• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation:influence of Co precursors

    2021-05-22 07:01:22YanqinLI李艷琴JingZHAO趙靜DecaiBU部德才XuleiZHANG張旭磊TengPENG彭騰LanboDI底蘭波andXiulingZHANG張秀玲
    Plasma Science and Technology 2021年5期
    關(guān)鍵詞:趙靜德才張旭

    Yanqin LI(李艷琴),Jing ZHAO(趙靜),Decai BU(部德才),Xulei ZHANG(張旭磊), Teng PENG (彭騰), Lanbo DI (底蘭波) and Xiuling ZHANG (張秀玲)

    College of Physical Science and Technology, Dalian University, Dalian 116622, People’s Republic of China

    Abstract In this study, Co/Zr-metal organic framework (MOF) precursors were obtained by a roomtemperature liquid-phase precipitation method and the equivalent-volume impregnation method,respectively, using a Zr-MOF as the support, and Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared after calcination in a hydrogen–argon mixture gases (VA r : VH2=9: 1) at 350 °C for 2 h.The catalytic activities of the prepared samples for CO2 methanation under atmosphericpressure cold plasma were studied.The results showed that Co/Zr-MOF-M had a good synergistic effect with cold plasma.At a discharge power of 13.0 W,VH 2: VCO2=4: 1and a gas flow rate of 30 ml·min?1,the CO2 conversion was 58.9%and the CH4 selectivity reached 94.7%,which was higher than for Co/Zr-MOF-N under plasma (CO2 conversion 24.8%, CH4 selectivity 9.8%).X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption and desorption (Brunauer–Emmett–Teller) and x-ray photoelectron spectroscopy analysis results showed that Co/Zr-MOF-M and Co/Zr-MOF-N retained a good Zr-MOF framework structure, and the Co oxide was uniformly dispersed on the surface of the Zr-MOF.Compared with Co/Zr-MOF-N, the Co/Zr-MOF-M catalyst has a larger specific surface area and higher Co2+/Cototal and Co/Zr ratios.Additionally, the Co oxide in Co/Zr-MOF-M is distributed on the surface of the Zr-MOF in the form of porous particles,which may be the main reason why the catalytic activity of Co/Zr-MOF-M is higher than that of Co/Zr-MOF-N.

    Keywords: atmospheric-pressure cold plasma, CO2, supported Co catalytic materials, metal organic framework

    1.Introduction

    CO2is an inexpensive C1 resource with the most abundant storage in the world.Under certain conditions, CO2can be converted into high-value-added compounds such as hydrocarbons,alcohols and organic acids,which not only solves the problem of the effective utilization of C1 resources but could also alleviate the global warming caused by CO2.Therefore,finding an effective method to convert CO2into high-valueadded chemicals has attracted attention all over the world[1].The plasma-assisted catalytic CO2hydrogenation reaction is an effective method for preparing hydrocarbons.Compared with traditional heat-assisted catalytic reactions, high-energy particles in plasma not only effectively activate CO2and H2but can also change the surface morphologies of the catalyst and the valence of the active component [2].

    Metals are the main catalysts for plasma-assisted catalytic CO2hydrogenation reactions.Noble metals exhibit excellent catalytic performances; however, the application of noble metals faces many difficulties due to their high cost and lower reserves [3].Transition metal catalysts such as Co can solve the problems of poor catalyst stability and high noble metal catalytic material costs [4–7].Supported metal Co and its oxides have received more attention in the fields of catalysis and energy due to their excellent catalytic activities [8, 9].

    Metal organic framework (MOF) materials are widely used in catalysis, drug delivery and other fields due to their high specific surface areas, uniform pore sizes, periodic structures and other characteristics.Many studies have found that MOFs can be used as templates to synthesize catalysts with unique morphologies[10–13],and some of them can be used as supports in catalysis because of their high specific surface areas and thermal stabilities[14–18].Zhanget al[19]synthesized a Co–formic acid MOF (Co-MOF) by a liquidphase precipitation method.This material could be calcined at low temperatures to prepare a porous Co3O4catalytic material which exhibited excellent catalytic activity for CO oxidation.The research of Xuet al[20] showed that a Zr-MOF could exist stably in an air environment at a temperature lower than 400 °C.Zhaoet al[21] reported a catalytic material with a single copper nanoparticle embedded in a Zr-MOF.Compared with traditional Cu/ZnO/Al2O3catalytic material, the methane yield in the CO2hydrogenation reaction increased by eight times.

    In this study, a Zr-MOF prepared by a solvothermal method was used as a support, and the precursors of Co-MOF/Zr-MOF and Co(NO3)2/Zr-MOF were prepared by a liquid-phase precipitation method and equivalent-volume impregnation, respectively.They were placed in a tube furnace, and the temperature was held at 350 °C for 2 h in an Ar/H2gas mixture.After natural cooling,the Co/Zr-MOF-M and Co/Zr-MOF-N catalysts were prepared, and x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the structures,morphologies and elemental compositions of the catalyst.Furthermore, the catalytic activities of the prepared material for CO2hydrogenation were evaluated in an atmosphericpressure cold plasma.

