• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation:influence of Co precursors

    2021-05-22 07:01:22YanqinLI李艷琴JingZHAO趙靜DecaiBU部德才XuleiZHANG張旭磊TengPENG彭騰LanboDI底蘭波andXiulingZHANG張秀玲
    Plasma Science and Technology 2021年5期
    關(guān)鍵詞:趙靜德才張旭

    Yanqin LI(李艷琴),Jing ZHAO(趙靜),Decai BU(部德才),Xulei ZHANG(張旭磊), Teng PENG (彭騰), Lanbo DI (底蘭波) and Xiuling ZHANG (張秀玲)

    College of Physical Science and Technology, Dalian University, Dalian 116622, People’s Republic of China

    Abstract In this study, Co/Zr-metal organic framework (MOF) precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively, using a Zr-MOF as the support, and Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared after calcination in a hydrogen–argon mixture gases (VA r : VH2=9: 1) at 350 °C for 2 h.The catalytic activities of the prepared samples for CO2 methanation under atmosphericpressure cold plasma were studied.The results showed that Co/Zr-MOF-M had a good synergistic effect with cold plasma.At a discharge power of 13.0 W,VH 2: VCO2=4: 1and a gas flow rate of 30 ml·min?1,the CO2 conversion was 58.9%and the CH4 selectivity reached 94.7%,which was higher than for Co/Zr-MOF-N under plasma (CO2 conversion 24.8%, CH4 selectivity 9.8%).X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption and desorption (Brunauer–Emmett–Teller) and x-ray photoelectron spectroscopy analysis results showed that Co/Zr-MOF-M and Co/Zr-MOF-N retained a good Zr-MOF framework structure, and the Co oxide was uniformly dispersed on the surface of the Zr-MOF.Compared with Co/Zr-MOF-N, the Co/Zr-MOF-M catalyst has a larger specific surface area and higher Co2+/Cototal and Co/Zr ratios.Additionally, the Co oxide in Co/Zr-MOF-M is distributed on the surface of the Zr-MOF in the form of porous particles,which may be the main reason why the catalytic activity of Co/Zr-MOF-M is higher than that of Co/Zr-MOF-N.

    Keywords: atmospheric-pressure cold plasma, CO2, supported Co catalytic materials, metal organic framework

    1.Introduction

    CO2is an inexpensive C1 resource with the most abundant storage in the world.Under certain conditions, CO2can be converted into high-value-added compounds such as hydrocarbons,alcohols and organic acids,which not only solves the problem of the effective utilization of C1 resources but could also alleviate the global warming caused by CO2.Therefore,finding an effective method to convert CO2into high-valueadded chemicals has attracted attention all over the world[1].The plasma-assisted catalytic CO2hydrogenation reaction is an effective method for preparing hydrocarbons.Compared with traditional heat-assisted catalytic reactions, high-energy particles in plasma not only effectively activate CO2and H2but can also change the surface morphologies of the catalyst and the valence of the active component [2].

    Metals are the main catalysts for plasma-assisted catalytic CO2hydrogenation reactions.Noble metals exhibit excellent catalytic performances; however, the application of noble metals faces many difficulties due to their high cost and lower reserves [3].Transition metal catalysts such as Co can solve the problems of poor catalyst stability and high noble metal catalytic material costs [4–7].Supported metal Co and its oxides have received more attention in the fields of catalysis and energy due to their excellent catalytic activities [8, 9].

    Metal organic framework (MOF) materials are widely used in catalysis, drug delivery and other fields due to their high specific surface areas, uniform pore sizes, periodic structures and other characteristics.Many studies have found that MOFs can be used as templates to synthesize catalysts with unique morphologies[10–13],and some of them can be used as supports in catalysis because of their high specific surface areas and thermal stabilities[14–18].Zhanget al[19]synthesized a Co–formic acid MOF (Co-MOF) by a liquidphase precipitation method.This material could be calcined at low temperatures to prepare a porous Co3O4catalytic material which exhibited excellent catalytic activity for CO oxidation.The research of Xuet al[20] showed that a Zr-MOF could exist stably in an air environment at a temperature lower than 400 °C.Zhaoet al[21] reported a catalytic material with a single copper nanoparticle embedded in a Zr-MOF.Compared with traditional Cu/ZnO/Al2O3catalytic material, the methane yield in the CO2hydrogenation reaction increased by eight times.

    In this study, a Zr-MOF prepared by a solvothermal method was used as a support, and the precursors of Co-MOF/Zr-MOF and Co(NO3)2/Zr-MOF were prepared by a liquid-phase precipitation method and equivalent-volume impregnation, respectively.They were placed in a tube furnace, and the temperature was held at 350 °C for 2 h in an Ar/H2gas mixture.After natural cooling,the Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared, and x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the structures,morphologies and elemental compositions of the catalyst.Furthermore, the catalytic activities of the prepared material for CO2hydrogenation were evaluated in an atmosphericpressure cold plasma.

