• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dielectric breakdown properties of Al-air mixtures

    2021-05-22 07:01:10XiyuanCAI蔡喜元XiaoZHANG張曉JunyongLU魯軍勇SaiTAN譚賽YongshengZHANG張永勝andGuanxiangZHANG張冠祥
    Plasma Science and Technology 2021年5期
    關鍵詞:張曉永勝

    Xiyuan CAI (蔡喜元), Xiao ZHANG (張曉), Junyong LU (魯軍勇),Sai TAN(譚賽),Yongsheng ZHANG(張永勝)and Guanxiang ZHANG(張冠祥)

    National Key Laboratory of Science and Technology on Vessel Integrated Power System,Naval University of Engineering, Wuhan 430033, People’s Republic of China

    Abstract In order to investigate the influence of aluminum vapor on the breakdown performance of air,this paper makes a study of the dielectric breakdown characteristics of Al-air mixture in the temperature range of 300–5000 K at atmospheric pressure.A Boltzmann analysis method is used to deal with the electron energy distribution function(EEDF),the reduced ionization coefficients(α/N), the reduced attachment coefficients (η/N) and the critical reduced breakdown strength((E/N)cr) so as to explore the influence of temperature and mixing ratio on the dielectric breakdown properties.In the temperature range of 300–2000 K, the property of the mixture is mainly determined by the mixing proportion of aluminum vapor because the composition of particles remains unchanged.In the temperature range of 2000–2500 K, the decomposition of Al2O2 leads to the increase of aluminum oxides and NO, and a rise in the percentage of highenergy electrons as well as the increment of α/N.Also,the joint action of O2 and NO makes η/N increase first and then decrease, and (E/N)cr goes down to a smaller temperature range.An increase in the proportion of aluminum vapor causes(E/N)cr to decrease in the low-temperature region and to increase in the high-temperature region, which will reduce the transition between these two temperature regions.

    Keywords: aluminum vapor, arc discharges, Boltzmann analysis, dielectric properties,electromagnetic rail launch, muzzle arc

    1.Introduction

    In electromagnetic rail launch (EMRL), the arcing performance of the arc ignition device and the transfer process of the muzzle arc are the key factors of the ablation of the materials in the muzzle end and initial disturbance of the projectile.When moving in the bore at high speed, the aluminum armature has friction with the copper rails in the case of high temperature and current.Aluminum vapor can be produced[1]and the arcing gap in the arc ignition device will be heated from room temperature to thousands of Kelvins.These are certain to affect the dielectric breakdown properties of air medium in the arc ignition device and further the performance of the device as well as the transfer process of the muzzle arc.Previous researches into the characteristics of Alair plasma have focused on the thermodynamic properties,transport coefficients and radiation [2, 3].However, the dielectric breakdown characteristics of mixed gases need to be studied further.

    Some literatures have studied the dielectric breakdown properties of mixed gases under different working conditions[4–6],but those methods are not suitable for Al-air mixed gas because it needs to be maintained at a high temperature.The theoretical calculation methods of gas discharge characteristics are as follows.(a)Theoretical model of steamer[7].The calculation is simple, but low in accuracy as it is not able to reflect the synergistic effect of every component that is caused by the interaction between particles in the mixture.(b) Particle-in-Cell Monte-Carlo collision (PIC-MCC) model [8].This method has high accuracy, but it needs more computer resources.Moreover, it needs a long calculation period when the number of particles is large.Therefore, it is only suitable for low-pressure gases.(c)Boltzmann analysis method[9].At present, the two-term approximate calculation is mainly used for a solution.This method can overcome the shortcomings of the steamer theoretical model and PIC-MCC model.When the cross-section of elastic collision of particles is obviously larger than that of inelastic collision and the electric field strength is low, it is possible to obtain accurate solutions[10, 11].In addition, the calculation is relatively simple.

    The purpose of this paper is to investigate the dielectric breakdown characteristics of Al-air mixture in the temperature range of 300–5000 K under atmospheric pressure.First,the composition of particles in the mixture is calculated according to different proportions of aluminum vapor.Then,the obtained cross-section data of main particles are approximated to the unknown cross-section data.These two kinds of data are substituted into Boltzmann equations, and the two-term approximate method is used to solve the equation of mixed gases at different temperatures and in the reduced electric field thus to obtain EEDF, α/Nand η/Nof mixed gases.After their treatment, (E/N)cris derived.

    2.Model and parameters

    2.1.Hypothesis

    In the process of solution, assumptions are given below:

    ? All particles are in a ground state,with their excited states ignored.

    ? The superelastic inverse process is not considered.

    ? The energy of two electrons is equal after the ionization collision reaction.

    ? What is significant in gas breakdown is collision between electron and heavy particle, so photoionization and photodissociation are not taken into account.

    ? Three-body collisions in gas increase with pressure.However, this paper only considers the working of mixture at atmospheric pressure, but does not deal with the three-body collisions due to their complexity.