    2.Experimental

    2.1.Materials and synthesis of Zr-MOF

    All chemical reagents were commercially purchased and used without further purification.Zr-MOF was synthesized by a solvothermal method[20].In brief,5 mmol(1.165 g)of ZrCl4and 5 mmol (0.831 g) of H2BDC (terephthalic acid) were dissolved in 30 ml of DMF (N, N-dimethylformamide).The liquid mixture was placed in an ultrasonic reactor for 20 min and heated at 120 °C for 24 h in a Teflon-lined steel autoclave.The obtained solid powder was washed three times with DMF and anhydrous methanol, after which the filtered white solid was dried in a vacuum drying oven at 100°C for 7 h to obtain the Zr-MOF.

    2.2.Preparation of catalyst

    The Co-MOF/Zr-MOF precursor was prepared by a liquidphase precipitation method.The process was as follows.First,0.50 g PEG (polyethylene glycol, average Mn = 2000) and 0.58 g cobalt nitrate were dissolved in 10 ml of methanol to form Solution A.Then, 0.50 g PEG, 0.3 ml formic acid and 1.01 g ammonium formate were dissolved in 10 ml methanol,and 1.00 g of Zr-MOF was quickly added to the above solution.The mixture was stirred on a magnetic stirrer for 20 min to obtain Solution B.Finally, Solution A was slowly added to Solution B under continuous stirring at room temperature for 1 h and aged for 24 h.The pink solid powder was centrifuged (9000 r.p.m., 10 min) and washed five times with ethanol, after which it was dried in a vacuum drying oven at 55 °C for 7 h to obtain the Co-MOF/Zr-MOF precursor.

    The Co(NO3)2/Zr-MOF precursor was prepared by the equivalent-volume impregnation method.The process was as follows.First, 5.80 g of Co(NO3)2·6H2O was added to a 25 ml volumetric flask to prepare a 15% Co(NO3)2·6H2O aqueous solution.Then, 2.15 ml of the aqueous solution was added to 1.00 g of Zr-MOF and evenly mixed.Finally, after being allowed to stand at room temperature for 12 h, the mixture was dried at 120 °C for 2 h to obtain the Co(NO3)2/Zr-MOF precursor.

    The precursors of Co-MOF/Zr-MOF and Co(NO3)2/Zr-MOF were placed separately in a tube furnace,and a mixture gas of Ar/H2(VAr:VH2=9: 1)was introduced.The temperature was maintained at 350°C for 2 h(according to the results of figure S1, available online at stacks.iop.org/PST/23/055503/mmedia) and then cooled naturally to obtain Co/Zr-MOF-M and Co/Zr-MOF-N catalysts.Inductively coupled plasma atomic emission spectroscopy measurements showed that the Co contents of the two catalysts were 10.84%and 11.20%,respectively.The synthesis process for Co/Zr-MOF-M and Co/Zr-MOF-N is shown in figure 1.

    2.3.Characterization of catalyst

    The crystal structure of the catalytic material was analyzed by an XRD system (Dandong Fangyuan Co., Ltd, China; Cu target, Kα radiation, λ=0.1506 nm).The tube voltage was 40 kV, the tube current was 40 mA, the scanning range was 5°–90°and the step size was 0.03°.The specific surface areas,pore sizes and pore volumes of catalytic material were determined using a NOVA 2200e nitrogen physical adsorption–desorption (Brunauer–Emmett–Teller, BET) instrument(Quantachrome, USA).The surface morphologies of the catalyst were determined by SEM (Sigma 500, Zeiss).The average size and distribution of the nanoparticles were statistically analyzed using TEM (HT7700, Hitachi, Japan;acceleration voltage 120 kV).The elemental compositions of the catalyst were characterized by an XPS system(ESCALAN250, Thermo VG, USA; Al/Kα was the x-ray source).All the binding energy values were calibrated based on the C 1s(binding energy 284.6 eV)peak for each element.Inductively coupled plasma optical emission spectroscopy(Agilent 700) was used to determine the Co content in the catalyst.

    Figure 1.Schematic illustration for the synthesis of Co/Zr-MOF-M and Co/Zr-MOF-N.

    2.4.Evaluation of catalyst performance

    The performance of the prepared catalysts was evaluated by placing 0.30 g of catalyst into an atmospheric-pressure cold plasma quartz reactor (inner diameter 8 mm, outer diameter 10 mm) [21].A copper wire with a diameter of 1 mm was wound on a copper rod with a diameter of 2 mm as the inner electrode (high-voltage electrode), a layer of aluminum foil was wrapped around the quartz reactor as the outer electrode(ground electrode); the discharge gap was 2 mm.The discharge voltage and discharge frequency of the plasma power supply (CTP-2000 K, Nanjing Suman Electronics Co., Ltd)were 13.0 kV and 7.1 kHz,respectively.The total flow rate of CO2and H2was 30 ml·min?1(VH2:VCO2=4: 1) and a GC7890 gas chromatography system was used for online analysis.The CO2conversion, CO selectivity and CH4selectivity were calculated, respectively, as follows:

    whereFandF′ are the inlet and outlet gas flow rates,respectively.