    2.Experimental

    2.1.Materials and synthesis of Zr-MOF

    All chemical reagents were commercially purchased and used without further purification.Zr-MOF was synthesized by a solvothermal method[20].In brief,5 mmol(1.165 g)of ZrCl4and 5 mmol (0.831 g) of H2BDC (terephthalic acid) were dissolved in 30 ml of DMF (N, N-dimethylformamide).The liquid mixture was placed in an ultrasonic reactor for 20 min and heated at 120 °C for 24 h in a Teflon-lined steel autoclave.The obtained solid powder was washed three times with DMF and anhydrous methanol, after which the filtered white solid was dried in a vacuum drying oven at 100°C for 7 h to obtain the Zr-MOF.

    2.2.Preparation of catalyst

    The Co-MOF/Zr-MOF precursor was prepared by a liquidphase precipitation method.The process was as follows.First,0.50 g PEG (polyethylene glycol, average Mn = 2000) and 0.58 g cobalt nitrate were dissolved in 10 ml of methanol to form Solution A.Then, 0.50 g PEG, 0.3 ml formic acid and 1.01 g ammonium formate were dissolved in 10 ml methanol,and 1.00 g of Zr-MOF was quickly added to the above solution.The mixture was stirred on a magnetic stirrer for 20 min to obtain Solution B.Finally, Solution A was slowly added to Solution B under continuous stirring at room temperature for 1 h and aged for 24 h.The pink solid powder was centrifuged (9000 r.p.m., 10 min) and washed five times with ethanol, after which it was dried in a vacuum drying oven at 55 °C for 7 h to obtain the Co-MOF/Zr-MOF precursor.

    The Co(NO3)2/Zr-MOF precursor was prepared by the equivalent-volume impregnation method.The process was as follows.First, 5.80 g of Co(NO3)2·6H2O was added to a 25 ml volumetric flask to prepare a 15% Co(NO3)2·6H2O aqueous solution.Then, 2.15 ml of the aqueous solution was added to 1.00 g of Zr-MOF and evenly mixed.Finally, after being allowed to stand at room temperature for 12 h, the mixture was dried at 120 °C for 2 h to obtain the Co(NO3)2/Zr-MOF precursor.

    The precursors of Co-MOF/Zr-MOF and Co(NO3)2/Zr-MOF were placed separately in a tube furnace,and a mixture gas of Ar/H2(VAr:VH2=9: 1)was introduced.The temperature was maintained at 350°C for 2 h(according to the results of figure S1, available online at stacks.iop.org/PST/23/055503/mmedia) and then cooled naturally to obtain Co/Zr-MOF-M and Co/Zr-MOF-N catalysts.Inductively coupled plasma atomic emission spectroscopy measurements showed that the Co contents of the two catalysts were 10.84%and 11.20%,respectively.The synthesis process for Co/Zr-MOF-M and Co/Zr-MOF-N is shown in figure 1.

    2.3.Characterization of catalyst

    The crystal structure of the catalytic material was analyzed by an XRD system (Dandong Fangyuan Co., Ltd, China; Cu target, Kα radiation, λ=0.1506 nm).The tube voltage was 40 kV, the tube current was 40 mA, the scanning range was 5°–90°and the step size was 0.03°.The specific surface areas,pore sizes and pore volumes of catalytic material were determined using a NOVA 2200e nitrogen physical adsorption–desorption (Brunauer–Emmett–Teller, BET) instrument(Quantachrome, USA).The surface morphologies of the catalyst were determined by SEM (Sigma 500, Zeiss).The average size and distribution of the nanoparticles were statistically analyzed using TEM (HT7700, Hitachi, Japan;acceleration voltage 120 kV).The elemental compositions of the catalyst were characterized by an XPS system(ESCALAN250, Thermo VG, USA; Al/Kα was the x-ray source).All the binding energy values were calibrated based on the C 1s(binding energy 284.6 eV)peak for each element.Inductively coupled plasma optical emission spectroscopy(Agilent 700) was used to determine the Co content in the catalyst.

    Figure 1.Schematic illustration for the synthesis of Co/Zr-MOF-M and Co/Zr-MOF-N.

    2.4.Evaluation of catalyst performance

    The performance of the prepared catalysts was evaluated by placing 0.30 g of catalyst into an atmospheric-pressure cold plasma quartz reactor (inner diameter 8 mm, outer diameter 10 mm) [21].A copper wire with a diameter of 1 mm was wound on a copper rod with a diameter of 2 mm as the inner electrode (high-voltage electrode), a layer of aluminum foil was wrapped around the quartz reactor as the outer electrode(ground electrode); the discharge gap was 2 mm.The discharge voltage and discharge frequency of the plasma power supply (CTP-2000 K, Nanjing Suman Electronics Co., Ltd)were 13.0 kV and 7.1 kHz,respectively.The total flow rate of CO2and H2was 30 ml·min?1(VH2:VCO2=4: 1) and a GC7890 gas chromatography system was used for online analysis.The CO2conversion, CO selectivity and CH4selectivity were calculated, respectively, as follows:

    whereFandF′ are the inlet and outlet gas flow rates,respectively.

