中文字幕人妻熟女乱码| 校园春色视频在线观看| 色播在线永久视频| 精品福利观看| 国产深夜福利视频在线观看| 国产主播在线观看一区二区| 久久久水蜜桃国产精品网| 大型av网站在线播放| 精品久久久久久电影网| 国产1区2区3区精品| 在线十欧美十亚洲十日本专区| 国产成人欧美| 欧美午夜高清在线| 1024视频免费在线观看| 亚洲自偷自拍图片 自拍| 久久精品91蜜桃| 国产不卡一卡二| 精品久久久久久久毛片微露脸| 国产欧美日韩综合在线一区二区| 丰满迷人的少妇在线观看| 在线十欧美十亚洲十日本专区| 伊人久久大香线蕉亚洲五| 亚洲av成人av| 黄片大片在线免费观看| 成熟少妇高潮喷水视频| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 亚洲av成人av| 又大又爽又粗| 欧美另类亚洲清纯唯美| 99精品在免费线老司机午夜| 黄色成人免费大全| 精品人妻1区二区| 日韩视频一区二区在线观看| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频| 人人妻人人添人人爽欧美一区卜| 亚洲一区中文字幕在线| www.自偷自拍.com| 99re在线观看精品视频| 香蕉丝袜av| 日本一区二区免费在线视频| 多毛熟女@视频| 老司机靠b影院| 亚洲国产毛片av蜜桃av| 亚洲av日韩精品久久久久久密| 真人一进一出gif抽搐免费| 91麻豆av在线| 91九色精品人成在线观看| 涩涩av久久男人的天堂| 交换朋友夫妻互换小说| www.精华液| 欧美日韩av久久| 宅男免费午夜| 18禁裸乳无遮挡免费网站照片 | 一级毛片高清免费大全| 每晚都被弄得嗷嗷叫到高潮| 欧美黑人欧美精品刺激| 色精品久久人妻99蜜桃| 亚洲男人的天堂狠狠| 欧美国产精品va在线观看不卡| 午夜免费成人在线视频| 久久香蕉国产精品| 成人手机av| 亚洲精品国产色婷婷电影| 欧美乱色亚洲激情| 午夜精品国产一区二区电影| 天天影视国产精品| 午夜福利在线免费观看网站| 成人黄色视频免费在线看| av天堂久久9| 久久国产精品影院| avwww免费| 老鸭窝网址在线观看| 国产片内射在线| 侵犯人妻中文字幕一二三四区| 他把我摸到了高潮在线观看| 亚洲五月天丁香| 久久久国产一区二区| 亚洲一区二区三区不卡视频| 成人特级黄色片久久久久久久| 国产高清激情床上av| 夜夜爽天天搞| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区mp4| 亚洲精品在线观看二区| 久久久水蜜桃国产精品网| 桃红色精品国产亚洲av| 多毛熟女@视频| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 最近最新中文字幕大全免费视频| 成人三级做爰电影| 怎么达到女性高潮| 又紧又爽又黄一区二区| 日韩欧美一区视频在线观看| 亚洲五月天丁香| 黄色a级毛片大全视频| 亚洲精品在线美女| 免费av毛片视频| 美女 人体艺术 gogo| 一本大道久久a久久精品| 午夜影院日韩av| 久久久国产精品麻豆| 国产精品亚洲av一区麻豆| xxxhd国产人妻xxx| 亚洲成人久久性| 男女床上黄色一级片免费看| 99riav亚洲国产免费| 91大片在线观看| 激情视频va一区二区三区| 黄色女人牲交| 大香蕉久久成人网| 人人澡人人妻人| 久久婷婷成人综合色麻豆| www.999成人在线观看| 如日韩欧美国产精品一区二区三区| 9色porny在线观看| 身体一侧抽搐| 亚洲精品美女久久久久99蜜臀| 免费搜索国产男女视频| 午夜久久久在线观看| 欧美精品亚洲一区二区| 免费av毛片视频| 91国产中文字幕| 咕卡用的链子| 久久国产精品男人的天堂亚洲| 日韩av在线大香蕉| 在线播放国产精品三级| 不卡一级毛片| 国产一区二区激情短视频| 极品人妻少妇av视频| 欧美激情久久久久久爽电影 | 日韩中文字幕欧美一区二区| 天堂√8在线中文| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品一区二区www| 午夜免费成人在线视频| 成年人免费黄色播放视频| 日韩人妻精品一区2区三区| 天堂影院成人在线观看| 欧美成人午夜精品| 一二三四社区在线视频社区8| 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频 | 免费日韩欧美在线观看| 亚洲欧美精品综合久久99| 国产1区2区3区精品| 午夜免费成人在线视频| 午夜福利在线观看吧| 精品第一国产精品| 少妇粗大呻吟视频| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 欧美成人午夜精品| 天堂√8在线中文| 精品久久久久久电影网| 免费日韩欧美在线观看| 亚洲国产看品久久| 99riav亚洲国产免费| 看片在线看免费视频| 波多野结衣高清无吗| 午夜亚洲福利在线播放| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 国产免费现黄频在线看| 少妇的丰满在线观看| 九色亚洲精品在线播放| 88av欧美| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看 | 人妻久久中文字幕网| 在线观看66精品国产| 亚洲久久久国产精品| 精品久久久久久电影网| 欧美日韩瑟瑟在线播放| 久久天堂一区二区三区四区| 欧美色视频一区免费| 9191精品国产免费久久| 久久狼人影院| 欧美成狂野欧美在线观看| 午夜免费鲁丝| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 