    3.Results and discussion

    Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N were placed separately into an atmospheric-pressure plasma reactor to study the CO2hydrogenation conversion under the combined action of the catalytic material and plasma.As shown in figure 2(a), when Zr-MOF was added to the plasma reactor,the CO2conversion was 20.2%, and the CO and CH4selectivities were 95.1% and 4.9%, respectively.When Co/Zr-MOF-N was added to the plasma reactor,the CO2conversion increased to 24.8%, the CO selectivity decreased to 90.2%and CH4selectivity increased to 9.8%.When Co/Zr-MOF-M was added to the plasma reactor, the CO2conversion increased to 58.9%,which was 2.9 times and 2.3 times greater than with Zr-MOF and Co/Zr-MOF-N, respectively.CH4was the main reaction product,and its selectivity increased to 94.7%.The CO selectivity was only 5.3%.The carbon balance value of CO2methanation under plasma-assisted Co/Zr-MOF-M, Co/Zr-MOF-N and Zr-MOF was in the range of 98%–102%.The above findings indicate that the Co/Zr-MOF-N and atmospheric-pressure plasma had a certain synergistic effect, which improved the CO2conversion and the CH4selectivity.Meanwhile, the synergistic effect of Co/Zr-MOF-M and the atmospheric-pressure plasma greatly improved the CO2conversion rate and CH4selectivity,which may have been due to the differences in the structures and compositions of Co/Zr-MOF-M and Co/Zr-MOF-N.We also investigated the influence of active components and Co loading on CO2methanation.The results are shown in figures S3 and 2(b).It can be seen from figure S3 that Co/Zr-MOFM gave the highest CO2conversion and CH4selectivity than that of Ni/Zr-MOF-M, Cu/Zr-MOF-M and Fe/Zr-MOF-M,and from figure 2(b)that CO2conversion and CH4selectivity increase gradually with increased Co loading.

    Figure 3 shows the XRD patterns of Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N.The three samples showed the characteristic diffraction peaks of Zr-MOF at 7.4°, 8.5° and 25.7°, corresponding to the simulated Zr-MOF standard characteristic peaks.In the XRD patterns of Co/Zr-MOF-M and Co/Zr-MOF-N,no diffraction peaks of Co and its oxides were found.This indicated that the basic framework structure of Zr-MOF was not destroyed in the process of preparing Co/Zr-MOF-M and Co/Zr-MOF-N, and that calcination at 350°C for 2 h had a minor effect on the framework structure of the Zr-MOF.At the same time,compared with other supports,Zr-MOF had a larger specific surface area, and cobalt or its oxide could be highly dispersed with a relatively high loading in the Zr-MOF support.Therefore, when the cobalt loading was greater than 10%, no diffraction peaks of cobalt and its oxides were found in the XRD pattern.

    Figure 2.Plasma-assisted CO2 conversion,CO and CH4 selectivity and C balance over(a)Zr-MOF,Co/Zr-MOF-M and Co/Zr-MOF-N and(b) Co/Zr-MOF-M with different Co loadings.

    Figure 3.XRD patterns of Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N.

    Figure 4 shows SEM images of Zr-MOF,Co-MOF,Co/Zr-MOF-M and Co/Zr-MOF-N.Figure 4(a) shows the complete Zr-MOF structure, which is consistent with literature results [22].Figure 4(b) shows that the Co-MOF had a regular octahedral morphology with a high degree of crystallinity, suggesting that the Co-MOF prepared by liquidphase precipitation had a good crystalline state.Figures 4(c)and (d) show SEM images of Co/Zr-MOF-M and Co/Zr-MOF-N, respectively.Their morphologies are essentially consistent with that of Zr-MOF shown in figure 4(a),demonstrating that the morphology of Zr-MOF is generally maintained in the precursor of the catalytic material after calcination at 350 °C for 2 h.

    Table 1 lists the specific surface area, pore size and pore volume data obtained from the nitrogen adsorption–desorption isotherms and pore size distribution diagrams of the Zr-MOF, Co/Zr-MOF-M and Co/Zr-MOF-N samples.Compared with the specific surface area of Zr-MOF (1085.8 m2·g?1),the specific surface areas of Co/Zr-MOF-M and Co/Zr-MOF-N were greatly reduced (438.2 and 255.2 m2·g?1,respectively),indicating that covering of the surface of the Zr-MOF by cobalt and its oxides reduced the specific surface area of the Zr-MOF.Comparison of the pore volume and the average pore diameter of the three samples showed that the pore volume and average pore diameter of Co/Zr-MOF-N were equivalent to those of the Zr-MOF,but the pore volume and average pore diameter of Co/Zr-MOF-M were slightly larger than those of the Zr-MOF.This may have been related to the cobalt precursor of Co/Zr-MOF-M being the Co-MOF and the porous structure formed during the calcination process.This was also confirmed by the fact that the specific surface area of Co/Zr-MOF-M was significantly larger than that of Co/Zr-MOF-N.