    2.2.Boltzmann analysis method

    According to the theory of plasma,the distribution functionfof electron satisfies the Boltzmann equation [12].The use of the two-term approximation can obtain the continuous equation of convection diffusion off0,or the isotropic part off.The equation is as follows:

    among which,

    where ε is electron energy;eis the charge;meis the electron mass; γ=(2e/me)1/2;Eis the electric field;Tis electron temperature; σεis the overall elastic collision cross-section;σmis the total momentum transfer cross-section; ε0is the vacuum dielectric constant;kbis the Boltzmann constant;Nis the particle density;Mis particle mass;Sis the energy loss in inelastic collision;xkis the mole fraction of target particle;Ckis the energy loss in thek-th inelastic collision between electrons and heavy particles; andCexc,Catt, andCionare respectively the energy loss in excitation, attachment and ionization collisions.

    Here, Δεkis the threshold energy ofk-th inelastic collision

    2.3.Equilibrium composition of Al-air mixtures

    The chemical composition of mixed gases is one of the things which will be first handled by the Boltzmann analytical method.The calculation of equilibrium composition of Al-air mixture is based on the principle of Gibbs free energy minimization [13].Air is mainly composed of N2, O2, noble gas and CO2.In this paper,all the noble gases are equivalent to a single component Ar.As the content of CO2in the air is only 0.03%or so,it can be ignored[14].For this reason,this paper takes pure air as a mixture of N2, O2, and Ar.

    The aluminum vapor content (Mal) in the temperature range of 300–5000 K that is obtained from calculation is respectively 0, 1%, 5%, 10% and 20%, that is, the composition data of particles in Al-air mixture.Figure 1 demonstrates the main neutrals of 10%Al-90%air mixture.It can be seen that the main neutrals are N2,O2,N,O,NO,Ar,Al,AlO,Al2O, AlO2and Al2O2, and that variation is smaller in the composition of mixed-gas particles but N2,O2,Al2O2,and Ar are larger in proportion when the temperature is below 2000 K.

    2.4.Electron collision cross-section

    Figure 1.Composition of 10%Al-90%air mixture particles (only main neutrals).

    In addition to the equilibrium composition, the data of electron impact cross-section of different particles are also needed in the calculation.In this paper,the data of N2,O2,N,O,NO,Ar,Al and AlO are obtained from LxCat website[15–17],the ionization cross-section data of Al2O, AlO2and Al2O2are calculated by equation (9) [18].Based on the equivalence principle of similar dielectric breakdown properties proposed in [19] and [20], the unknown cross-section data of Al2O,AlO2and Al2O2are assumed to be those of AlO except for the ionization cross-section, which is calculated by equation (9) [18].

    among them, σ is the cross-section, the ionization energy of monoxides is slightly more than that of metal atoms, while that of dioxides is 2 to 3 eV higher.

    Using the above calculation methods and parameters,it is possible to obtain EEDF, α/N, η/Nof Al-air mixtures in the temperature range of 300–5000 K by solving the Boltzmann equations with commercial code COMSOL.α/Nand η/Nrepresent coefficients of electron generation and disappearance respectively, and (E/N)crof the mixture is obtained at (α ?η)/N=0.

    3.Result and analysis

    3.1.α/N of air medium

    Figure 2.α/N of air medium.

    Because there is no experimental data of Al-air dielectric breakdown characteristics, the calculated α/Nof air within 300 Td (1 Td=10?21V·m2) is compared with other experimental data[21–23]to verify the calculation methods and parameters, as shown in figure 2.It can be seen that the calculation result deviates from that of Prasad[21],but it coincides well with the data given by Moruzzi [22] and Stout [23].

    3.2.EEDF of Al-air mixtures

    Figure 3 shows the EEDF of the mixtures with different proportions of aluminum vapor at 300 K.It is obvious that aluminum vapor will increase the proportion of low-energy electrons and decrease that of high-energy ones,and the effect will be more obvious with an increase in the proportion of aluminum vapor.Aluminum vapor exists mainly in the form of Al2O2.The crosssection of inelastic collision of Al2O2is larger.The inelastic collision electron with Al2O2will absorb the energy of electrons,thereby causing more electrons to be in a low-energy state.

    Figure 4 shows the EEDF of 10%Al-90%air mixtures at 100 Td.Its illustration is as follows:

    ? There is little difference in the EEDF of mixtures at 300–2000 K,which is mainly due to a very small change in the composition of particles at that temperature range,as shown in figure 1.

    Figure 3.EEDF of the mixtures with different proportions of aluminum vapor at 300 K.

    Figure 4.EEDF of 10%Al-90%air mixtures at 100 Td.