黄片播放在线免费| 亚洲少妇的诱惑av| 亚洲精华国产精华精| xxxhd国产人妻xxx| 亚洲国产毛片av蜜桃av| 国产色视频综合| 美国免费a级毛片| 欧美老熟妇乱子伦牲交| 欧美丝袜亚洲另类 | 精品久久久精品久久久| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 午夜日韩欧美国产| avwww免费| 69精品国产乱码久久久| 欧美乱色亚洲激情| 宅男免费午夜| 国产单亲对白刺激| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 国产黄色免费在线视频| 波多野结衣一区麻豆| 手机成人av网站| 亚洲熟妇中文字幕五十中出 | 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 成人18禁在线播放| 精品国产亚洲在线| 精品国产乱码久久久久久男人| 亚洲avbb在线观看| 国产高清视频在线播放一区| cao死你这个sao货| 亚洲国产欧美网| 一级a爱片免费观看的视频| 在线观看日韩欧美| 超碰成人久久| 天堂动漫精品| 少妇的丰满在线观看| 在线观看www视频免费| 午夜福利在线免费观看网站| √禁漫天堂资源中文www| 亚洲全国av大片| 天天影视国产精品| 97人妻天天添夜夜摸| 国产免费现黄频在线看| av天堂久久9| 日韩成人在线观看一区二区三区| www.www免费av| 无限看片的www在线观看| 亚洲久久久国产精品| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 亚洲国产欧美网| 国产成年人精品一区二区 | 色哟哟哟哟哟哟| 国产成人精品久久二区二区91| 9191精品国产免费久久| 他把我摸到了高潮在线观看| 亚洲成a人片在线一区二区| 女人被躁到高潮嗷嗷叫费观| 久久精品91无色码中文字幕| 香蕉久久夜色| 美女高潮到喷水免费观看| 两个人看的免费小视频| av在线播放免费不卡| 色婷婷av一区二区三区视频| 欧美不卡视频在线免费观看 | 宅男免费午夜| 成人三级做爰电影| 亚洲国产欧美日韩在线播放| 老鸭窝网址在线观看| 午夜91福利影院| www.999成人在线观看| 午夜成年电影在线免费观看| 91成人精品电影| 久久香蕉激情| 9热在线视频观看99| 国产精品日韩av在线免费观看 | av网站在线播放免费| 大型黄色视频在线免费观看| 午夜免费激情av| 又黄又爽又免费观看的视频| 成人亚洲精品一区在线观看| 精品第一国产精品| avwww免费| 日本wwww免费看| 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 色尼玛亚洲综合影院| 国产在线观看jvid| 国产成人av教育| 亚洲国产欧美日韩在线播放| 电影成人av| 老熟妇乱子伦视频在线观看| 欧美成人性av电影在线观看| 黑人操中国人逼视频| 亚洲中文av在线| 国产99久久九九免费精品| 免费在线观看完整版高清| www.熟女人妻精品国产| 精品一区二区三卡| 国产激情久久老熟女| 国产主播在线观看一区二区| 可以免费在线观看a视频的电影网站| 女人被躁到高潮嗷嗷叫费观| 国产色视频综合| 女同久久另类99精品国产91| 18美女黄网站色大片免费观看| 97人妻天天添夜夜摸| 色精品久久人妻99蜜桃| 一级a爱视频在线免费观看| 亚洲av第一区精品v没综合| 午夜福利影视在线免费观看| 成在线人永久免费视频| 一级毛片高清免费大全| av在线天堂中文字幕 | 成人av一区二区三区在线看| 久久99一区二区三区| 又黄又粗又硬又大视频| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| www.999成人在线观看| 91大片在线观看| 另类亚洲欧美激情| 成人18禁在线播放| 另类亚洲欧美激情| 国产人伦9x9x在线观看| 另类亚洲欧美激情| 级片在线观看| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 日韩 欧美 亚洲 中文字幕| 老司机午夜十八禁免费视频| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 神马国产精品三级电影在线观看 | 久久性视频一级片| 亚洲熟女毛片儿| 欧美精品一区二区免费开放| 日韩中文字幕欧美一区二区| 国产黄色免费在线视频| 久久国产精品影院| 久久亚洲真实| 午夜激情av网站| 精品福利永久在线观看| 国产亚洲av高清不卡| 后天国语完整版免费观看| 欧美日韩亚洲高清精品| 色婷婷av一区二区三区视频| 国产精品香港三级国产av潘金莲| 丰满迷人的少妇在线观看| 啦啦啦 在线观看视频| 中文字幕av电影在线播放| 视频区欧美日本亚洲| 一级毛片高清免费大全| 国产成年人精品一区二区 | 亚洲人成网站在线播放欧美日韩| 日本免费一区二区三区高清不卡 | 99国产综合亚洲精品| 欧美人与性动交α欧美软件| 免费观看人在逋| 亚洲色图av天堂| 日韩人妻精品一区2区三区| 在线观看www视频免费| a级毛片在线看网站| 天堂俺去俺来也www色官网| 夜夜躁狠狠躁天天躁| 国产野战对白在线观看| 首页视频小说图片口味搜索| 亚洲欧美日韩无卡精品| 久久草成人影院| 黄色女人牲交| 级片在线观看| 午夜福利,免费看| 50天的宝宝边吃奶边哭怎么回事| 一二三四社区在线视频社区8| av国产精品久久久久影院| 19禁男女啪啪无遮挡网站| 91精品国产国语对白视频| 国产成人精品在线电影| 黑人操中国人逼视频| 日韩欧美免费精品|