    Figure 5 shows the XPS spectra of Co/Zr-MOF-M and Co/Zr-MOF-N, including the full spectrum and Co 2p highresolution spectra.The full spectrum in figure 5(a)shows that the surfaces of the Co/Zr-MOF-M and Co/Zr-MOF-N samples all contained Zr, Co, O and C, which is consistent with the elemental compositions of the precursor after calcination.The peaks with binding energies of about 780.8 and 796.5 eV in figure 5(b) are associated with Co 2p3/2and Co 2p1/2,respectively, which are consistent with values reported previously [23].The strong peaks at 785.8 and 803.1 eV are the Co 2p satellite peak signals, indicating that the two catalysts contained a relatively high amount of Co2+.To quantitatively compare the Co content in different valence states on the surface of the catalytic material,the Co 2p in figure 5(b)was subjected to a peak fitting process.The deconvoluted peak of Co 2p showed that only Co2+and Co3+existed on the surfaces of the two samples.Furthermore, the binding energies of Co2+and Co3+in the Co/Zr-MOF-M sample were slightly lower than those in the Co/Zr-MOF-N sample,indicating that the chemical environments of the Co in the two catalysts are slightly different.The surface Co2+/Cototaland Co/Zr ratios of the two samples obtained from the Co 2p peak fitting results and the surface element atomic ratios are listed in table 1.The Co2+/Cototalratio (0.85) and Co/Zr ratio (0.55)of Co/Zr-MOF-M were higher than those of Co/Zr-MOF-N(Co2+/Cototalof 0.78 and Co/Zr ratio of 0.27), which may have been the main reason why the activity of Co/Zr-MOFM was higher than that of Co/Zr-MOF-N.Liet al[24]reported Co/ZrO2catalysts prepared by an organic acidassisted incipient wetness impregnation method.The Co/ZrO2exhibited excellent performance for CO2methanation, the activity was more than twice that the catalyst prepared by a conventional method and Co2+was beneficial for CO2methanation.

    Figure 4.SEM images of (a) Zr-MOF, (b) Co-MOF, (c) Co/Zr-MOF-M and (d) Co/Zr-MOF-N.

    Figure 5.XPS spectra of Co/Zr-MOF-M and Co/Zr-MOF-N: (a) survey spectrum and (b) Co 2p spectra.

    Table 1.Specific surface areas,pore diameters,pore volumes,Co/Zr ratios and Co2+/Cototal ratios of Zr-MOF,Co/Zr-MOF-M and Co/Zr-MOF-N.

    Figure 6.(a),(b),(d),(e)HRTEM images of Co/Zr-MOF-M and Co/Zr-MOF-N.(c),(f)Elemental mappings of C,O,Zr and Co on Co/Zr-MOF-M and Co/Zr-MOF-N.

    Figure 6 shows the TEM measurement results of the two samples.Figures 6(a) and (b) show the high-resolution TEM(HRTEM) images and figure 6(c) shows the elemental mapping of Co/Zr-MOF-M.Figure 6(a) clearly shows that Co oxide was distributed on the Zr-MOF in the form of microparticles, with a particle size of about 16±0.26 nm.Lattice fringes are evident in figure 6(b).The lattice spacing was 0.241 nm, corresponding to the (311) crystal plane in the crystal structure of Co3O4cubic spinel [25].The elemental mapping in figure 6(c)clearly shows the distributions of C,O,Zr and Co in the Co/Zr-MOF-M sample.The distributions of C, O and Zr are uniform, the Co oxide is uniformly distributed in the Zr-MOF; some of the bright spots are caused by Co oxide particles.Figures 6(d)and(e)show the HRTEM images and figure 6(f) shows the elemental mapping of Co/Zr-MOF-N.Figure 6(d)shows that the Co oxide is uniformly distributed on the Zr-MOF.According to figure 6(d), the average particle size of Co oxide is 0.52±0.11 nm.The elemental mapping in figure 6(f) shows that Co, C, O and Zr are uniformly distributed in the Co/Zr-MOF-N sample.Comparison of the TEM analysis results of the two samples reveals that the cobalt oxide in the Co/Zr-MOF-M is distributed on the surface of the Zr-MOF in the form of porous particles, facilitating the increase in the specific surface area of the sample, consistent with the BET measurement results.However, the cobalt oxide in the Co/Zr-MOF-N is dispersed on the surface of the Zr-MOF.