    3.Results and discussion

    Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N were placed separately into an atmospheric-pressure plasma reactor to study the CO2hydrogenation conversion under the combined action of the catalytic material and plasma.As shown in figure 2(a), when Zr-MOF was added to the plasma reactor,the CO2conversion was 20.2%, and the CO and CH4selectivities were 95.1% and 4.9%, respectively.When Co/Zr-MOF-N was added to the plasma reactor,the CO2conversion increased to 24.8%, the CO selectivity decreased to 90.2%and CH4selectivity increased to 9.8%.When Co/Zr-MOF-M was added to the plasma reactor, the CO2conversion increased to 58.9%,which was 2.9 times and 2.3 times greater than with Zr-MOF and Co/Zr-MOF-N, respectively.CH4was the main reaction product,and its selectivity increased to 94.7%.The CO selectivity was only 5.3%.The carbon balance value of CO2methanation under plasma-assisted Co/Zr-MOF-M, Co/Zr-MOF-N and Zr-MOF was in the range of 98%–102%.The above findings indicate that the Co/Zr-MOF-N and atmospheric-pressure plasma had a certain synergistic effect, which improved the CO2conversion and the CH4selectivity.Meanwhile, the synergistic effect of Co/Zr-MOF-M and the atmospheric-pressure plasma greatly improved the CO2conversion rate and CH4selectivity,which may have been due to the differences in the structures and compositions of Co/Zr-MOF-M and Co/Zr-MOF-N.We also investigated the influence of active components and Co loading on CO2methanation.The results are shown in figures S3 and 2(b).It can be seen from figure S3 that Co/Zr-MOFM gave the highest CO2conversion and CH4selectivity than that of Ni/Zr-MOF-M, Cu/Zr-MOF-M and Fe/Zr-MOF-M,and from figure 2(b)that CO2conversion and CH4selectivity increase gradually with increased Co loading.

    Figure 3 shows the XRD patterns of Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N.The three samples showed the characteristic diffraction peaks of Zr-MOF at 7.4°, 8.5° and 25.7°, corresponding to the simulated Zr-MOF standard characteristic peaks.In the XRD patterns of Co/Zr-MOF-M and Co/Zr-MOF-N,no diffraction peaks of Co and its oxides were found.This indicated that the basic framework structure of Zr-MOF was not destroyed in the process of preparing Co/Zr-MOF-M and Co/Zr-MOF-N, and that calcination at 350°C for 2 h had a minor effect on the framework structure of the Zr-MOF.At the same time,compared with other supports,Zr-MOF had a larger specific surface area, and cobalt or its oxide could be highly dispersed with a relatively high loading in the Zr-MOF support.Therefore, when the cobalt loading was greater than 10%, no diffraction peaks of cobalt and its oxides were found in the XRD pattern.

    Figure 2.Plasma-assisted CO2 conversion,CO and CH4 selectivity and C balance over(a)Zr-MOF,Co/Zr-MOF-M and Co/Zr-MOF-N and(b) Co/Zr-MOF-M with different Co loadings.

    Figure 3.XRD patterns of Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N.

    Figure 4 shows SEM images of Zr-MOF,Co-MOF,Co/Zr-MOF-M and Co/Zr-MOF-N.Figure 4(a) shows the complete Zr-MOF structure, which is consistent with literature results [22].Figure 4(b) shows that the Co-MOF had a regular octahedral morphology with a high degree of crystallinity, suggesting that the Co-MOF prepared by liquidphase precipitation had a good crystalline state.Figures 4(c)and (d) show SEM images of Co/Zr-MOF-M and Co/Zr-MOF-N, respectively.Their morphologies are essentially consistent with that of Zr-MOF shown in figure 4(a),demonstrating that the morphology of Zr-MOF is generally maintained in the precursor of the catalytic material after calcination at 350 °C for 2 h.

    Table 1 lists the specific surface area, pore size and pore volume data obtained from the nitrogen adsorption–desorption isotherms and pore size distribution diagrams of the Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N samples.Compared with the specific surface area of Zr-MOF (1085.8 m2·g?1),the specific surface areas of Co/Zr-MOF-M and Co/Zr-MOF-N were greatly reduced (438.2 and 255.2 m2·g?1,respectively),indicating that covering of the surface of the Zr-MOF by cobalt and its oxides reduced the specific surface area of the Zr-MOF.Comparison of the pore volume and the average pore diameter of the three samples showed that the pore volume and average pore diameter of Co/Zr-MOF-N were equivalent to those of the Zr-MOF,but the pore volume and average pore diameter of Co/Zr-MOF-M were slightly larger than those of the Zr-MOF.This may have been related to the cobalt precursor of Co/Zr-MOF-M being the Co-MOF and the porous structure formed during the calcination process.This was also confirmed by the fact that the specific surface area of Co/Zr-MOF-M was significantly larger than that of Co/Zr-MOF-N.

