• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor*

    2021-05-24 02:23:36RuiLiu劉銳YongliHe何勇禮ShanshanJiang姜珊珊LiZhu朱力ChunshengChen陳春生YingZhu祝影andQingWan萬青
    Chinese Physics B 2021年5期
    關(guān)鍵詞:劉銳

    Rui Liu(劉銳), Yongli He(何勇禮), Shanshan Jiang(姜珊珊), Li Zhu(朱力),Chunsheng Chen(陳春生), Ying Zhu(祝影), and Qing Wan(萬青)

    School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    Keywords: neuromorphic transistors,synaptic plasticity,oxide-based semiconductors,classical conditioning

    1. Introduction

    Human brain can process multi-dimensional information simultaneously because it is a parallel, plastic, and faulttolerant neural network with ~1011neurons and ~1015synapses.[1,2]Although advanced supercomputers based on silicon based CMOS integrated circuit can perform precise digital calculation very fast,the energy consumption and space occupation are enormous.[3,4]In order to deal with complicated and unstructured data efficiently, the concept of brainlike computing and neuromorphic system was proposed.[5]

    In neuroscience, learning and memory are established on the change of synaptic weight between neurons.[6]According to various time scales, synaptic plasticity could be classified as short-term plasticity (STP) and long-term plasticity (LTP). STP is temporary change of synaptic weight which persists a few milliseconds or minutes. However,LTP will last for a few hours, or longer.[7]By enhancing or shortening synaptic strength, synaptic plasticity could be modified or transformed.[8–16]During the past decade, twoterminal devices, such as memristor, have been proposed to emulate biological synapses.[17–21]In addition,multi-terminal transistors have been also proposed for artificial synapse application.[22–32]With additional control gate electrodes providing pre-synaptic signal inputs,post-synaptic current can be read synchronously. By now, some synaptic functions, such as excitatory post-synaptic current(EPSC),paired-pulse facilitation (PPF), metaplasticity, spike timing dependent plasticity (STDP), have been successfully simulated. With a huge gate capacitance, electric-double-layer (EDL) transistors can operate at a very low voltage. Furthermore,electrostatic modulation and electrochemical process in electrolyte gated EDL transistors are very similar to the ionic modulation in biological synapses. Thus, these transistors have great value in neuromorphic systems.[9,10,28–30]

    Associative learning plays an indispensable role in individual adaptability, and classical conditioning is a simple example.[33]A few reports been demonstrated the emulation of this behavior in new-concept electronic devices.[34–38]Although the classical conditioning could be successfully emulated by these devices, a complex circuit was usually employed in the experiment. Recently, a dual-gated synaptic transistor was used to mimic classical conditioning. Inputs applied on the topgate and bottomgate were regarded as the conditioned stimulus (CS) and unconditioned stimulus (US),respectively.[39]According to STDP learning rules, Zhu et al.[40]illustrated classical conditioning in an oxide-based neuromorphic transistor. US and CS were applied on drain electrode and gate, respectively. Especially, Yang et al.[41]and Chen et al.[42]took the advantage of different voltages on behalf of CS and US to investigate the classical conditioning on a memristor and a transistor,respectively.

    Here,we fabricated indium-tungsten-oxide(IWO)-based neuromorphic transistors gated by proton conducting chitosan films. Some synaptic functions, such as EPSC, PPF, filtering, were emulated. Moreover, two types of STDP (Hebbian STDP, and anti-Hebbian STDP) and multistore memory(sensory memory, short-term memory, and long-term memory) were also emulated. At last, classical conditioning was successfully demonstrated. Such neuromorphic devices have potential application in neuromorphic systems.

    2. Experimental details

    Firstly,acetic acid(~2 wt%)is added into deionized water. Secondly, chitosan solution (~2 wt%) is prepared by dissolving chitosan powder into above solvent. Thirdly, chitosan solution is drop-coated onto the ITO glass substrates and put in ambient air to shape into homogeneous chitosan films. Next, patterned IWO films (980 μm × 1600 μm) are deposited on the chitosan films with a metal shadow mask by sputtering with a RF power of 100 W, an Ar flow rate of 28 sccm, and a working pressure of 0.5 Pa. The target material is IWO (In2O3: WO3= 99 : 1 in wt.%). Finally, patterned Ag drain/source electrodes are evaporated on the IWO films by vacuum thermal evaporation. The channel width(W)and length (L) are 1000 mm and 80 mm, respectively. The schematic diagram of the IWO-based neuromorphic transistor is shown in Fig. 1(a). The frequency dependent capacitance of the chitosan electrolyte film is characterized using the impedance analyzer(HIOKI IM 3533-01 LCR meter).Electrical performance of the IWO-based synaptic transistors is measured by source measurement units(Keithley 2636B).