    4.Conclusions

    Zr-MOF material,with a high specific surface area,was used as the carrier to support the Co-MOF and Co(NO3)2·6H2O precursors to obtain Co/Zr-MOF catalysts.The CO2methanation reaction under the combined action of the prepared material and a cold atmospheric-pressure plasma was investigated.Co/Zr-MOF-M with Co-MOF as the precursor had a synergistic effect with the atmospheric-pressure cold plasma,which could effectively increase the CO2conversion(58.9%)and methane selectivity(94.7%).With Co(NO3)2·6H2O as the precursor, Co/Zr-MOF-N was prepared, and the combined effect of Co/Zr-MOF-N and the atmospheric-pressure cold plasma increased the CO2conversion (from 20.2% to 24.8%compared with Zr-MOF),but the main gas phase product was CO.XRD and SEM analyses revealed that Co/Zr-MOF-M and Co/Zr-MOF-N both maintained a good Zr-MOF framework structure.N2adsorption–desorption (BET) analysis showed that Co/Zr-MOF-M had a larger specific surface area, pore volume and average pore diameter than Co/Zr-MOF-N.XPS analysis indicated that Co2+/Cototaland Co/Zr on the surface of the Co/Zr-MOF-M catalytic material were higher than on Co/Zr-MOF-N.TEM results further illustrated the difference in the surface active component distribution between Co/Zr-MOF-M and Co/Zr-MOF-N.The higher catalytic activity of the Co/Zr-MOF-M catalytic material could be attributed to the following:(1)the Co/Zr-MOF-M catalytic material had a higher specific surface area and higher Co2+/Cototaland Co/Zr ratios; (2) the cobalt active component in the Co/Zr-MOF-M catalytic material was distributed on the surface of the Zr-MOF as porous microparticles,while the cobalt active component in the Co/Zr-MOF-N catalytic material was dispersed on the Zr-MOF surface.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.21673026, 11605020), Innovative Training Program for College Student of Liaoning Province(No.S202011258068)