    Figure 5 shows the XPS spectra of Co/Zr-MOF-M and Co/Zr-MOF-N, including the full spectrum and Co 2p highresolution spectra.The full spectrum in figure 5(a)shows that the surfaces of the Co/Zr-MOF-M and Co/Zr-MOF-N samples all contained Zr, Co, O and C, which is consistent with the elemental compositions of the precursor after calcination.The peaks with binding energies of about 780.8 and 796.5 eV in figure 5(b) are associated with Co 2p3/2and Co 2p1/2,respectively, which are consistent with values reported previously [23].The strong peaks at 785.8 and 803.1 eV are the Co 2p satellite peak signals, indicating that the two catalysts contained a relatively high amount of Co2+.To quantitatively compare the Co content in different valence states on the surface of the catalytic material,the Co 2p in figure 5(b)was subjected to a peak fitting process.The deconvoluted peak of Co 2p showed that only Co2+and Co3+existed on the surfaces of the two samples.Furthermore, the binding energies of Co2+and Co3+in the Co/Zr-MOF-M sample were slightly lower than those in the Co/Zr-MOF-N sample,indicating that the chemical environments of the Co in the two catalysts are slightly different.The surface Co2+/Cototaland Co/Zr ratios of the two samples obtained from the Co 2p peak fitting results and the surface element atomic ratios are listed in table 1.The Co2+/Cototalratio (0.85) and Co/Zr ratio (0.55)of Co/Zr-MOF-M were higher than those of Co/Zr-MOF-N(Co2+/Cototalof 0.78 and Co/Zr ratio of 0.27), which may have been the main reason why the activity of Co/Zr-MOFM was higher than that of Co/Zr-MOF-N.Liet al[24]reported Co/ZrO2catalysts prepared by an organic acidassisted incipient wetness impregnation method.The Co/ZrO2exhibited excellent performance for CO2methanation, the activity was more than twice that the catalyst prepared by a conventional method and Co2+was beneficial for CO2methanation.

    Figure 4.SEM images of (a) Zr-MOF, (b) Co-MOF, (c) Co/Zr-MOF-M and (d) Co/Zr-MOF-N.

    Figure 5.XPS spectra of Co/Zr-MOF-M and Co/Zr-MOF-N: (a) survey spectrum and (b) Co 2p spectra.

    Table 1.Specific surface areas,pore diameters,pore volumes,Co/Zr ratios and Co2+/Cototal ratios of Zr-MOF,Co/Zr-MOF-M and Co/Zr-MOF-N.

    Figure 6.(a),(b),(d),(e)HRTEM images of Co/Zr-MOF-M and Co/Zr-MOF-N.(c),(f)Elemental mappings of C,O,Zr and Co on Co/Zr-MOF-M and Co/Zr-MOF-N.

    Figure 6 shows the TEM measurement results of the two samples.Figures 6(a) and (b) show the high-resolution TEM(HRTEM) images and figure 6(c) shows the elemental mapping of Co/Zr-MOF-M.Figure 6(a) clearly shows that Co oxide was distributed on the Zr-MOF in the form of microparticles, with a particle size of about 16±0.26 nm.Lattice fringes are evident in figure 6(b).The lattice spacing was 0.241 nm, corresponding to the (311) crystal plane in the crystal structure of Co3O4cubic spinel [25].The elemental mapping in figure 6(c)clearly shows the distributions of C,O,Zr and Co in the Co/Zr-MOF-M sample.The distributions of C, O and Zr are uniform, the Co oxide is uniformly distributed in the Zr-MOF; some of the bright spots are caused by Co oxide particles.Figures 6(d)and(e)show the HRTEM images and figure 6(f) shows the elemental mapping of Co/Zr-MOF-N.Figure 6(d)shows that the Co oxide is uniformly distributed on the Zr-MOF.According to figure 6(d), the average particle size of Co oxide is 0.52±0.11 nm.The elemental mapping in figure 6(f) shows that Co, C, O and Zr are uniformly distributed in the Co/Zr-MOF-N sample.Comparison of the TEM analysis results of the two samples reveals that the cobalt oxide in the Co/Zr-MOF-M is distributed on the surface of the Zr-MOF in the form of porous particles, facilitating the increase in the specific surface area of the sample, consistent with the BET measurement results.However, the cobalt oxide in the Co/Zr-MOF-N is dispersed on the surface of the Zr-MOF.

    4.Conclusions

    Zr-MOF material,with a high specific surface area,was used as the carrier to support the Co-MOF and Co(NO3)2·6H2O precursors to obtain Co/Zr-MOF catalysts.The CO2methanation reaction under the combined action of the prepared material and a cold atmospheric-pressure plasma was investigated.Co/Zr-MOF-M with Co-MOF as the precursor had a synergistic effect with the atmospheric-pressure cold plasma,which could effectively increase the CO2conversion(58.9%)and methane selectivity(94.7%).With Co(NO3)2·6H2O as the precursor, Co/Zr-MOF-N was prepared, and the combined effect of Co/Zr-MOF-N and the atmospheric-pressure cold plasma increased the CO2conversion (from 20.2% to 24.8%compared with Zr-MOF),but the main gas phase product was CO.XRD and SEM analyses revealed that Co/Zr-MOF-M and Co/Zr-MOF-N both maintained a good Zr-MOF framework structure.N2adsorption–desorption (BET) analysis showed that Co/Zr-MOF-M had a larger specific surface area, pore volume and average pore diameter than Co/Zr-MOF-N.XPS analysis indicated that Co2+/Cototaland Co/Zr on the surface of the Co/Zr-MOF-M catalytic material were higher than on Co/Zr-MOF-N.TEM results further illustrated the difference in the surface active component distribution between Co/Zr-MOF-M and Co/Zr-MOF-N.The higher catalytic activity of the Co/Zr-MOF-M catalytic material could be attributed to the following:(1)the Co/Zr-MOF-M catalytic material had a higher specific surface area and higher Co2+/Cototaland Co/Zr ratios; (2) the cobalt active component in the Co/Zr-MOF-M catalytic material was distributed on the surface of the Zr-MOF as porous microparticles,while the cobalt active component in the Co/Zr-MOF-N catalytic material was dispersed on the Zr-MOF surface.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.21673026, 11605020), Innovative Training Program for College Student of Liaoning Province(No.S202011258068)