    ? When the temperature is higher than 2000 K, the energy range can be divided into three regions: low-energy region (0–2 eV), medium-energy region (2–5 eV) and high-energy region (above 5 eV).The proportion of electrons in the medium-energy region increases with temperature, but those in the low- and high-energy regions do not.Temperature is the main factor affecting the electrons in the low-energy region, because its rise leads to the acceleration of electrons and a decrease in the percentage of electrons of the low-energy region.But for changes in the high-energy region, the composition of particles and the cross-section of collision can be used for explanation: on one hand, Al2O2and O2decompose and the proportion of aluminum oxides increases;on the other hand,the most part of the inelastic collision cross-section of aluminum oxides is above 5 eV.As a result, the probability of inelastic collision between electrons and aluminum oxides increases, while the proportion of electrons in the high-energy region decreases.Because of a decrease in the proportion of electrons in the lowand high-energy regions, there is certainly an increase in that in the medium-energy region.

    ? Variations in the proportion of aluminum oxides have an influence on differences in EEDF at different temperatures.According to the changing rate of aluminum oxides(|ΔMAl,O(T1,T2)|,T1andT2represent different temperatures,the same below),as shown in table 1.It can be seen that the changing rate of EEDF (ΔEEDF(T1,T2)) is consistent with that of aliminium oxides, that is, ΔEEDF(2000, 3000)>ΔEEDF(3000, 4000)>ΔEEDF(4000, 5000)>ΔEEDF(1000, 2000)≈ΔEEDF(300, 1000)= 0, and |ΔMAl,O(2000, 3000)|>|ΔMAl,O(3000, 4000)|>|ΔMAl,O(4000,5000)|>|ΔMAl,O(1000, 2000)|≈|ΔMAl,O(300, 1000)|=0.From the above analysis,it is known that the phenomenon is caused by variation in the composition of aluminum oxides and the concentrative distribution of their inelastic collision cross-sections in the high-energy region.

    Figure 5 shows the EEDF of 10%Al-90%air mixture at 300 K.The electric field plays a role in the acceleration of electrons.Therefore,in the energy range above 2.5 eV,EEDF increases withE/N, while it is quite contrary in the energy range below 2.5 eV.

    3.3.α/N, η/N of Al-air mixtures

    Figure 6 illustrates α/Nof mixture in 10%Al-90%air.It increases withE/Nwithin 500 Td.A rise inE/Nhelps raise the proportion of electrons in the high-energy region, where the collision cross-sections for ionization become larger,which makes an ionization reaction more likely to happen.Within 2000 K,there is hardly any change in α/Nat differentE/N, which is because almost no change appears in the composition of fixed particles.Being above 2000 K, α/Nincreases with the temperature,which is similar to EEDF,and its difference between 3000 K and 4000 K is larger,due to the dissociation of Al2O2and O2.

    Figure 7 illustrates η/Nof mixture in 10%Al-90%air.Unlike α/Nwithin 500 Td, η/Nquickly increases at the beginning with the increase ofE/N, but it begins to decline after reaching a certain numerical value.From the curve of EEDF and the electron attachment collision cross-section,it is found that whenE/Nincreases,the percentage of electrons in the energy range of 0–2.5 eV decreases and that in the energy range above 2.5 eV rises.On one hand,the energy range with a larger increase in the percentage is 3–10 eV whenE/Nincreases from 50 Td to 150 Td.On the other hand, only O2and NO among all the components have electron attachment collision cross-sections.As shown in figure 8, these crosssections are just concentrated in the energy range of 4–13 eV.Because of the above two factors, the consequence is that whenE/Nrises from 50 Td to 150 Td, the percentage of electrons in the energy range of 3–10 eV increases more than those in other energy ranges, thereby raising the rate of electron attachment collision reactions of O2and NO and making η/Nincrease rapidly.The coincidence between the EEDF curve and the attachment collision cross-section also shows that η/Nincreases more and more slowly when the temperature is above 3000 K.The concrete explanations are as follows.(a) Beginning from 2000 K, O2decreases significantly.(b) NO comes into being at 1200 K and increases with temperature and then declines after it reaches the climax at 3400 K.(c) The attachment cross-section of NO is smallerthan that of O2in the energy range of 4–10 eV.Therefore,the whole process of the temperature increasing from 300 K to 5000 K can be described as: (a) η/Nchanges slightly at temperature below 2000 K due to little change in the composition of particles; (b) from 2000 K to 3000 K, the percentage of O2declines thus to suppress the attachment collision, and the increase of NO promotes the attachment collision.Between these two factors, there exists a competitive relationship.As both the mole fraction and the attachment collision of O2are larger than those of NO, so O2has the advantage over NO, with the result that the growth of η/Nis not as significant as that at 300–2000 K.(c) When the temperature is above 3000 K, both O2and NO tend to decrease, which causes the reaction rate of attachment collision to slow down.

    Table 1.Variation of the proportion of aluminum oxides at different temperatures.

    Figure 5.EEDF of 10%Al-90%air mixture at 300 K.

    Figure 6.α/N of 10%Al-90%air mixture.

    Figure 7.η/N of 10%Al-90%air mixture.

    Figure 8.Attachment cross-sections of particles in Al-air mixture.