    ORCID iDs

    猜你喜歡
    趙靜德才張旭
    畫家 孫德才
    孫德才·美術(shù)作品欣賞
    The Three-Pion Decays of the a1(1260)?
    躬耕教苑 德才雙馨
    西江月(2018年5期)2018-06-08 05:47:33
    『脫發(fā)』的大樹(shù)
    在家在校都很煩
    打針
    吳德才
    福建茶葉(2017年3期)2017-03-30 05:19:28
    別想著逃避,做真正的自己
    什么才是真友誼
    色噜噜av男人的天堂激情| 免费在线观看成人毛片| 法律面前人人平等表现在哪些方面| 成人18禁在线播放| 91在线观看av| 午夜福利高清视频| 久久久久久国产a免费观看| 桃红色精品国产亚洲av| 欧美大码av| 色老头精品视频在线观看| 国产三级在线视频| 听说在线观看完整版免费高清| 成年人黄色毛片网站| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 日本 av在线| 国产高清有码在线观看视频 | 国语自产精品视频在线第100页| 国产三级在线视频| 国产精品精品国产色婷婷| 久99久视频精品免费| 精品一区二区三区av网在线观看| 老司机靠b影院| 日韩欧美三级三区| 午夜精品在线福利| 高潮久久久久久久久久久不卡| 又紧又爽又黄一区二区| 国产高清激情床上av| 日日干狠狠操夜夜爽| 亚洲免费av在线视频| 成人精品一区二区免费| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 国产成人精品无人区| 国产成人欧美在线观看| 欧美精品啪啪一区二区三区| 五月伊人婷婷丁香| av超薄肉色丝袜交足视频| 婷婷丁香在线五月| 国产精品免费视频内射| 99热只有精品国产| 嫁个100分男人电影在线观看| 国产av一区在线观看免费| 老司机在亚洲福利影院| 国内揄拍国产精品人妻在线| www.www免费av| 国产av一区在线观看免费| 国产精品免费视频内射| 亚洲国产欧洲综合997久久,| 国产成人aa在线观看| 一级毛片女人18水好多| 午夜视频精品福利| 欧美性长视频在线观看| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站 | 日韩中文字幕欧美一区二区| 国产欧美日韩精品亚洲av| 青草久久国产| 啦啦啦韩国在线观看视频| 999精品在线视频| 天堂动漫精品| 国产欧美日韩一区二区精品| 亚洲在线自拍视频| 91字幕亚洲| 国产亚洲欧美在线一区二区| e午夜精品久久久久久久| 欧美日本视频| 五月伊人婷婷丁香| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 久久久水蜜桃国产精品网| 久9热在线精品视频| 欧美最黄视频在线播放免费| 欧美日本亚洲视频在线播放| 久久久久久大精品| 欧美日韩一级在线毛片| 国产精品亚洲美女久久久| 亚洲乱码一区二区免费版| 欧美性猛交╳xxx乱大交人| 国产日本99.免费观看| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 亚洲精品中文字幕一二三四区| 91麻豆av在线| 全区人妻精品视频| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片免费观看| 看黄色毛片网站| 神马国产精品三级电影在线观看 | 不卡av一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲av第一区精品v没综合| 亚洲欧美精品综合久久99| 欧美 亚洲 国产 日韩一| 搡老岳熟女国产| 欧美在线一区亚洲| 国产日本99.免费观看| 怎么达到女性高潮| 村上凉子中文字幕在线| 这个男人来自地球电影免费观看| 国内精品久久久久精免费| 黄色 视频免费看| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲激情在线av| 91国产中文字幕| 午夜精品一区二区三区免费看| ponron亚洲| 18禁国产床啪视频网站| 欧美zozozo另类| 成人亚洲精品av一区二区| 精品一区二区三区av网在线观看| 三级国产精品欧美在线观看 | bbb黄色大片| 亚洲国产日韩欧美精品在线观看 | 大型黄色视频在线免费观看| 性色av乱码一区二区三区2| 国产v大片淫在线免费观看| 免费无遮挡裸体视频| 18禁国产床啪视频网站| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 亚洲18禁久久av| 国产麻豆成人av免费视频| 在线观看舔阴道视频| 国产在线观看jvid| 这个男人来自地球电影免费观看| 一级毛片高清免费大全| av中文乱码字幕在线| 亚洲七黄色美女视频| 日本三级黄在线观看| 国产亚洲精品久久久久久毛片| 亚洲av美国av| 国产精品美女特级片免费视频播放器 | 午夜日韩欧美国产| av在线播放免费不卡| 久久精品成人免费网站| 脱女人内裤的视频| 久久国产乱子伦精品免费另类| 亚洲av熟女| 中文在线观看免费www的网站 | 国产精品亚洲av一区麻豆| 激情在线观看视频在线高清| 长腿黑丝高跟| 国产亚洲欧美98| 白带黄色成豆腐渣| 19禁男女啪啪无遮挡网站| 女人被狂操c到高潮| 国产乱人伦免费视频| 深夜精品福利| 狂野欧美激情性xxxx| 亚洲欧美精品综合一区二区三区| 国产精品日韩av在线免费观看| 欧美黄色淫秽网站| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 国产高清videossex| 啦啦啦免费观看视频1| 啪啪无遮挡十八禁网站| 久久久精品大字幕| 少妇人妻一区二区三区视频| 亚洲成av人片免费观看| 少妇熟女aⅴ在线视频| 欧美午夜高清在线| 日本撒尿小便嘘嘘汇集6| 岛国在线观看网站| 国产成年人精品一区二区| 亚洲人与动物交配视频| 日本成人三级电影网站| 亚洲狠狠婷婷综合久久图片| 亚洲天堂国产精品一区在线| 亚洲精品一区av在线观看| 免费搜索国产男女视频| 看免费av毛片| 国产一区二区在线观看日韩 | 亚洲,欧美精品.