    ORCID iDs

    猜你喜歡
    趙靜德才張旭
    畫家 孫德才
    孫德才·美術(shù)作品欣賞
    The Three-Pion Decays of the a1(1260)?
    躬耕教苑 德才雙馨
    西江月(2018年5期)2018-06-08 05:47:33
    『脫發(fā)』的大樹(shù)
    在家在校都很煩
    打針
    吳德才
    福建茶葉(2017年3期)2017-03-30 05:19:28
    別想著逃避,做真正的自己
    什么才是真友誼
    国产极品天堂在线| www.色视频.com| 日韩 亚洲 欧美在线| 满18在线观看网站| 99久久精品国产国产毛片| 成人亚洲精品一区在线观看| 亚洲,一卡二卡三卡| 国产精品99久久久久久久久| 欧美性感艳星| av视频免费观看在线观看| 伦理电影免费视频| 少妇人妻久久综合中文| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 人妻 亚洲 视频| 人人妻人人澡人人爽人人夜夜| 美女大奶头黄色视频| 欧美日韩成人在线一区二区| 视频区图区小说| 搡老乐熟女国产| 高清欧美精品videossex| 中文字幕制服av| 久久毛片免费看一区二区三区| 久久久久久久久久久免费av| 亚洲精品日韩在线中文字幕| 国产成人91sexporn| 男女高潮啪啪啪动态图| 啦啦啦视频在线资源免费观看| 高清欧美精品videossex| 麻豆乱淫一区二区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av综合色区一区| 亚洲欧美日韩另类电影网站| 久久 成人 亚洲| 欧美少妇被猛烈插入视频| 精品久久久精品久久久| 丰满饥渴人妻一区二区三| 亚洲少妇的诱惑av| 欧美性感艳星| 在线天堂最新版资源| 午夜激情av网站| 国产 一区精品| 国产乱人偷精品视频| 国产成人精品婷婷| 国产精品国产av在线观看| 日本av手机在线免费观看| 欧美最新免费一区二区三区| 久久久久久久国产电影| 十八禁高潮呻吟视频| 91精品一卡2卡3卡4卡| 色网站视频免费| 亚洲天堂av无毛| 精品午夜福利在线看| 18禁在线播放成人免费| av又黄又爽大尺度在线免费看| 国产精品偷伦视频观看了| 国产男女超爽视频在线观看| 人妻 亚洲 视频| 日韩欧美一区视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲欧美一区二区三区国产| av福利片在线| 久久久精品免费免费高清| 午夜福利视频精品| 国产免费一级a男人的天堂| 另类精品久久| 亚州av有码| av在线观看视频网站免费| 免费黄色在线免费观看| 免费播放大片免费观看视频在线观看| 亚洲欧美色中文字幕在线| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 少妇 在线观看| 草草在线视频免费看| 国产午夜精品一二区理论片| 日日摸夜夜添夜夜爱| 边亲边吃奶的免费视频| 国产欧美日韩一区二区三区在线 | 国产乱来视频区| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看| 热re99久久国产66热| 久久久亚洲精品成人影院| 高清毛片免费看| 国产精品欧美亚洲77777| 国产精品.久久久| 欧美xxxx性猛交bbbb| 亚洲av成人精品一二三区| 国产成人午夜福利电影在线观看| 男男h啪啪无遮挡| 亚洲激情五月婷婷啪啪| av线在线观看网站| 国产精品一区二区在线不卡| 又粗又硬又长又爽又黄的视频| 一级a做视频免费观看| av国产精品久久久久影院| 亚洲av综合色区一区| 久久亚洲国产成人精品v| 一级,二级,三级黄色视频| 午夜久久久在线观看| 日韩免费高清中文字幕av| 亚洲av综合色区一区| 18+在线观看网站| 精品国产一区二区三区久久久樱花| 人妻制服诱惑在线中文字幕| 五月开心婷婷网| 制服人妻中文乱码| 日本-黄色视频高清免费观看| 亚洲精品国产av蜜桃| 男女国产视频网站| 天堂中文最新版在线下载| 狠狠精品人妻久久久久久综合| 午夜久久久在线观看| 国产男女超爽视频在线观看| 亚洲精品456在线播放app| 亚洲欧洲日产国产| 99视频精品全部免费 在线| 欧美3d第一页| 激情五月婷婷亚洲| 日本-黄色视频高清免费观看| 亚洲精品国产av蜜桃| 18禁在线播放成人免费| 亚洲av欧美aⅴ国产| 乱码一卡2卡4卡精品| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 一级毛片aaaaaa免费看小| 99久久精品国产国产毛片| 亚洲美女视频黄频| 欧美日本中文国产一区发布| 亚洲欧美日韩另类电影网站| 一边亲一边摸免费视频| 