• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pure annihilation decays of and in the PQCD approach

    2021-04-28 02:26:52YutongChen陳禹同ZewenJiang蔣澤文andXinLiu劉新
    Communications in Theoretical Physics 2021年4期
    關(guān)鍵詞:劉新

    Yutong Chen (陳禹同),Zewen Jiang (蔣澤文) and Xin Liu (劉新)

    Department of Physics,Jiangsu Normal University,Xuzhou 221116,China

    Abstract We study the CP-averaged branching fractions and the CP-violating asymmetries in the pure annihilation decays of and wheredenotes the scalar a0(980) and a0(1450) and with the perturbative QCD factorization approach under the assumption of two-quark structure for the a0 and states.The numerical results show that the branching ratios of thedecays are in the order of 10?6,while the decay rates of the modes are in the order of 10?5.In light of the measured modes with the same quark components in the pseudoscalar sector,namely,→ K+ K ?andthe predictions for the considered decay modes in this work are expected to be measured at the Large Hadron Collider beauty and/or Belle-II experiments in the (near) future.Meanwhile,it is of great interest to find that the twist-3 distribution amplitudes φS and φT with inclusion of the Gegenbauer polynomials for the scalar a0(1450)and states in scenario 2 contribute slightly to the branching ratios while significantly to the CP violations in theand →a0 (1 450)+ a0 (1 450)?decays,which indicates that,compared to the asymptotic φS and φT,these Gegenbauer polynomials could change the strong phases evidently in these pure annihilation decay channels.These predictions await for the future confirmation experimentally,which could further provide useful information to help explore the inner structure of the scalars and shed light on the annihilation decay mechanism.

    Keywords: B meson decays,perturbative QCD factorization approach,light scalar mesons,branching ratios,CP-violating asymmetries

    In the heavy flavor B physics,the annihilation diagrams are highly important in understanding the (non-)perturbative dynamics involved in the related decays,although which are generally considered as the power suppressed ones and then ever neglected because of not knowing how to effectively calculate them at the early stage of investigating the B meson decays [1–3]1It is worth stressing that the annihilation diagrams seem much more important in understanding the dynamics contained in the charmed meson decays,e.g.see [4–7] for detail..However,to interpret well the fundamental quantity,namely,the CP-violating asymmetry,one realized that the annihilation diagrams should be included essentially.Although,to date,both of the soft-collinear effective theory[8] and the pertubative QCD factorization (PQCD) approach[9–11] believed that the annihilation diagrams could be perturbatively calculated,the extremely different observations still made this issue controversial,namely,an almost real amplitude with a tiny strong phase was obtained in the former framework by introducing the zero-bin subtraction [12]; and in contrast,an almost imaginary one with a large strong phase appeared in the latter formalism naturally by keeping the transverse momentum kTof valence quark[13].Furthermore,it is stressed that more recent works based on the QCD factorization approach [3,14],one of the popular factorization methods in the current market,claimed that a complex contribution arising from the annihilation diagrams with significant imaginary parts should be essential in the B(s)→PP,PV and VV decays by fitting to experimental data [15–23].Phenomenologically speaking,they supported the viewpoint of the PQCD approach on the effective calculations of the annihilation diagrams to some extent.And what is more,the measurements from the Large Hadron Collider beauty(LHCb) experiment on the pure annihilation modes [24–26],i.e.andconfirmed the predictions of their branching ratios in the PQCD approach at leading order [27,28].Undoubtedly,the good agreement between theory and experiment is very exciting and inspiring.Therefore,in order to provide solid foundation to understand the annihilation decay mechanism,more and more investigations on the annihilation diagrams in the PQCD approach are necessary.