    3. Results and discussion

    The specific capacitance curve of the chitosan film is shown in Fig.S1(a). An EDL capacitor can be formed due to the accumulation of proton at chitosan/metal electrode under an external field. A maximal specific gate capacitance value(Ci)of ~5.7μF/cm2can be measured at 1.0 Hz. Output plots and transfer characteristics are provided in Figs. S1(b) and S1(c), respectively. From these output plots, the devices exhibit a good ohmic contact at low Vds. Because of the mobile protons in the chitosan electrolyte, a counterclockwise hysteresis can be observed in the transfer curve, which is necessary for synaptic function emulation. The current on/off ratio of the IWO-based synaptic transistor is estimated to be~2.0×106. Moreover,as shown in Fig.S1(d),the gate leakage current is measured to be as low as 2.0 nA. Here, the modulation of the IWO channel conductance should be explained. Under a positive gate voltage,proton in the chitosan film will migrate to the channel/chitosan interface. Such interfacial EDL modulation can modulate the IWO channel current at a low gate voltage range. Thanks to the mobile proton and interfacial EDL modulation,biological synaptic functions can be emulated in an IWO-based synaptic transistor. Here we should point that the properties of the oxide-based EDL transistors can be influenced by the humility,so in the future,device package should be done in order to control the humidity.Temperature can also influence the electrical properties of the oxide-based EDL transistors gated by electrolyte,our preliminary experimental results show that such device can operate safely in the temperature range of 0°C to 80°C. In fact, as a biological neural network system, our brain only works in a very narrow temperature range. So,function is the first and the temperature range is secondary. In the future, controlling the temperature for a small volume brain-like system should not be a big problem.

    Fig.1. (a)A diagram of the IWO-based neuromorphic transistor. (b)A diagram showing the biological synapse structure.

    As shown in Fig.1(b),a synapse consists of pre-synapse,cleft,and post-synapse,and biological signal can be transmitted from the pre-synapse to the post-synapse. Some investigations indicated that the synaptic plasticity could be tuned by neurotransmitters or ionic fluxes in the cleft while the action potential is triggered by the pre-synapse.[6,7,43]The operation principle of the IWO-based neuromorphic transistor is similar to the process of synaptic plasticity modulation. When a pre-synaptic spike is evoked, an EPSC in IWO channel will be measured with a small reading voltage applied between the source and drain electrode(Vds).

    Figure 2(a)shows a classical EPSC response of our IWObased neuromorphic transistor. The pre-synaptic spike is(0.2 V, 20 ms) and the reading voltage (Vds) is 0.1 V. When the spike comes to the end, a max EPSC value of ~4.7 nA is measured. The EPSC curve increases quickly in response to the pre-synaptic spike and then decays to the initial level step by step. The movement of proton within chitosan film plays a significant role in triggering EPSC. When a positive pulse voltage is applied on the gate electrode, proton will accumulate at electrolyte/IWO interface. After the pre-synaptic spike, proton will migrate to the balanced position, and the current returns to the initial level.[10]The energy dissipation of a spike event can be calculated by W =Ipeak×t×Vds, where Ipeakand t are the peak value and pulse width, respectively.The energy consumption per spike is estimated to be ~9.4 pJ.Figure 2(b)shows the energy consumption with various pulse amplitudes. As Vgsreduces, the energy consumption will reduce. Moreover, the energy consumption is also influenced by reading voltage Vdsand spike duration. When the reading voltage is reduced to 0.01 V,the energy consumption can be reduced to ~0.5 pJ,and the corresponding EPSC curve is shown in Fig.S2. Such energy consumption is much less than that of the classical CMOS-based artificial synapse.[44]

    Fig. 2. (a) A post-synaptic current of the IWO-based synaptic transistor measured under a voltage spike (0.2 V, 20 ms). (b) Energy consumption changes with Vgs. (c) PPF index as a function of ΔT. (d) Spike frequency dependent EPSC gain.

    As an important short-term plasticity, PPF is induced by 2 serial pulses with a short time interval (ΔT). Due to the successive release of neurotransmitters, the second spike response will be enhanced. PPF is widely considered to play a crucial role in temporal signal decoding.[7]In this work,PPF can be emulated in single IWO-based synaptic transistor.The inset in Fig. 2(c) is a response curve of PPF. The EPSC curves are evoked by two pre-synaptic spikes(0.2 V,20 ms)at ΔT =20 ms. As shown by the curve,the second EPSC peak is larger than the first one.As we all know,the movement of proton in chitosan takes some relaxation time. Considering ΔT is less than the relaxation time, some protons will not migrate back to their initial position. As a result, more protons will gather at the interface and the post-synaptic current in the IWO channel layer will also increase due to the corresponding field effect modulation. Figure 2(c)shows the PPF as a function of the interval time between two input spikes. A maximum PPF index of ~126 % is measured at ΔT =20 ms, and the PPF index decreases gradually when ΔT increases gradually.