    After being up to 150 Td, η/Ngradually decreases asE/Ncontinues to increase.According to the EEDF curve,the range of electron energy is found to expand with the increase ofE/Nafter reaching 150 Td,and electrons tend to spread in the high-energy range,while there is no significant increase in the number of electrons in the energy range of 3–10 eV.The increase of high-energy electrons weakens the effects of O2and NO and suppresses the reaction rate of attachment collision, thereby resulting in the inconsistency of η/Nbefore and after 150 Td.

    Figure 9.(E/N)cr of Al-air mixtures.

    Table 2.Variation of the proportion of aluminum oxides at different temperatures.

    3.4.(E/N)cr of Al-air mixtures

    Figure 9 shows medium(E/N)crwith different proportions of aluminum vapor.With a rise in the temperature, (E/N)crof pure air experiences three stages: first, keeping basically constant; then, dropping rapidly; finally, declining slowly after reaching a certain temperature.Based on the variation of(E/N)crwith temperature, the temperature range can be divided into three regions: low-temperature region (300–2000 K),medium-temperature region (2000–2500 K; 2000–3500 K especially at a time whenMal=1%), and high-temperature region (2500–5000 K; 3500–5000 K especially at a time whenMal=1%.

    In the low-temperature region, (E/N)crbarely changes with temperature.This is because there is little variation in the composition of particles in this region.Aluminum vapor can significantly reduce (E/N)crand will decrease greatly as the vapor content increases.Different proportions of aluminum vapor have a weakening effect on the breakdown strength of mixture in the low-temperature region, as shown in table 2.Obviously a small amount of aluminum vapor can significantly reduce(E/N)crof the medium.Even one percent of aluminum vapor can decrease (E/N)crby 20.3%, and five percent has already been able to decrease (E/N)crby 50.7%.With a continuous increase inMal, the decrease of (E/N)crwill slow down.(E/N)crhas only a 10% change whenMalincreases from 5% to 10%, and its change rate is less than 10%whenMalincreases from 10%to 20%.This means a highproportion of aluminum vapor has a limited effect on the reduction of (E/N)cr.

    Table 3.(E/N)cr of Al-air mixtures in high temperature region.

    (E/N)crchanges greatly in the medium-temperature region.The increase ofMalwill narrow the range in which(E/N)crchanges.The medium-temperature region will be narrowed from 2000–3500 K to 2000–2500 K whenMalincreases from 1% to 5%.For the other three mixed gases with higherMal, each of their medium-temperature regions is roughly determined as 2000–2500 K, but there is a smaller difference in (E/N)crchanging in the region, that is to say,with the increase ofMal,(E/N)crwill gradually fulfill its rapid decline, and its characteristics of change begin to emerge in the third stage.

    In the high-temperature region, (E/N)crchanges in the same way as pure air whenMal=1%.Both of them decrease at relatively low speed as the temperature rises.AfterMalis increased, (E/N)crwill slightly rise in the range of 2000–3500 K and then fall at the same small slope.Furthermore, (E/N)crincreases gradually withMal, which is completely contrary to that in the low-temperature region.(E/N)crof Al-air mixtures in the high-temperature region is shown in table 3, from which it can be seen that (E/N)crof Al-air mixtures in a hot state is far lower than(E/N)crof pure air in a cold state.

    4.Conclusion

    This work has calculated the equilibrium composition of Alair mixtures with a different proportion of aluminum in the temperature range of 300–5000 K under atmospheric pressure, obtained the electron collision cross-sections of main particles, and solved Boltzmann equations for EEDF, α/N,η/Nand further(E/N)cr.The main conclusion is given below:

    ? There was no significant difference in EEDF,α/Nand η/Nin the temperature range of 300–2000 K because the composition of particles almost remains constant in this temperature range.After the temperature is above 2000 K,Al2O2and O2are decomposed,while there is an increase in the proportion of aluminum oxides and NO.The proportion of electrons proportion in the 2–5 eV energy range increases with the temperature,but it decreases in the other temperature range, in which α/Ngradually increases and η/Ntends to change.

    ? AsE/Nincreases,the proportion of high-energy electrons and α/Nkeeps a rising trend.η/Nincreases rapidly and then begins to decline after reaching a certain numerical value.WhenE/Nrises from 50 Td to 150 Td,the energy range with a larger increase in the proportion of electrons coincides with the energy range in which the attachment collision cross-section lies.In this stage, η/Nincreases rapidly.AfterE/Nexceeds 150 Td, these two energy ranges will deviate from each other,so that the attachment collision will be suppressed.

    ? Aluminum vapor can significantly weaken the breakdown strength of the mixture.In the low-temperature region,(E/N)crcan be reduced more significantly as the content of aluminum vapor increases, but the effect of a high proportion of aluminum vapor on the reduction of(E/N)cris limited.When pure air is at 300 K,(E/N)cris 119.0 Td.WhenMalis 1%, 5%, 10% and 20%, (E/N)crin the lowtemperature region is respectively 94.9 Td, 58.7 Td,46.8 Td and 37.1 Td.Furthermore, the increase of aluminum vapor can make (E/N)crgo into the hightemperature region, where (E/N)crgradually increases with a rise in the proportion of aluminum vapor,which is contrary to the case in the low-temperature region.(E/N)crin the high-temperature region is lower.The data of the aforementioned four kinds of mixed gases are respectively about 14 Td, 17 Td, 20 Td and 25 Td.