国产av精品麻豆| 内地一区二区视频在线| 青青草视频在线视频观看| 日韩av在线免费看完整版不卡| 国产成人精品一,二区| 午夜91福利影院| 日韩精品有码人妻一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲四区av| 国产一区二区在线观看日韩| 日日摸夜夜添夜夜添av毛片| 18在线观看网站| 丝瓜视频免费看黄片| 国产成人免费无遮挡视频| 亚洲熟女精品中文字幕| 日韩在线高清观看一区二区三区| 国产精品久久久久久精品电影小说| 国产一区亚洲一区在线观看| 七月丁香在线播放| √禁漫天堂资源中文www| 男女高潮啪啪啪动态图| 免费av中文字幕在线| 国产亚洲午夜精品一区二区久久| 午夜激情久久久久久久| 免费av中文字幕在线| 国产精品久久久久成人av| 国产亚洲最大av| 一区二区三区精品91| 亚洲性久久影院| 亚洲av综合色区一区| 日日爽夜夜爽网站| 亚洲国产av影院在线观看| 国产高清不卡午夜福利| videos熟女内射| 2021少妇久久久久久久久久久| 各种免费的搞黄视频| 永久网站在线| 成人国产麻豆网| 99九九线精品视频在线观看视频| 嫩草影院入口| 国产精品久久久久久av不卡| 中文字幕av电影在线播放| 91久久精品国产一区二区成人| 久久国产亚洲av麻豆专区| 大片免费播放器 马上看| 国产精品久久久久久av不卡| 国产精品一二三区在线看| 日本av手机在线免费观看| 国产一区二区在线观看av| 亚洲欧美精品自产自拍| 99久久精品一区二区三区| 国产视频内射| 亚洲色图综合在线观看| 一区二区av电影网| 久久人妻熟女aⅴ| 日韩欧美一区视频在线观看| 国产亚洲一区二区精品| 免费观看性生交大片5| 日本午夜av视频| 久久女婷五月综合色啪小说| 一级爰片在线观看| 97精品久久久久久久久久精品| 天堂8中文在线网| 久久精品久久久久久噜噜老黄| 免费av不卡在线播放| 亚洲国产毛片av蜜桃av| 水蜜桃什么品种好| xxxhd国产人妻xxx| 七月丁香在线播放| a级毛片在线看网站| 国产精品不卡视频一区二区| 国产精品久久久久久久久免| 一二三四中文在线观看免费高清| 一级毛片 在线播放| 日韩人妻高清精品专区| 国产成人一区二区在线| 91精品国产九色| 春色校园在线视频观看| 国产亚洲午夜精品一区二区久久| 国产精品无大码| 老司机影院毛片| 一区二区日韩欧美中文字幕 | 最黄视频免费看| 中文字幕人妻丝袜制服| 赤兔流量卡办理| 麻豆成人av视频| 国产精品久久久久久精品古装| 日日摸夜夜添夜夜爱| 欧美精品国产亚洲| 欧美日韩在线观看h| 色网站视频免费| 久久久精品免费免费高清| 欧美丝袜亚洲另类| 午夜福利视频精品| 有码 亚洲区| 26uuu在线亚洲综合色| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 五月玫瑰六月丁香| 男人操女人黄网站| 全区人妻精品视频| 97超碰精品成人国产| 新久久久久国产一级毛片| 一边摸一边做爽爽视频免费| 18禁在线无遮挡免费观看视频| 2018国产大陆天天弄谢| 一区在线观看完整版| 亚洲国产精品一区二区三区在线| 日日摸夜夜添夜夜添av毛片| 在线观看人妻少妇| 日本黄色片子视频| 高清欧美精品videossex| 国产成人av激情在线播放 | 男女高潮啪啪啪动态图| 日本vs欧美在线观看视频| 日产精品乱码卡一卡2卡三| .国产精品久久| 久久亚洲国产成人精品v| 国产高清三级在线| 国产69精品久久久久777片| 日韩免费高清中文字幕av| 国产精品女同一区二区软件| xxx大片免费视频| 看非洲黑人一级黄片| 两个人的视频大全免费| videosex国产| 熟女av电影| 天天影视国产精品| 三上悠亚av全集在线观看| 国产 精品1| 能在线免费看毛片的网站| 国产成人av激情在线播放 | 精品少妇久久久久久888优播| 精品久久久久久久久av| 亚洲欧洲国产日韩| freevideosex欧美| 制服丝袜香蕉在线| 日本wwww免费看| 春色校园在线视频观看| 国产亚洲一区二区精品| 久久久国产欧美日韩av| 中国美白少妇内射xxxbb| 中文字幕人妻丝袜制服| 哪个播放器可以免费观看大片| 日本av免费视频播放| 日韩av不卡免费在线播放| 精品熟女少妇av免费看| 国产男女超爽视频在线观看| 国产成人精品福利久久| 国产成人一区二区在线| 国产又色又爽无遮挡免| 亚洲三级黄色毛片| 在线观看一区二区三区激情| 伊人久久国产一区二区| 晚上一个人看的免费电影| 国产69精品久久久久777片| 九色亚洲精品在线播放| 在线观看人妻少妇| 伊人亚洲综合成人网| 亚洲国产欧美在线一区| av国产精品久久久久影院| 人妻少妇偷人精品九色| 国产乱人偷精品视频| 欧美人与善性xxx| 纵有疾风起免费观看全集完整版| 