    Thanks to short-term synaptic facilitation, synapse can exhibit a high-pass filtering behavior. Such filtering is a primary operation which allows post-synaptic neurons to behaviorally perceive the relevant stimulus characteristics from presynaptic spike trains.[29,45]Based on the PPF features of the proposed IWO-based neuromorphic transistor,stronger synaptic responses can be observed when the high frequency presynaptic stimulus is applied on the gate electrode. Figure 2(d)shows the frequency dependent EPSC gain. Each spike train contains eight spikes (0.2 V, 20 ms). When the spike frequency increases, the EPSC gain (A8/A1) increases accordingly. Thus,a biological filtering is successfully emulated.

    Fig.3. (a)Six pair of pre-synaptic and post-synaptic spikes adopted in Hebbian STDP test. (b)Measurements for anti-Hebbian STDP learning rule.

    In neuroscience,long-term plasticity is believed to be the foundation for learning and memory.[46]STDP is an important kind of long-term plasticity, where the synaptic weight could be adjusted by intervals between pre-synaptic and postsynaptic spikes. It illustrates synaptic learning rules which changes conventional Hebbian synaptic plasticity,and plays a significant role in cognitive behavior.[46]Generally, there are two types of STDP, the symmetric and anti-symmetric Hebbian learning rules.[47]In typical STDP,when ΔT >0,the connection strength will be potentiated or depressed. However,when ΔT <0, the connection strength will be depressed or potentiated.[48]Here,these two types of Hebbian STDP learning rules can be emulated in our IWO-based synaptic transistor. Figure 3(a)shows 6 pair of pre-synaptic and post-synaptic spikes(4.0 V,40 ms)which are applied on the gate and drain electrodes,separately. A reading pulse(0.1 V,20 ms)is used to read the synaptic strength. The change of the synaptic plasticity can be written as

    where W0is the original synaptic strength. The WSTDPis the synaptic strength after STDP measurement.[40]When ΔT >0,long-term potentiation will be formed. On the contrary,when ΔT <0, long-term depression can be formed. Anti-Hebbian STDP can also be realized by applying 6 pair of pre-synaptic and post-synaptic spikes(?4 V,40 ms)on gate and drain electrodes,respectively(Fig.3(b)).

    Fig. 4. (a) A diagram of the biological memory consolidation process.(b)SM and STM can be realized at low frequency inputs. (c)STM to LTM transition by increasing spike numbers. (d) STM to LTM transition by increasing spike amplitudes.

    In biological,the transition of short-term memory(STM)to long-term memory(LTM)was thought as a major learning rule.[49]In 1968, Atkinson and Shiffrin put forward a multistore type of brain memory, as shown in Fig. 4(a).[50]This process illustrates 3 types of memory,sensory memory(SM),short-term memory, and long-term memory. By application of adequate stimulus, SM could transform into STM. Moreover, STM could transform into LTM, too. Frequency dependent EPSC responses are shown in Fig. 4(b). The voltage pulse (4.0 V, 20 ms) is used as repeated stimulus. First,five pre-synaptic spikes(0.2 Hz)are applied on the gate electrode to mimic SM. The peak EPSC values of ~9.0 μA can be observed and each EPSC decays back to the initial current.When applying pre-synaptic spikes with a frequency range from 1.0 Hz to 10 Hz,peak EPSC values will increase due to multi-pulse facilitation,like a series of PPF.However,EPSCs also decay to the initial current when the spikes end. These processes simulate the STM behaviors. Although 100 pulses(4.0 V,20 ms)at 10 Hz are applied on the gate electrode,EPSC will still decay to the original value,as shown in Fig.S3. The transition of LTM is mimicked at the frequency of 25 Hz,as illustrated in Figs.4(c)and 4(d). The EPSC responses with different pulse number under the same pre-synaptic spike(4.0 V,20 ms)are demonstrated in Fig.4(c). EPSC responses change with the variation of the pulse number. LTM can be obtained when the pulse number is larger than 70. In this case, EPSC will not decay back to the initial value. When the gate pulse number is very samll,proton in the chitosan film will migrated to the channel/chitosan interface and induce the accumulation of carriers. However,some protons will be penetrated into the IWO channel layer and cause electrochemical doping when the gate pulse number is large enough. As a result, the channel conductivity will be nonvolatile increased, and LTM can be observed. Some previous reports have already proved that proton permeation and electrochemical doping are the main mechanisms for STM to LTM transition.[35,51,52]STM also can be transformed into LTM by increasing the pre-synaptic spike amplitudes(Fig.4(d)). The pulse number and frequency are fixed at 100 pulses and 25 Hz,respectively. When the amplitude is above 4.0 V, the EPSC will not return to the initial level. Moreover, pulse width dependent synaptic plasticity is also investigated, as shown in Fig. S4. LTM can also be obtained when the pulse width is increased.