    Acknowledgments

    This work was supported in part by National Natural Science Foundation of China (Nos.51522706, 51877214, and 51607187) and in part by the National Basic Research Program of China (973 Program) (No.613262).

    猜你喜歡
    張曉永勝
    韓永勝
    大江南北(2022年11期)2022-11-08 12:04:18
    Photothermal-chemical synthesis of P–S–H ternary hydride at high pressures
    Synthesis of ternary compound in H–S–Se system at high pressures?
    唱一首祖國的贊歌
    Research on active arc-ignition technology as a possible residual-energy-release strategy in electromagnetic rail launch
    一種兩級雙吸管道輸油泵
    Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
    煮餃子
    謝永勝
    寶藏(2018年6期)2018-07-10 02:26:38
    永勝油茶的深情厚意
    中國西部(2017年4期)2017-04-26 03:49:43
    国产成人精品久久二区二区91 | 超碰成人久久| 黄色毛片三级朝国网站| 啦啦啦在线免费观看视频4| 天天躁日日躁夜夜躁夜夜| 咕卡用的链子| 国产精品嫩草影院av在线观看| a级毛片黄视频| 亚洲五月色婷婷综合| 天堂俺去俺来也www色官网| 亚洲精品成人av观看孕妇| 人妻人人澡人人爽人人| 午夜91福利影院| 欧美 亚洲 国产 日韩一| 亚洲欧美中文字幕日韩二区| 激情视频va一区二区三区| 国产深夜福利视频在线观看| 美女午夜性视频免费| 精品一区二区三卡| a级片在线免费高清观看视频| 90打野战视频偷拍视频| 亚洲人成77777在线视频| 国产成人精品久久久久久| 黄片无遮挡物在线观看| 一级毛片 在线播放| 一本色道久久久久久精品综合| 久久久精品国产亚洲av高清涩受| 亚洲伊人久久精品综合| 成人国产av品久久久| 日韩av免费高清视频| 欧美久久黑人一区二区| 好男人视频免费观看在线| 欧美精品亚洲一区二区| 国产精品蜜桃在线观看| 91成人精品电影| 亚洲人成网站在线观看播放| 美女高潮到喷水免费观看| 交换朋友夫妻互换小说| 国产熟女午夜一区二区三区| av又黄又爽大尺度在线免费看| 亚洲精品久久午夜乱码| 少妇人妻精品综合一区二区| 亚洲av在线观看美女高潮| 久久精品aⅴ一区二区三区四区| 十八禁高潮呻吟视频| 国产精品久久久久久精品古装| 国产精品免费视频内射| 国产无遮挡羞羞视频在线观看| 久久久国产欧美日韩av| 久久亚洲国产成人精品v| 国产高清不卡午夜福利| a级毛片在线看网站| 日韩一本色道免费dvd| 视频区图区小说| 国产亚洲欧美精品永久| 久久99热这里只频精品6学生| 日本欧美国产在线视频| 美女视频免费永久观看网站| 搡老岳熟女国产| 捣出白浆h1v1| 欧美精品人与动牲交sv欧美| 99香蕉大伊视频| 免费久久久久久久精品成人欧美视频| 国产av国产精品国产| 国产黄色视频一区二区在线观看| 中文字幕制服av| 涩涩av久久男人的天堂| 赤兔流量卡办理| 精品国产露脸久久av麻豆| 制服人妻中文乱码| 国产女主播在线喷水免费视频网站| 国产成人91sexporn| 久久97久久精品| 亚洲三区欧美一区| 亚洲第一av免费看| 另类亚洲欧美激情| 欧美日韩亚洲综合一区二区三区_| 日本色播在线视频| 2018国产大陆天天弄谢| 热re99久久国产66热| 亚洲欧美激情在线| 天天影视国产精品| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 久久热在线av| 免费日韩欧美在线观看| 免费看av在线观看网站| 久久久精品区二区三区| 午夜免费观看性视频| 久久毛片免费看一区二区三区| 亚洲精品在线美女| 深夜精品福利| 亚洲av欧美aⅴ国产| 亚洲综合色网址| 色视频在线一区二区三区| 久久 成人 亚洲| 一级黄片播放器| 欧美97在线视频| 免费观看人在逋| 亚洲欧洲国产日韩| 人人澡人人妻人| 曰老女人黄片| 黄色 视频免费看| av在线app专区| 另类亚洲欧美激情| 国产欧美日韩一区二区三区在线| 丝瓜视频免费看黄片| 亚洲五月色婷婷综合| 精品人妻一区二区三区麻豆| 午夜福利视频在线观看免费| 亚洲国产毛片av蜜桃av| 宅男免费午夜| 亚洲成人国产一区在线观看 | 99精国产麻豆久久婷婷| 秋霞在线观看毛片| 亚洲精品日本国产第一区| 