久久久久久伊人网av| 日韩不卡一区二区三区视频在线| 国产欧美日韩综合在线一区二区| 国产一区二区三区av在线| 成人手机av| 国产精品一国产av| 制服诱惑二区| 亚洲天堂av无毛| 欧美人与性动交α欧美精品济南到 | 十分钟在线观看高清视频www| 搡女人真爽免费视频火全软件| 99热国产这里只有精品6| 最新中文字幕久久久久| 国产欧美日韩综合在线一区二区| 亚洲天堂av无毛| 免费观看a级毛片全部| 午夜av观看不卡| av播播在线观看一区| 亚洲美女黄色视频免费看| 欧美精品一区二区免费开放| 日本av免费视频播放| 观看av在线不卡| 久久精品国产自在天天线| 男人操女人黄网站| 看非洲黑人一级黄片| 国产精品秋霞免费鲁丝片| 这个男人来自地球电影免费观看 | 精品一品国产午夜福利视频| 中文字幕久久专区| 一区二区日韩欧美中文字幕 | 午夜免费鲁丝| 国产高清有码在线观看视频| 最近中文字幕高清免费大全6| 久久久久久久精品精品| 一区二区三区四区激情视频| av在线播放精品| 黄色毛片三级朝国网站| 18禁在线无遮挡免费观看视频| 最后的刺客免费高清国语| 亚洲综合精品二区| 99久久精品国产国产毛片| 春色校园在线视频观看| 大香蕉97超碰在线| 我要看黄色一级片免费的| 国产精品久久久久成人av| 国内精品宾馆在线| av女优亚洲男人天堂| a 毛片基地| 99热6这里只有精品| 国产日韩欧美视频二区| 三级国产精品片| 亚洲精品中文字幕在线视频| 婷婷色av中文字幕| 丝袜在线中文字幕| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久丰满| 乱码一卡2卡4卡精品| 国产免费又黄又爽又色| 久久婷婷青草| 中国美白少妇内射xxxbb| 国产一区二区三区综合在线观看 | 精品亚洲成国产av| 精品一区二区三卡| 18+在线观看网站| 国产探花极品一区二区| av有码第一页| 国产有黄有色有爽视频| 两个人的视频大全免费| 18在线观看网站| 久久精品国产自在天天线| 久久久久久久久大av| 亚洲精品色激情综合| 九色成人免费人妻av| 精品一区在线观看国产| 国产综合精华液| 亚洲高清免费不卡视频| 国内精品宾馆在线| 午夜激情福利司机影院| 国产精品久久久久久精品古装| 蜜桃久久精品国产亚洲av| 亚洲国产毛片av蜜桃av| 国产又色又爽无遮挡免| 久久久久国产网址| 高清午夜精品一区二区三区| 成人毛片60女人毛片免费| 日产精品乱码卡一卡2卡三| av福利片在线| 日韩中文字幕视频在线看片| 免费av中文字幕在线| 啦啦啦中文免费视频观看日本| 插阴视频在线观看视频| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 日日啪夜夜爽| 成人午夜精彩视频在线观看| 精品少妇黑人巨大在线播放| 国产精品久久久久久久电影| 婷婷色麻豆天堂久久| 免费播放大片免费观看视频在线观看| 日韩中文字幕视频在线看片| 久久影院123| 能在线免费看毛片的网站| 少妇 在线观看| 久久精品国产a三级三级三级| 秋霞伦理黄片| 伦理电影大哥的女人| 午夜福利网站1000一区二区三区| 国产高清国产精品国产三级| 久久精品国产鲁丝片午夜精品| 成人免费观看视频高清| 99热网站在线观看| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 在线观看免费日韩欧美大片 | 精品久久久噜噜| 日本黄色日本黄色录像| 亚洲精品日韩在线中文字幕| 少妇人妻久久综合中文| 久久人人爽av亚洲精品天堂| 国产精品久久久久久精品电影小说| 熟妇人妻不卡中文字幕| 日日摸夜夜添夜夜添av毛片| 高清黄色对白视频在线免费看| 欧美bdsm另类| 搡老乐熟女国产| 五月天丁香电影| 伊人久久国产一区二区| 久久精品国产亚洲av涩爱| 成人毛片a级毛片在线播放| 精品国产一区二区久久| 美女xxoo啪啪120秒动态图| 丝袜喷水一区| 久久久久久久久久久久大奶| 18禁在线播放成人免费| 九九爱精品视频在线观看| 99视频精品全部免费 在线| 九色成人免费人妻av| 热re99久久精品国产66热6| 岛国毛片在线播放| 国产成人精品婷婷| 2021少妇久久久久久久久久久| 乱人伦中国视频| 成年人免费黄色播放视频| 一区二区三区精品91| 少妇的逼好多水| av不卡在线播放| 乱人伦中国视频| 97超碰精品成人国产| 我的老师免费观看完整版| 日本wwww免费看| 卡戴珊不雅视频在线播放| 久久久精品94久久精品| 久久国内精品自在自线图片| 亚洲国产精品国产精品| 人妻制服诱惑在线中文字幕| 亚洲精品,欧美精品| 国产亚洲最大av| 九色亚洲精品在线播放| 夜夜爽夜夜爽视频| 精品熟女少妇av免费看| 亚洲av.av天堂| 国模一区二区三区四区视频| 18禁观看日本| 黄色配什么色好看| 