    Fig. 5. Classical conditioning experiment. (a) Experimental arrangement and flow sheet for mimicking classical conditioning in an IWO-based synaptic transistor.(b)Similar Pavlovian process realized in an IWO-based synaptic transistor.Vgs of 3.0 V represents food while Vgs of 2.0 V represents bell.

    Classical conditioning,namely,Pavlovian conditioned reflex, which could be acquired by applying a stimulus and an unconditional stimulus to an individual many times.[53]After associative learning, the individual can possess a capacity which induces conditioned responses like unconditional responses while applying the stimulus only. Four essential factors in this experiment are often utilized,unconditioned stimulus(US),unconditioned response(UR),conditioned stimulus(CS),and conditioned response(CR).During Pavlov’s dog experiment,feeding food and ringing bell are called US and CS,respectively. And the salivation caused by US is called UR.Before training,salivation only can be caused by feeding food(US).In the time of conditioning process,the dog was fed with food and ringing bell repeatedly. Thus, the relationship between CS and US is established. As a result,the salivation of the dog can be triggered by CS alone after training. That is to say that the CR is triggered.And the function of US is replaced by CS.It should be noted here that LTP plays an indispensable role in the process of associative learning. With the behavior of LTP, Pavlovian conditioning could be realized on our IWO-based transistors. In the experiment, the voltage pulse(2.0 V,20 ms)with a frequency of 0.5 Hz applied on the gate is considered to be‘ringing bell’(CS)while pre-synaptic spike(3.0 V,20 ms)with a frequency of 0.5 Hz applied on the gate is regarded as‘food’(US),as shown in Figs.5(a)and 5(b). And 1.0 μA of the synaptic weight is set as the threshold. Before conditioning process, 6 US and 6 CS are imposed separately on the gate. When US is applied only, the synaptic weight is over 1.0μA and the unconditioned response is caused. However,the synaptic weight is under threshold when applying CS alone. Then,100 bell stimuli(2 V,20 ms)and 100 food stimuli(3.0 V,20 ms)with a frequency of 25 Hz are utilized on the gate alternately as training spikes, as shown in Fig.5(b). After training, the synaptic weight is increased. In other words,the association behavior between CS and US is built. By application of CS alone, the synaptic weight is above 1.0 μA.That is to say, CS can trigger CR and conditioning reflex is realized. The features of classical conditioning also contain extinction. With the decay of synaptic weight, the salivation response decreases gradually. Conditioned responses will recover to its initial state after ~155 successive CS applying on gate solely,which indicates that the association learning is extinguished. Thus, the classical conditioning is successfully emulated in the IWO-based synaptic transistor.

    4. Conclusion and perspectives

    In summary, IWO-based EDL transistors gated by chitosan-based biopolymer electrolyte were fabricated and proposed for neuromorphic devices. Such multi-terminal neuromorphic devices show good electrical performance. Some basic synaptic functions, including EPSC, PPF, and filtering,were emulated in single IWO-based device. Hebbian STDP and anti-Hebbian STDP learning rules were also emulated by applying different spike protocols. Plasticity transition and classical conditioning were successfully emulated in single device, too. Our results indicate that IWO-based neuromorphic transistors have potential application for brain-like computing and neuromorphic systems.