    Motivated by this success,we shall study theanddecays within the PQCD approach at leading order in this work,where a0anddenote the light scalar states a0(980) and a0(1450),and(800) (o rκ)and(1 430),respectively.Before proceeding,it is essential to give a short review on the current status about the light scalar states a0and.It is well known that the description on the inner structure of light scalars is still in controversial (for a review,see e.g.[29–31]).The states a0(980) and κ with masses below or close to 1 GeV are classified into one nonet,while those ones a0(1450) and1 430)with masses above 1 GeV belong to the other nonet.It has been stressed that these two nonets are hard to be considered as the low-lyingstates simultaneously due to the major difficulties,e.g.see [32] for detail.Therefore,two typical scenarios are suggested for the classification of these light scalar states [33]: in scenario 1(S1),a0(980) and κ are the lowest-lyingstates,while a0(1450) and(1 430)are the first excitedstates correspondingly; in scenario 2(S2),a0(980) and κ are treated as four-quark states,and then a0(1450) and(1 430)are considered as the lowest-lying two-quark states.In the present work,we shall consider the decays ofandwith the scalars in the two-quark model.Then,it is easily found that the considered decays have the same quark components as those measured ones,i.e.andin the pseudoscalar sector.Therefore,the LHCb and/or Belle-II experiments could potentially make a sound examination on the predictions about the branching ratios and/or the CP violations of the consideredanddecays in the PQCD approach.

    At the quark level,the consideredanddecays are induced by theand thetransitions,respectively.The related weak effective Hamiltonian Heffcan be written as [34],

    with the Fermi constant GF=1.166 39×10?5GeV?2,the Cabibbo–Kobayashi–Maskawa(CKM)matrix elements Vu(t)band Vu(t)Q,the light Q=d,s quark,and the Wilson coefficients Ci(μ) at the renormalization scale μ.The local fourquark operators Oi(i=1,…,10) are written as

    ? Tree operators

    ? QCD penguin operators

    ? Electroweak penguin operators

    with the color indices α,β and the notationsThe indexq′in the summation of the above operators runs through u,d,s,c,and b.Note that we will use the leading order Wilson coefficients since we work in the framework of the PQCD approach at leading order.For the renormalization group evolution of the Wilson coefficients from higher scale to lower scale,we will adopt straightforwardly the formulas as given in [9,10].

    The Feynman diagrams of thedecays at leading order in the PQCD formalism are illustrated in figure 1: figures 1(a) and (b) describe the factorizable annihilation(fa)diagrams,while figures 1(c)and(d)describe the nonfactorizable annihilation (nfa) ones.By replacing the s and d quarks in thedecays with the d and s ones correspondingly,then we can obtain the annihilation modesdirectly.As we know,several B →SS decays with S denoting the scalar mesons have been studied in the PQCD approach [35–39].Therefore,the analytic expressions for the decay amplitudes of the consideredanddecays can be found easily,for example,in the[37–39].Thedecay amplitudes have been presented in the PQCD approach [39].Then,we just need to replace theandstates in[39]with theand a0ones,as well as the related CKM matrix elements,to obtain easily the corresponding information of thedecays in the PQCD approach.Hence,for simplicity,we will not collect the aforementioned formulas in this paper.The interested readers can refer to [39] for detail.

    Figure 1.Leading order Feynman diagrams for decays in the PQCD formalism.

    where Mnfaandstand for the nonfactorizable annihilation amplitudes arising from the (V ?A)(V ?A) and (S ?P)(S+P) currents [39],respectively.Moreover,the almost exact cancellation of the factorizable annihilation amplitudes appear in the considered two decay modes due to the very small flavor symmetry breaking effects,which can be seen in the numerical calculations later.Similarly,we can easily obtain thedecay amplitude by the corresponding replacement of d ?s in theone,that is,

    Then,we can turn to the numerical calculations of the CP-averaged branching ratios and the CP-violating asymmetries of theanddecays in the PQCD approach.Some comments on the nonperturbative inputs are listed essentially as follows:

    (a) For the heavyandmesons,the wave functions and the distribution amplitudes,and the decay constants are same as those utilized in [39],but with the updated lifetimes= 1.52ps and= 1.509ps [40].It is worth mentioning that,due to its highly small effects,namely,the power-suppressed 1/mBcontributions to B decays in final states with energetic light particles[10,41],the high twist contributions from the B meson wave function in the considered pure annihilation channels have to be left for future studies associated with the precise measurements.For recent development about the B meson wave function and/or distribution amplitude,please see references,e.g.[41–46]for detail.