| 三级毛片av免费| 欧美不卡视频在线免费观看 | 久久久久免费精品人妻一区二区| 国产精品免费一区二区三区在线| 女人被狂操c到高潮| 亚洲人成网站在线播放欧美日韩| 久久久国产成人精品二区| 欧美 亚洲 国产 日韩一| 国产精品免费一区二区三区在线| 女人被狂操c到高潮| 国产视频一区二区在线看| 亚洲国产欧美人成| 国内久久婷婷六月综合欲色啪| 99久久久亚洲精品蜜臀av| 日本免费a在线| 欧美大码av| 此物有八面人人有两片| www.www免费av| 日日摸夜夜添夜夜添小说| 巨乳人妻的诱惑在线观看| 男人的好看免费观看在线视频 | 国产精品 国内视频| 一级毛片女人18水好多| 黄色女人牲交| 精品无人区乱码1区二区| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| 国产成人欧美在线观看| 亚洲专区中文字幕在线| 欧美成人一区二区免费高清观看 | 国产三级中文精品| 高清毛片免费观看视频网站| 黑人操中国人逼视频| 亚洲激情在线av| 亚洲欧美激情综合另类| 久久香蕉精品热| 久久久精品欧美日韩精品| 国产高清videossex| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片| 国产成人精品久久二区二区免费| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| www.自偷自拍.com| 中国美女看黄片| 欧美乱码精品一区二区三区| 亚洲国产欧洲综合997久久,| 高清在线国产一区| 97人妻精品一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| www日本在线高清视频| 一二三四社区在线视频社区8| 久久精品国产99精品国产亚洲性色| 精品一区二区三区视频在线观看免费| 一个人免费在线观看电影 | 欧美三级亚洲精品| 欧美zozozo另类| 天堂av国产一区二区熟女人妻 | 国产69精品久久久久777片 | 视频区欧美日本亚洲| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 最近在线观看免费完整版| 日韩精品中文字幕看吧| av在线天堂中文字幕| 亚洲人成网站高清观看| 国产成人系列免费观看| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av| 亚洲人成77777在线视频| 伦理电影免费视频| 色在线成人网| 国产成人av教育| 欧美成人午夜精品| cao死你这个sao货| 国产亚洲精品一区二区www| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 欧美在线黄色| 国产成人av教育| 亚洲熟女毛片儿| 黄频高清免费视频| 在线国产一区二区在线| www.999成人在线观看| 老司机福利观看| 日韩免费av在线播放| av超薄肉色丝袜交足视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲男人天堂网一区| 成人三级做爰电影| 村上凉子中文字幕在线| 国内精品久久久久久久电影| 人妻夜夜爽99麻豆av| 亚洲国产欧美一区二区综合| 熟妇人妻久久中文字幕3abv| 天天添夜夜摸| 天堂av国产一区二区熟女人妻 | 午夜福利成人在线免费观看| 国产亚洲精品第一综合不卡| 中文字幕精品亚洲无线码一区| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 在线国产一区二区在线| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 午夜福利成人在线免费观看| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 亚洲国产日韩欧美精品在线观看 | 国产欧美日韩一区二区三| 国产97色在线日韩免费| 久久久久亚洲av毛片大全| 精品欧美国产一区二区三| 国产乱人伦免费视频| 少妇裸体淫交视频免费看高清 | 欧美午夜高清在线| 精品久久久久久成人av| 无遮挡黄片免费观看| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 久久亚洲精品不卡| 色av中文字幕| 人人妻人人澡欧美一区二区| 在线观看免费午夜福利视频| 妹子高潮喷水视频| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久| 19禁男女啪啪无遮挡网站| 中文字幕最新亚洲高清| 国产免费av片在线观看野外av| xxxwww97欧美| 亚洲av成人不卡在线观看播放网| 可以在线观看的亚洲视频| 精品少妇一区二区三区视频日本电影| 久久久久久久精品吃奶| 老司机深夜福利视频在线观看| 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 国产在线观看jvid| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 国产亚洲av嫩草精品影院| 国产精品99久久99久久久不卡| 在线观看美女被高潮喷水网站 | 麻豆成人av在线观看| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 亚洲精品美女久久久久99蜜臀| 在线播放国产精品三级| 亚洲美女视频黄频| 亚洲精品国产一区二区精华液| 久久人人精品亚洲av| 日本一区二区免费在线视频| 亚洲成人久久性| 免费看十八禁软件| 在线观看66精品国产| 51午夜福利影视在线观看| 在线国产一区二区在线| 午夜福利免费观看在线| 中文字幕av在线有码专区| 欧美黑人欧美精品刺激| 久久久久久久久免费视频了| 亚洲成人国产一区在线观看| 日韩欧美在线二视频| 99久久无色码亚洲精品果冻| 欧美激情久久久久久爽电影| 69av精品久久久久久| netflix在线观看网站| 亚洲av成人av| 国产精品一区二区免费欧美| 免费电影在线观看免费观看| 精品久久久久久久久久久久久| avwww免费| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 午夜激情福利司机影院| 国产99白浆流出| 国产成人影院久久av| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 亚洲国产日韩欧美精品在线观看 | 最好的美女福利视频网| 久久久久性生活片| 亚洲精品在线观看二区| 国产日本99.