美女xxoo啪啪120秒动态图| 成年女人在线观看亚洲视频| 各种免费的搞黄视频| 极品少妇高潮喷水抽搐| 我的老师免费观看完整版| 亚州av有码| 欧美 亚洲 国产 日韩一| 国产一区有黄有色的免费视频| 国产av码专区亚洲av| 日韩制服骚丝袜av| 热re99久久国产66热| 九九爱精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 久久精品国产自在天天线| 久久精品久久精品一区二区三区| 99热这里只有是精品在线观看| 亚洲人成网站在线观看播放| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 精品人妻熟女av久视频| 午夜视频国产福利| 亚洲一区二区三区欧美精品| 日韩强制内射视频| 在线观看www视频免费| 一个人看视频在线观看www免费| 亚洲天堂av无毛| 中文字幕av电影在线播放| 久久久久久人妻| 最近中文字幕2019免费版| 十分钟在线观看高清视频www| 国产亚洲精品久久久com| 亚洲三级黄色毛片| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级| 性色av一级| 国产成人精品福利久久| 极品人妻少妇av视频| 免费观看的影片在线观看| 男女无遮挡免费网站观看| 日韩人妻高清精品专区| 成人18禁高潮啪啪吃奶动态图 | 久久久久久人妻| 久久国产精品大桥未久av| 久久久久久久久大av| 日本欧美国产在线视频| 欧美97在线视频| 欧美亚洲 丝袜 人妻 在线| 91在线精品国自产拍蜜月| 婷婷色av中文字幕| 国产成人精品福利久久| av免费在线看不卡| 亚洲欧美中文字幕日韩二区| 亚洲精华国产精华液的使用体验| 亚洲精品日韩av片在线观看| 99久久综合免费| 又黄又爽又刺激的免费视频.| 成人毛片a级毛片在线播放| 久久久久人妻精品一区果冻| 18禁动态无遮挡网站| 精品国产一区二区三区久久久樱花| 在线观看三级黄色| 韩国av在线不卡| 岛国毛片在线播放| 久久久久视频综合| 一级黄片播放器| 黄色一级大片看看| 日日撸夜夜添| 免费黄色在线免费观看| 人妻一区二区av| 搡女人真爽免费视频火全软件| 亚洲av免费高清在线观看| 亚洲精华国产精华液的使用体验| 五月伊人婷婷丁香| 国模一区二区三区四区视频| 黄色欧美视频在线观看| 中文天堂在线官网| 欧美性感艳星| av在线app专区| 天天躁夜夜躁狠狠久久av| 久久97久久精品| 国产免费又黄又爽又色| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 中文字幕久久专区| 成人手机av| 99久久精品国产国产毛片| 97超碰精品成人国产| 免费观看a级毛片全部| 美女cb高潮喷水在线观看| 欧美老熟妇乱子伦牲交| 欧美 日韩 精品 国产| 大话2 男鬼变身卡| 亚洲精品久久午夜乱码| 精品久久久噜噜| 欧美日韩在线观看h| 嫩草影院入口| 两个人免费观看高清视频| 久久精品国产自在天天线| 国产精品熟女久久久久浪| 一个人看视频在线观看www免费| 日韩精品有码人妻一区| 丝袜脚勾引网站| 日韩熟女老妇一区二区性免费视频| 色哟哟·www| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 99九九在线精品视频| 高清视频免费观看一区二区| 精品午夜福利在线看| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 久久毛片免费看一区二区三区| 久久久久久久久大av| 免费看av在线观看网站| 永久免费av网站大全| 精品卡一卡二卡四卡免费| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 各种免费的搞黄视频| 中文字幕制服av| 欧美人与性动交α欧美精品济南到 | 亚洲欧美清纯卡通| 久久久久久久久久久免费av| 99九九线精品视频在线观看视频| 中文字幕久久专区| 国产成人91sexporn| 欧美日韩亚洲高清精品| 亚洲精品亚洲一区二区| 高清欧美精品videossex| 女性生殖器流出的白浆| 人人澡人人妻人| 国产精品国产av在线观看| 亚洲av福利一区| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| a级毛色黄片| 日韩人妻高清精品专区| 一本一本综合久久| 国产男女超爽视频在线观看| 久久青草综合色| 18+在线观看网站| 国产男女内射视频| 在线观看一区二区三区激情| www.色视频.com| 久久久久久人妻| 五月伊人婷婷丁香| 欧美3d第一页| 色婷婷av一区二区三区视频| 日韩视频在线欧美| 日本av手机在线免费观看| 人体艺术视频欧美日本| 水蜜桃什么品种好| 日韩伦理黄色片|