    猜你喜歡
    劉銳
    《爭暖》
    劉銳作品欣賞
    Diffusion of a chemically active colloidal particle in composite channels
    哈爾濱師范大學(xué)作品賞析
    Buying a New Bird
    《欣欣向榮》《景觀一角之四》《鄉(xiāng)間小景》《家鄉(xiāng)巨變》《山村老人》《幽》
    《欣欣向榮》《景觀一角之四》《鄉(xiāng)間小景》《家鄉(xiāng)巨變》《山村老人》《幽》
    淺析金融危機(jī)化解救助的效果
    智富時代(2017年7期)2017-09-05 13:30:01
    無辜發(fā)小之死:朋友前妻不能追?
    無辜發(fā)小之死:朋友前妻不能追?
    不卡av一区二区三区| 免费看十八禁软件| 亚洲无线在线观看| 女生性感内裤真人,穿戴方法视频| 91麻豆精品激情在线观看国产| 色综合亚洲欧美另类图片| 美女大奶头视频| 日韩欧美 国产精品| 国产精品综合久久久久久久免费| 伊人久久大香线蕉亚洲五| 久久国产乱子伦精品免费另类| 欧美黑人欧美精品刺激| 久久精品成人免费网站| 午夜久久久久精精品| 久久午夜综合久久蜜桃| 黄色 视频免费看| www.www免费av| 51午夜福利影视在线观看| 国产精品九九99| 亚洲无线在线观看| 日本 av在线| 757午夜福利合集在线观看| 国产免费男女视频| 久久香蕉精品热| 亚洲国产高清在线一区二区三| 亚洲熟女毛片儿| 亚洲成人久久性| 又粗又爽又猛毛片免费看| 国产成人啪精品午夜网站| 天堂动漫精品| 男女下面进入的视频免费午夜| 亚洲成人中文字幕在线播放| 一进一出好大好爽视频| 亚洲av美国av| 免费看美女性在线毛片视频| 欧美日韩一级在线毛片| 正在播放国产对白刺激| √禁漫天堂资源中文www| 最新美女视频免费是黄的| 国产熟女xx| 精品国产超薄肉色丝袜足j| 国产精品香港三级国产av潘金莲| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 成人亚洲精品av一区二区| 中文字幕高清在线视频| 亚洲电影在线观看av| 黄色女人牲交| 久久久久久大精品| 好男人在线观看高清免费视频| 中文在线观看免费www的网站 | 少妇被粗大的猛进出69影院| 18禁美女被吸乳视频| 很黄的视频免费| 脱女人内裤的视频| 一本大道久久a久久精品| 婷婷亚洲欧美| 小说图片视频综合网站| 99久久99久久久精品蜜桃| 高潮久久久久久久久久久不卡| 最近最新中文字幕大全电影3| 欧美大码av| 国产av麻豆久久久久久久| 精品高清国产在线一区| 中文字幕av在线有码专区| 久久精品亚洲精品国产色婷小说| 欧美乱码精品一区二区三区| netflix在线观看网站| 国产免费男女视频| 手机成人av网站| 在线观看免费视频日本深夜| 一区二区三区高清视频在线| 国产成人系列免费观看| 99在线人妻在线中文字幕| 国产精品久久视频播放| 一本精品99久久精品77| 悠悠久久av| 九色成人免费人妻av| 国产熟女午夜一区二区三区| 99国产精品99久久久久| 色在线成人网| 国产精品久久久久久人妻精品电影| 欧美成人免费av一区二区三区| 欧美激情久久久久久爽电影| 丰满人妻一区二区三区视频av | 女警被强在线播放| 日韩大尺度精品在线看网址| 国产爱豆传媒在线观看 | 老司机深夜福利视频在线观看| 午夜影院日韩av| 国产黄色小视频在线观看| 女人被狂操c到高潮| 亚洲 欧美一区二区三区| 亚洲国产日韩欧美精品在线观看 | 中文字幕久久专区| 嫩草影视91久久| 亚洲狠狠婷婷综合久久图片| 99久久综合精品五月天人人| 国产精品久久久久久久电影 | 国产av一区二区精品久久| 一边摸一边抽搐一进一小说| 日日爽夜夜爽网站| 午夜免费成人在线视频| 狠狠狠狠99中文字幕| 老司机福利观看| 国产精品国产高清国产av| 99re在线观看精品视频| 久久性视频一级片| 中文字幕av在线有码专区| 免费看a级黄色片| 精品国产乱码久久久久久男人| 国产成人欧美在线观看| 久久香蕉精品热| 国产精品一区二区三区四区久久| 免费在线观看亚洲国产| 岛国在线观看网站| 国产精品一及| 午夜激情福利司机影院| 国内精品一区二区在线观看| 美女黄网站色视频| 热99re8久久精品国产| 欧美日韩国产亚洲二区| 少妇被粗大的猛进出69影院| 国产麻豆成人av免费视频| 精品久久久久久久人妻蜜臀av| 亚洲真实伦在线观看| 午夜亚洲福利在线播放| 伦理电影免费视频| 18禁观看日本| 69av精品久久久久久| 久久久久精品国产欧美久久久| 欧美成人午夜精品| 欧美性猛交黑人性爽| 热99re8久久精品国产| 无限看片的www在线观看| 国产一区二区在线观看日韩 | 99热只有精品国产| 三级毛片av免费| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 1024视频免费在线观看| 啦啦啦观看免费观看视频高清| ponron亚洲| 