国产精品蜜桃在线观看| 王馨瑶露胸无遮挡在线观看| 99久国产av精品国产电影| 晚上一个人看的免费电影| 性色av一级| 男人舔女人的私密视频| 精品一区在线观看国产| 成年美女黄网站色视频大全免费| 欧美激情高清一区二区三区 | 国产精品久久久久成人av| av国产久精品久网站免费入址| 国产片内射在线| 日本av免费视频播放| av福利片在线| 亚洲欧洲日产国产| 国产精品免费大片| 两个人看的免费小视频| 一级毛片我不卡| 亚洲熟女毛片儿| 亚洲少妇的诱惑av| 宅男免费午夜| 日韩av不卡免费在线播放| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 老司机靠b影院| 免费在线观看完整版高清| a级毛片在线看网站| 久久久国产一区二区| 午夜福利影视在线免费观看| 自线自在国产av| 大陆偷拍与自拍| 欧美日韩一级在线毛片| 久久 成人 亚洲| www.自偷自拍.com| 宅男免费午夜| 1024视频免费在线观看| 久久天躁狠狠躁夜夜2o2o | 亚洲精品国产一区二区精华液| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频| 国产成人精品福利久久| 中文字幕人妻熟女乱码| 黑人欧美特级aaaaaa片| 秋霞在线观看毛片| h视频一区二区三区| 国产精品久久久久久人妻精品电影 | 欧美激情极品国产一区二区三区| 制服诱惑二区| 日日爽夜夜爽网站| 亚洲精品第二区| 亚洲欧美成人精品一区二区| 永久免费av网站大全| 少妇人妻 视频| 狂野欧美激情性xxxx| 婷婷色综合大香蕉| 美女大奶头黄色视频| 亚洲伊人久久精品综合| 精品国产国语对白av| 韩国精品一区二区三区| 91精品三级在线观看| 超色免费av| 一级毛片 在线播放| 一二三四中文在线观看免费高清| 久久人人爽人人片av| 午夜福利乱码中文字幕| av.在线天堂| 久久这里只有精品19| 午夜免费鲁丝| 美女国产高潮福利片在线看| 嫩草影视91久久| 国产精品二区激情视频| 久久久久久久久久久久大奶| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 亚洲国产精品一区三区| av女优亚洲男人天堂| 高清在线视频一区二区三区| 国产在线免费精品| 中文欧美无线码| 亚洲国产av影院在线观看| 国产日韩一区二区三区精品不卡| 99九九在线精品视频| 老汉色∧v一级毛片| 一区二区日韩欧美中文字幕| 欧美日韩亚洲综合一区二区三区_| 99热国产这里只有精品6| 成人影院久久| 下体分泌物呈黄色| 久久久国产欧美日韩av| 午夜福利免费观看在线| 婷婷色综合大香蕉| 亚洲欧洲日产国产| a级毛片黄视频| 老汉色∧v一级毛片| 男人添女人高潮全过程视频| 国产成人精品久久久久久| 亚洲美女视频黄频| 国产成人a∨麻豆精品| 国产亚洲一区二区精品| 亚洲欧美成人精品一区二区| 纵有疾风起免费观看全集完整版| 久久免费观看电影| 亚洲精品国产一区二区精华液| 亚洲自偷自拍图片 自拍| 97在线人人人人妻| 国产在线视频一区二区| 18在线观看网站| 一级毛片电影观看| 国产精品99久久99久久久不卡 | av片东京热男人的天堂| 亚洲婷婷狠狠爱综合网| 女人被躁到高潮嗷嗷叫费观| av有码第一页| 国产一区二区在线观看av| 一级毛片电影观看| 超碰97精品在线观看| 午夜福利,免费看| av福利片在线| av国产精品久久久久影院| 侵犯人妻中文字幕一二三四区| 一本一本久久a久久精品综合妖精| 免费人妻精品一区二区三区视频| 久久久久久久久免费视频了| 免费看av在线观看网站| 人人妻人人澡人人爽人人夜夜| 最新在线观看一区二区三区 | 成人黄色视频免费在线看| 一级片'在线观看视频| 亚洲精品国产av成人精品| 丝瓜视频免费看黄片| 亚洲国产精品一区二区三区在线| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 中文字幕人妻丝袜一区二区 | 国产乱来视频区| 欧美黄色片欧美黄色片| 亚洲精品视频女| 色播在线永久视频| 久久精品国产亚洲av涩爱| 高清av免费在线| 亚洲专区中文字幕在线 | 婷婷色av中文字幕| 久久久亚洲精品成人影院| 午夜日韩欧美国产| 不卡视频在线观看欧美| 国产日韩一区二区三区精品不卡| 亚洲欧美色中文字幕在线| 日本午夜av视频| 亚洲欧美中文字幕日韩二区| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 午夜精品国产一区二区电影| 日韩人妻精品一区2区三区| 一级毛片我不卡| 精品少妇黑人巨大在线播放| 欧美国产精品一级二级三级| 国产精品久久久av美女十八| 一级毛片 在线播放| 亚洲精品国产区一区二| 亚洲精品日韩在线中文字幕| 久久久久精品性色| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线免费观看视频4| 午夜免费观看性视频| 成人国产av品久久久| 久久99精品国语久久久| 日本欧美国产在线视频| 