免费观看| 好男人电影高清在线观看| 1024手机看黄色片| 又紧又爽又黄一区二区| 这个男人来自地球电影免费观看| 午夜两性在线视频| 后天国语完整版免费观看| 国产一级毛片七仙女欲春2| 亚洲五月婷婷丁香| 久久婷婷成人综合色麻豆| 午夜精品在线福利| 亚洲专区中文字幕在线| 国产成人av教育| 此物有八面人人有两片| 欧美黄色淫秽网站| www日本黄色视频网| 成年女人毛片免费观看观看9| 成人三级黄色视频| 成人三级做爰电影| 色综合亚洲欧美另类图片| 天堂影院成人在线观看| 欧美黄色片欧美黄色片| 欧美最黄视频在线播放免费| 久久久久久大精品| 无限看片的www在线观看| 18禁美女被吸乳视频| 在线十欧美十亚洲十日本专区| 国产黄色小视频在线观看| 国产免费男女视频| 亚洲国产精品成人综合色| 午夜激情av网站| a级毛片在线看网站| 黄色成人免费大全| 毛片女人毛片| 久久精品人妻少妇| 久久久久久亚洲精品国产蜜桃av| 国产不卡一卡二| 国产久久久一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲国产精品久久男人天堂| 亚洲av美国av| 波多野结衣巨乳人妻| a级毛片a级免费在线| 亚洲一区二区三区不卡视频| 69av精品久久久久久| 一二三四在线观看免费中文在| 丝袜人妻中文字幕| 老司机靠b影院| 99久久国产精品久久久| 亚洲国产精品sss在线观看| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 色播亚洲综合网| 黑人巨大精品欧美一区二区mp4| 禁无遮挡网站| 天天躁夜夜躁狠狠躁躁| 国产单亲对白刺激| 草草在线视频免费看| 精品久久久久久久久久久久久| 亚洲av美国av| 看黄色毛片网站| 深夜精品福利| 久久久久久久久免费视频了| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜精品论理片| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 亚洲欧美日韩高清专用| 国产不卡一卡二| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 欧美久久黑人一区二区| 亚洲国产欧美人成| 又黄又粗又硬又大视频| 中亚洲国语对白在线视频| 午夜两性在线视频| 亚洲人与动物交配视频| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 亚洲,欧美精品.| 黄色毛片三级朝国网站| 欧美日韩乱码在线| 黑人巨大精品欧美一区二区mp4| 午夜精品在线福利| 亚洲真实伦在线观看| 99久久综合精品五月天人人| 国产精品,欧美在线| 一级毛片精品| 性色av乱码一区二区三区2| 一二三四在线观看免费中文在| 香蕉国产在线看| 天天躁夜夜躁狠狠躁躁| 欧美一级毛片孕妇| 国产精品免费一区二区三区在线| 一区二区三区国产精品乱码| 搡老妇女老女人老熟妇| 亚洲中文字幕日韩| 免费在线观看黄色视频的| 欧美日本亚洲视频在线播放| 色尼玛亚洲综合影院| 长腿黑丝高跟| 熟妇人妻久久中文字幕3abv| 日韩高清综合在线| 大型黄色视频在线免费观看| 精品日产1卡2卡| 久久中文看片网| 波多野结衣巨乳人妻| 亚洲av第一区精品v没综合| 女同久久另类99精品国产91| 午夜精品久久久久久毛片777| 2021天堂中文幕一二区在线观| 校园春色视频在线观看| 久久精品国产清高在天天线| 精品久久久久久久人妻蜜臀av| 日韩欧美免费精品| 久久国产精品影院| 亚洲成人久久爱视频| 一级a爱片免费观看的视频| 一本精品99久久精品77| 一个人免费在线观看的高清视频| 亚洲色图av天堂| 亚洲色图 男人天堂 中文字幕| 亚洲真实伦在线观看| www.精华液| 国产欧美日韩精品亚洲av| 一本综合久久免费| 午夜免费激情av| 亚洲av成人不卡在线观看播放网| 蜜桃久久精品国产亚洲av| 老汉色av国产亚洲站长工具| 日韩国内少妇激情av| 这个男人来自地球电影免费观看| 男人舔奶头视频| 国产精品久久电影中文字幕| 19禁男女啪啪无遮挡网站| 不卡av一区二区三区| 午夜福利视频1000在线观看| av天堂在线播放| 亚洲国产精品久久男人天堂| 亚洲国产欧美人成| 欧美日韩精品网址| 精品熟女少妇八av免费久了| 日韩 欧美 亚洲 中文字幕| 99热这里只有是精品50| 久久中文字幕人妻熟女| 又紧又爽又黄一区二区| 国内精品久久久久久久电影| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看| 啪啪无遮挡十八禁网站| 日本免费一区二区三区高清不卡| 婷婷丁香在线五月| 哪里可以看免费的av片| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美高清成人免费视频www| 一个人观看的视频www高清免费观看 | 亚洲av五月六月丁香网| 午夜精品久久久久久毛片777| 丁香欧美五月| 91老司机精品| 51午夜福利影视在线观看| 欧美日韩黄片免| 免费看日本二区| 美女高潮喷水抽搐中文字幕| 国产免费男女视频| 亚洲欧美日韩高清专用| 美女午夜性视频免费| 一级毛片女人18水好多| 99国产精品一区二区蜜桃av| 国产爱豆传媒在线观看 | 国产欧美日韩精品亚洲av| 免费在线观看视频国产中文字幕亚洲| 成年人黄色毛片网站| 美女大奶头视频| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 国产精品亚洲一级av第二区| 亚洲欧美激情综合另类| 国产精品,欧美在线| 国产伦一二天堂av在线观看| 毛片女人毛片| www日本黄色视频网| 成人一区二区视频在线观看| 日韩av在线大香蕉| 老熟妇仑乱视频hdxx| 欧美中文综合在线视频| videosex国产| 麻豆成人av在线观看| 亚洲av成人av| 白带黄色成豆腐渣| 国产成人一区二区三区免费视频网站| 色综合亚洲欧美另类图片| 亚洲国产日韩欧美精品在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品国产一区二区精华液| 国产三级黄色录像| 欧美精品亚洲一区二区| 国产日本99.免费观看| 久久久久久久久久黄片| 亚洲欧美日韩东京热| 成人av在线播放网站| 草草在线视频免费看| 亚洲精品av麻豆狂野| 欧美在线一区亚洲| 久久欧美精品欧美久久欧美| 最新美女视频免费是黄的| 国产黄色小视频在线观看| 99久久久亚洲精品蜜臀av| 午夜成年电影在线免费观看| 九九热线精品视视频播放| 国产亚洲精品久久久久久毛片| 少妇的丰满在线观看| 亚洲精品美女久久av网站| 国语自产精品视频在线第100页| 很黄的视频免费| 国产私拍福利视频在线观看| 日韩国内少妇激情av| 操出白浆在线播放| 丰满的人妻完整版| 国产亚洲精品一区二区www| 中国美女看黄片| 久久久国产欧美日韩av| 亚洲 欧美一区二区三区| 久久精品91无色码中文字幕| 男女午夜视频在线观看| 人妻丰满熟妇av一区二区三区| 99久久无色码亚洲精品果冻| 免费看a级黄色片| 啦啦啦观看免费观看视频高清| 亚洲黑人精品在线| 日韩欧美国产一区二区入口| 男女那种视频在线观看| 亚洲七黄色美女视频| 欧美+亚洲+日韩+国产| 两个人看的免费小视频| 大型av网站在线播放| 午夜福利在线在线| 欧美一级a爱片免费观看看 | 日本免费一区二区三区高清不卡| 亚洲第一电影网av| 一夜夜www| 亚洲 国产 在线| 精品久久久久久久久久免费视频|