成在线人永久免费视频| 国产精品永久免费网站| 又粗又爽又猛毛片免费看| 午夜亚洲福利在线播放| 国产成人av激情在线播放| 亚洲av成人不卡在线观看播放网| 麻豆av在线久日| 国产99久久九九免费精品| 女人高潮潮喷娇喘18禁视频| 日韩大码丰满熟妇| 亚洲午夜理论影院| 男女做爰动态图高潮gif福利片| 嫁个100分男人电影在线观看| 免费在线观看日本一区| 美女免费视频网站| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久精品电影| 毛片女人毛片| 国产成+人综合+亚洲专区| 一区福利在线观看| 操出白浆在线播放| 国产精品98久久久久久宅男小说| a级毛片a级免费在线| 可以免费在线观看a视频的电影网站| 国产精品99久久99久久久不卡| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 国产精品98久久久久久宅男小说| 最近视频中文字幕2019在线8| 精品欧美一区二区三区在线| 身体一侧抽搐| 狠狠狠狠99中文字幕| 久久人妻av系列| 波多野结衣高清无吗| av视频在线观看入口| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观| 亚洲黑人精品在线| 麻豆一二三区av精品| 搡老岳熟女国产| 在线观看免费日韩欧美大片| 亚洲最大成人中文| АⅤ资源中文在线天堂| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 久久久久久久精品吃奶| 男男h啪啪无遮挡| 啦啦啦免费观看视频1| 久久久久九九精品影院| 一本大道久久a久久精品| 美女黄网站色视频| 老司机福利观看| 免费在线观看影片大全网站| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看 | 精华霜和精华液先用哪个| 嫁个100分男人电影在线观看| 国产亚洲精品综合一区在线观看 | 啦啦啦韩国在线观看视频| 色在线成人网| 久久香蕉激情| 欧美成人午夜精品| 国产成人精品久久二区二区91| 久久久久久久久免费视频了| 亚洲国产看品久久| 一进一出抽搐动态| 中文亚洲av片在线观看爽| 亚洲av电影在线进入| www.精华液| 18禁观看日本| 欧美乱妇无乱码| 一本大道久久a久久精品| 99热只有精品国产| 欧美一级毛片孕妇| 亚洲专区中文字幕在线| 18禁裸乳无遮挡免费网站照片| 亚洲国产日韩欧美精品在线观看 | 午夜a级毛片| 亚洲成人久久爱视频| 色老头精品视频在线观看| 黄色视频不卡| 欧美大码av| 好男人在线观看高清免费视频| 成人18禁在线播放| 国产三级中文精品| 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 亚洲人成77777在线视频| 日本三级黄在线观看| 天天躁夜夜躁狠狠躁躁| 精品久久久久久久末码| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 亚洲av成人精品一区久久| 亚洲国产精品sss在线观看| 两性夫妻黄色片| 欧美绝顶高潮抽搐喷水| 国产亚洲欧美在线一区二区| 亚洲av成人精品一区久久| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 黄频高清免费视频| 亚洲国产日韩欧美精品在线观看 | 国产免费av片在线观看野外av| 狂野欧美白嫩少妇大欣赏| 黄色成人免费大全| 亚洲一码二码三码区别大吗| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 一级a爱片免费观看的视频| 操出白浆在线播放| 我的老师免费观看完整版| 亚洲一码二码三码区别大吗| 搞女人的毛片| 亚洲人成77777在线视频| 久久热在线av| 黄色女人牲交| 99热这里只有精品一区 | 国内揄拍国产精品人妻在线| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 十八禁人妻一区二区| 99国产精品一区二区三区| 九色成人免费人妻av| 国产av一区在线观看免费| 免费看a级黄色片| 99在线视频只有这里精品首页| 国产精品1区2区在线观看.| 舔av片在线| 淫妇啪啪啪对白视频| 久久精品aⅴ一区二区三区四区| 久久久久性生活片| 国产三级中文精品| 日韩有码中文字幕| 身体一侧抽搐| 久久午夜亚洲精品久久| 久久香蕉精品热| 欧美zozozo另类| 国产熟女xx| 麻豆国产97在线/欧美 | 香蕉av资源在线| 中出人妻视频一区二区| 国产野战对白在线观看| 在线看三级毛片| 三级国产精品欧美在线观看 | 中文在线观看免费www的网站 | 人妻丰满熟妇av一区二区三区| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 亚洲自拍偷在线| 久9热在线精品视频| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 