最近中文字幕2019免费版| 日韩成人av中文字幕在线观看| 成年动漫av网址| 国产精品秋霞免费鲁丝片| 建设人人有责人人尽责人人享有的| 精品免费久久久久久久清纯 | 伊人久久大香线蕉亚洲五| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区久久| 捣出白浆h1v1| 两个人看的免费小视频| 久久婷婷青草| 国产精品亚洲av一区麻豆 | 国产亚洲欧美精品永久| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影 | 天天影视国产精品| 99久久精品国产亚洲精品| 久久久久久人人人人人| 男人操女人黄网站| 一区二区三区激情视频| 又大又爽又粗| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 啦啦啦 在线观看视频| 国产人伦9x9x在线观看| 国产精品麻豆人妻色哟哟久久| 日韩精品有码人妻一区| 欧美日韩亚洲高清精品| 波多野结衣一区麻豆| 亚洲精品第二区| 欧美在线一区亚洲| 中文乱码字字幕精品一区二区三区| 午夜福利免费观看在线| 看免费av毛片| 欧美日本中文国产一区发布| 校园人妻丝袜中文字幕| 国产精品久久久人人做人人爽| 国产97色在线日韩免费| 精品亚洲乱码少妇综合久久| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 波多野结衣一区麻豆| 久久人人爽人人片av| 国产精品 国内视频| av不卡在线播放| 久久国产精品大桥未久av| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精| 国产亚洲午夜精品一区二区久久| 男人添女人高潮全过程视频| 国产精品免费大片| 免费少妇av软件| 国产97色在线日韩免费| 亚洲国产毛片av蜜桃av| 性少妇av在线| 精品亚洲成a人片在线观看| 亚洲av成人精品一二三区| 女人被躁到高潮嗷嗷叫费观| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 两性夫妻黄色片| 国产日韩欧美视频二区| 亚洲av中文av极速乱| 国产黄色视频一区二区在线观看| a级毛片在线看网站| 成年人午夜在线观看视频| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区久久| 丝袜美腿诱惑在线| 日韩免费高清中文字幕av| 老司机影院毛片| 丝袜美足系列| 老司机影院毛片| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 午夜免费鲁丝| 国产一区二区激情短视频 | 成人影院久久| 久久亚洲国产成人精品v| 丰满乱子伦码专区| 80岁老熟妇乱子伦牲交| 国产高清国产精品国产三级| 尾随美女入室| 国产精品女同一区二区软件| 十八禁网站网址无遮挡| 男男h啪啪无遮挡| 日韩,欧美,国产一区二区三区| 精品一区二区三区av网在线观看 | 亚洲av福利一区| 在线观看一区二区三区激情| 国产亚洲欧美精品永久| 日韩一区二区视频免费看| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 午夜激情久久久久久久| 一区二区日韩欧美中文字幕| 亚洲av电影在线观看一区二区三区| 国产一卡二卡三卡精品 | tube8黄色片| 成人国产av品久久久| 成人国产av品久久久| 亚洲精品乱久久久久久| 精品一区二区三卡| 国产精品欧美亚洲77777| 午夜免费男女啪啪视频观看| 国产人伦9x9x在线观看| 欧美黄色片欧美黄色片| 黄色毛片三级朝国网站| 久久女婷五月综合色啪小说| 亚洲综合精品二区| 伊人亚洲综合成人网| 丝袜脚勾引网站| 电影成人av| 欧美成人午夜精品| 成人手机av| 在线观看www视频免费| 69精品国产乱码久久久| 18禁动态无遮挡网站| 日韩伦理黄色片| 日韩制服丝袜自拍偷拍| 国产精品亚洲av一区麻豆 | 亚洲情色 制服丝袜| 欧美人与善性xxx| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 精品少妇一区二区三区视频日本电影 | 国产片内射在线| 亚洲精品一二三| 国产精品女同一区二区软件| 黄色一级大片看看| 亚洲婷婷狠狠爱综合网| 最近最新中文字幕大全免费视频 | 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 亚洲五月色婷婷综合| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久 | 国产成人免费无遮挡视频| 另类亚洲欧美激情| 亚洲av成人精品一二三区| 曰老女人黄片| 一本一本久久a久久精品综合妖精| 国产精品人妻久久久影院| 亚洲精品国产区一区二| 人成视频在线观看免费观看| 美女福利国产在线| avwww免费| 亚洲国产av新网站| 国产亚洲av高清不卡| 久久人妻熟女aⅴ| 精品久久久精品久久久| 在线天堂中文资源库| av福利片在线| 欧美 亚洲 国产 日韩一| 久久鲁丝午夜福利片| 国产人伦9x9x在线观看| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 国产成人欧美| 纵有疾风起免费观看全集完整版| 国产精品国产三级国产专区5o| 黑人巨大精品欧美一区二区蜜桃| 日本vs欧美在线观看视频| av在线app专区| 免费久久久久久久精品成人欧美视频| 熟女av电影| 精品少妇久久久久久888优播| 老司机影院毛片| 日本欧美国产在线视频| 丝袜人妻中文字幕| 午夜91福利影院| 女的被弄到高潮叫床怎么办| 欧美激情 高清一区二区三区| 久久久久国产一级毛片高清牌| 乱人伦中国视频| 99精品久久久久人妻精品| 激情视频va一区二区三区| 亚洲激情五月婷婷啪啪| 色婷婷久久久亚洲欧美| 国产熟女欧美一区二区| 高清不卡的av网站| 亚洲久久久国产精品| av一本久久久久| 日韩电影二区| xxx大片免费视频| 无遮挡黄片免费观看| 亚洲av男天堂| av线在线观看网站| 日本一区二区免费在线视频| 亚洲av综合色区一区| 国产精品偷伦视频观看了| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 在线免费观看不下载黄p国产| 欧美人与性动交α欧美精品济南到| 日日啪夜夜爽| 伦理电影免费视频| 性高湖久久久久久久久免费观看| 久久久久网色| 美女主播在线视频| 美女午夜性视频免费| 久久热在线av| 精品国产一区二区三区久久久樱花| 狂野欧美激情性bbbbbb| 少妇人妻 视频| 精品一区二区三卡| 免费观看性生交大片5| 丝袜美腿诱惑在线| 黄网站色视频无遮挡免费观看| 精品国产一区二区久久| 国产av一区二区精品久久| 久久精品久久精品一区二区三区| 亚洲第一区二区三区不卡| 亚洲欧美激情在线| 国产成人免费观看mmmm| 熟女av电影| 亚洲国产最新在线播放| 色精品久久人妻99蜜桃| 老熟女久久久| 久久久国产一区二区| 久久婷婷青草| 一级毛片电影观看| 黑人猛操日本美女一级片| 亚洲美女搞黄在线观看| 69精品国产乱码久久久| 亚洲欧美激情在线| 亚洲精品自拍成人| 国产精品一区二区精品视频观看| 中文天堂在线官网| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影 | 大香蕉久久成人网| 热re99久久精品国产66热6| 黄片无遮挡物在线观看| 日韩一区二区三区影片| 久久性视频一级片| 国产亚洲一区二区精品| 黄片无遮挡物在线观看| 久久久久久久国产电影| 日韩精品有码人妻一区| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 日本91视频免费播放| 国产精品人妻久久久影院| 美女午夜性视频免费| 2018国产大陆天天弄谢| 久久久欧美国产精品| 丰满乱子伦码专区| 国产午夜精品一二区理论片| 国产亚洲午夜精品一区二区久久| 日韩 欧美 亚洲 中文字幕| 高清av免费在线| 考比视频在线观看| 亚洲欧洲日产国产| 午夜福利乱码中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 日日啪夜夜爽| 一级毛片 在线播放| 女人高潮潮喷娇喘18禁视频| 精品国产一区二区久久| www.自偷自拍.com| 精品国产一区二区久久| 日日啪夜夜爽| 久久久久国产一级毛片高清牌| 久久av网站| 亚洲综合精品二区| 欧美精品一区二区免费开放| 精品国产一区二区三区四区第35| 免费观看性生交大片5| 国产福利在线免费观看视频| 啦啦啦视频在线资源免费观看| 黑丝袜美女国产一区| 一本大道久久a久久精品| av.在线天堂| 久久久久网色| 久久久亚洲精品成人影院| 国产日韩欧美视频二区| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 亚洲伊人色综图| 女人精品久久久久毛片| 欧美av亚洲av综合av国产av | 久久久久久免费高清国产稀缺| 国产精品一国产av| 成年av动漫网址| 国产成人免费观看mmmm| 国产免费又黄又爽又色| 欧美精品av麻豆av| 午夜福利,免费看| 丁香六月欧美| 精品国产一区二区三区久久久樱花| 男人爽女人下面视频在线观看| 只有这里有精品99| 飞空精品影院首页| 桃花免费在线播放| h视频一区二区三区| 国产精品欧美亚洲77777| 久久av网站| 亚洲国产欧美网| 最近最新中文字幕大全免费视频 | 国产乱来视频区| 最黄视频免费看| 亚洲成人免费av在线播放| 亚洲综合色网址| 欧美人与善性xxx| 91精品伊人久久大香线蕉| 男的添女的下面高潮视频| 国产亚洲欧美精品永久| av视频免费观看在线观看| 99久久99久久久精品蜜桃| 国产精品成人在线| 精品国产一区二区三区四区第35| 亚洲 欧美一区二区三区| 久久免费观看电影| 精品亚洲成a人片在线观看| 欧美日韩视频高清一区二区三区二| 国产成人精品无人区| 韩国精品一区二区三区| 欧美日韩视频高清一区二区三区二|