国产精品一区二区三区四区免费观看 | 欧美精品亚洲一区二区| 少妇裸体淫交视频免费看高清 | 88av欧美| 观看免费一级毛片| 18禁国产床啪视频网站| 伦理电影免费视频| 一进一出好大好爽视频| 精品久久久久久久久久久久久| 国产亚洲精品第一综合不卡| 亚洲免费av在线视频| ponron亚洲| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清 | 国产欧美日韩精品亚洲av| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| av国产免费在线观看| 亚洲欧美激情综合另类| 午夜免费成人在线视频| 国产麻豆成人av免费视频| 两个人的视频大全免费| 在线观看日韩欧美| 国产高清视频在线播放一区| 久久久国产成人免费| 日本黄色视频三级网站网址| 亚洲五月婷婷丁香| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 黑人巨大精品欧美一区二区mp4| 免费搜索国产男女视频| 国语自产精品视频在线第100页| 制服丝袜大香蕉在线| 欧美日本视频| 99国产综合亚洲精品| 天堂av国产一区二区熟女人妻 | 久久伊人香网站| 在线观看一区二区三区| 日韩欧美在线二视频| 18禁黄网站禁片免费观看直播| 久久久久久亚洲精品国产蜜桃av| 2021天堂中文幕一二区在线观| 美女 人体艺术 gogo| 每晚都被弄得嗷嗷叫到高潮| 精品欧美国产一区二区三| 全区人妻精品视频| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看 | 后天国语完整版免费观看| 熟女电影av网| 男插女下体视频免费在线播放| 国产精品一区二区精品视频观看| 亚洲精华国产精华精| 久久久久国产精品人妻aⅴ院| 精品国产乱码久久久久久男人| 亚洲国产日韩欧美精品在线观看 | 久久精品影院6| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 欧美大码av| 亚洲成人国产一区在线观看| xxx96com| www.999成人在线观看| 91大片在线观看| 亚洲成人国产一区在线观看| 午夜精品一区二区三区免费看| 88av欧美| 国产精品电影一区二区三区| 国产三级黄色录像| 中文字幕av在线有码专区| 午夜福利免费观看在线| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 在线国产一区二区在线| 国产精品av久久久久免费| 中文资源天堂在线| 少妇裸体淫交视频免费看高清 | 亚洲av电影在线进入| 亚洲av成人一区二区三| 亚洲狠狠婷婷综合久久图片| 欧美 亚洲 国产 日韩一| 免费看美女性在线毛片视频| 久久久久国产精品人妻aⅴ院| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区四区五区乱码| 亚洲成人精品中文字幕电影| 熟女少妇亚洲综合色aaa.| 国产主播在线观看一区二区| 国产高清videossex| 国产91精品成人一区二区三区| 中文在线观看免费www的网站 | 国产精品亚洲av一区麻豆| 2021天堂中文幕一二区在线观| 成人国语在线视频| 午夜a级毛片| www.熟女人妻精品国产| 免费在线观看完整版高清| 久久久精品大字幕| 九九热线精品视视频播放| 久久精品国产综合久久久| 香蕉丝袜av| 757午夜福利合集在线观看| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 成人手机av| 日韩欧美 国产精品| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 免费av毛片视频| 亚洲在线自拍视频| 女生性感内裤真人,穿戴方法视频| 中文字幕av在线有码专区| av在线天堂中文字幕| 欧美性长视频在线观看| 1024视频免费在线观看| 人妻夜夜爽99麻豆av| bbb黄色大片| 男女午夜视频在线观看| 国产精品久久电影中文字幕| 国产私拍福利视频在线观看| 高潮久久久久久久久久久不卡| 国产一区二区激情短视频| 亚洲成av人片在线播放无| 国产黄色小视频在线观看| 精品福利观看| 日本一二三区视频观看| 亚洲 国产 在线| 国产亚洲欧美98| 巨乳人妻的诱惑在线观看| 日本在线视频免费播放| 亚洲男人天堂网一区| 国产av麻豆久久久久久久| 亚洲性夜色夜夜综合| 亚洲欧美日韩东京热| 亚洲黑人精品在线| 妹子高潮喷水视频| 免费在线观看亚洲国产| 色噜噜av男人的天堂激情| 一本精品99久久精品77| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| 两个人视频免费观看高清| 欧美精品亚洲一区二区| 日韩成人在线观看一区二区三区| 精品午夜福利视频在线观看一区| 99久久精品热视频| 啦啦啦观看免费观看视频高清| 亚洲无线在线观看| 国内精品一区二区在线观看| 男插女下体视频免费在线播放| 国产精品综合久久久久久久免费| 亚洲免费av在线视频| 巨乳人妻的诱惑在线观看| 正在播放国产对白刺激| 久久精品综合一区二区三区| 757午夜福利合集在线观看| www.www免费av| 一进一出抽搐gif免费好疼| 国产97色在线日韩免费| 99久久精品热视频| 日日爽夜夜爽网站| 精品国产乱码久久久久久男人| 国产精品99久久99久久久不卡| 亚洲成av人片免费观看| 国产男靠女视频免费网站| 亚洲精品国产一区二区精华液| 久久久久久久久久黄片| 久久久久久久久中文| 两个人视频免费观看高清| 亚洲成人免费电影在线观看| 精品一区二区三区四区五区乱码| 亚洲片人在线观看| 国内精品久久久久精免费| 亚洲狠狠婷婷综合久久图片| 国产精品99久久99久久久不卡| 亚洲欧美日韩高清专用| 人人妻人人澡欧美一区二区| 黄色丝袜av网址大全| 日韩三级视频一区二区三区| 天天一区二区日本电影三级| 91国产中文字幕| 人人妻,人人澡人人爽秒播| 亚洲欧美精品综合久久99| 免费av毛片视频| 国产1区2区3区精品| 亚洲精品中文字幕一二三四区| 在线十欧美十亚洲十日本专区| 久久精品成人免费网站| 成人国产一区最新在线观看| www.精华液| 亚洲熟妇熟女久久| 欧美性长视频在线观看| 久久九九热精品免费| 日韩精品青青久久久久久| 婷婷丁香在线五月| 亚洲男人天堂网一区| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看 | 欧美日韩瑟瑟在线播放| 午夜福利视频1000在线观看| 最好的美女福利视频网| 亚洲欧洲精品一区二区精品久久久| 亚洲中文av在线| 不卡av一区二区三区| 久久性视频一级片| 午夜福利18| 国产av一区在线观看免费| 久久久久久久午夜电影| 色老头精品视频在线观看| 真人一进一出gif抽搐免费| 久久国产乱子伦精品免费另类| 午夜久久久久精精品| 露出奶头的视频| 国产精品一区二区精品视频观看| 国产成人aa在线观看| 色噜噜av男人的天堂激情| 中文字幕久久专区| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| www国产在线视频色| 美女高潮喷水抽搐中文字幕| 香蕉久久夜色| 91国产中文字幕| 精品久久久久久,| 亚洲人成网站高清观看| 男女之事视频高清在线观看| 日本黄大片高清| 免费看日本二区| 国产高清视频在线观看网站| 日本熟妇午夜| 亚洲一卡2卡3卡4卡5卡精品中文| 巨乳人妻的诱惑在线观看| 精品国产乱子伦一区二区三区| 免费看美女性在线毛片视频| 久久精品91蜜桃| e午夜精品久久久久久久| 宅男免费午夜| 久久久久免费精品人妻一区二区| 在线观看午夜福利视频| 最好的美女福利视频网| 黑人欧美特级aaaaaa片| 丝袜美腿诱惑在线| 亚洲中文字幕一区二区三区有码在线看 | 成人av在线播放网站| 亚洲精品中文字幕在线视频| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 99riav亚洲国产免费| 小说图片视频综合网站| 最近最新中文字幕大全免费视频| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| 在线十欧美十亚洲十日本专区| 国产精品久久久久久人妻精品电影| 久久国产精品影院| 18禁裸乳无遮挡免费网站照片| 免费在线观看视频国产中文字幕亚洲| 亚洲av熟女| 日本成人三级电影网站| 久久九九热精品免费| 999久久久国产精品视频| 久久久精品国产亚洲av高清涩受| 久久国产乱子伦精品免费另类| 亚洲精品国产一区二区精华液| 免费av毛片视频| 看免费av毛片| 成在线人永久免费视频| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 中文亚洲av片在线观看爽| 久久香蕉激情| 国产三级中文精品| 免费看日本二区| 国内揄拍国产精品人妻在线| svipshipincom国产片| 1024香蕉在线观看| xxx96com| 亚洲中文av在线| 天堂av国产一区二区熟女人妻 | 真人一进一出gif抽搐免费| 欧美+亚洲+日韩+国产| 亚洲第一欧美日韩一区二区三区| 亚洲美女视频黄频| 成人18禁高潮啪啪吃奶动态图| 麻豆国产97在线/欧美 | 99re在线观看精品视频| 中文字幕最新亚洲高清| 黄色视频不卡| 搞女人的毛片| www.www免费av| 日本黄大片高清| 国产视频内射| 国产高清激情床上av| 人妻丰满熟妇av一区二区三区| 久久久久久大精品| 亚洲电影在线观看av| 成人亚洲精品av一区二区| 国产精品爽爽va在线观看网站| netflix在线观看网站| 男人的好看免费观看在线视频 | 黑人欧美特级aaaaaa片| 99国产精品一区二区蜜桃av| 91字幕亚洲| 一本精品99久久精品77| 欧美成人性av电影在线观看| 天天躁夜夜躁狠狠躁躁| 久久人妻av系列| 日韩av在线大香蕉| 最好的美女福利视频网| 成人一区二区视频在线观看| 丝袜人妻中文字幕| 国产真人三级小视频在线观看|