    (b) For the considered light scalar a0andstates,the decay constants and the Gegenbauer moments in the distribution amplitudes2It is necessary to mention that we firstly adopt the asymptotic form of the twist-3 distribution amplitudes φS and φT(T3A)in the numerical calculations here as usual [33,47].And then we will estimate the effects in this work arising from the twist-3 distribution amplitudes with inclusion of the Gegenbauer polynomials(T3G)in S2 later.It is noted that only the T3G form in S2 is available currently [48].have been derived at the normalization scale μ=1 GeV in the QCD sum rule method [33]:

    Note that the scale-dependent scalar decay constantand the vector decay constant fSare related with each other through the following relation [33],

    in which mSis the mass of the scalar meson,andmq2andmq1are the running quark masses.It is worth pointing out that for the a0states,the isospin symmetry breaking effects from the u and d quark masses are considered.Therefore,the running quark masses for the strange quark and the nonstrange light quarks can be read as ms=0.128 GeV,md=0.006 GeV, and mu=0.003 GeV, respectively,which are translated from those at the MS scale μ ≈2 GeV [40]. For the masses of the a0andstates,the values mκ=0.824 GeV,ma0(980)=0.980 GeV,=1.425 GeV,and=1.474GeV will be adopted in the numerical calculations3As inferred from the Review of Particle Physics[24],the considered scalar a0 andstates are also with finite widths. Generally speaking, the width effect could change the numerical results with different extent [49, 50]. In principle, we should consider the width effect to make relevant predictions more precise. However, it is unfortunate that the distribution amplitudes for the considered S-wave resonance states with the constrained parameters,e.g.Gegenbauer moments,are currently unavailable.Therefore,we have to leave the width effect in this work for future investigations elsewhere. As inferred from the Review of Particle Physics[24],the considered scalar a0 andstates are also with finite widths.Generally speaking,the width effect could change the numerical results with different extent [49,50].In principle,we should consider the width effect to make relevant predictions more precise.However,it is unfortunate that the distribution amplitudes for the considered S-wave resonance states with the constrained parameters,e.g.Gegenbauer moments,are currently unavailable.Therefore,we have to leave the width effect in this work for future investigations elsewhere..

    (c) For the CKM matrix elements, we also adopt the Wolfenstein parametrization at leading order, but with the updated parameters A=0.836, λ=0.22453,[40].

    Now, we present the numerical results of theanddecays in the PQCD formalism.Firstly,the PQCD predictions of the CP-averaged branching ratios can be read as follows:

    and

    where, as clearly seen from the above results, the majored errors are mainly induced by the uncertainties of the scalar decay constantsandand the combined Gegenbauer moments Bmof B1and B3in the leading twist distribution amplitudes of the scalar mesons. The other errors induced by the shape parameter ωBin themeson distribution amplitude and by the combined CKM matrix elements V are much smaller. Frankly speaking, these mentioned hadronic parameters of the scalar mesons are currently less constrained from the experiments and/or Lattice QCD calculations. Therefore, we have to adopt those available parameters calculated in the QCD sum rule method to give a rough estimation preliminarily. Of course, both the essential measurements at the experimental aspects and the Lattice QCD computation at the theoretical aspects on the abovementioned nonperturbative inputs for the scalar mesons are urgently demanded, which is expected to help better understand the related hadron dynamics and provide more precise predictions. Note that all the errors from various parameters as specified above have been added in quadrature, which can be seen from the results presented in the square brackets.

    Based on the numerical results with large theoretical uncertainties as shown in the equations (16)–(19), several remarks are in order:

    (c) In light of the large theoretical errors,a precise ratio of the related branching ratios would be more interested because,generally speaking,the theoretical errors resulted from the hadronic inputs could be cancelled to a great extent.Therefore,we define the following ratios to be measured at the relevant experiments of B meson decays,which would help to study the QCD dynamics,even the decay mechanism of these considered pure annihilation decays.

    Of course,it is found that the uncertainties in some of the above ratios are not small,for example,=in equation (22).The underlying reason is that the large uncertainties induced by the Gegenbauer moments B1and B3cannot be cancelled correspondingly,unlike the exact cancellation of the uncertainties resulted from the scalar decay constants that can be isolated from the distribution amplitudes.

    (d) Another eight more interesting ratios could be obtained and are expected to be examined at the future experiments,if we take the already measuredandπ+π?decays as referenced channels.By combing the branching fractions of the→K+K?and→π+π?decays from both of the PQCD predictions[28] and the experimental measurements [24] sides,and the decay rates of theandmodes in this work,they are read as follows,

    Table 1.The factorization decay amplitudes(in units of 10?3 GeV3)in S1 of the pure annihilation → and decays in the PQCD approach,where only the central values are quoted for clarifications.

    Table 1.The factorization decay amplitudes(in units of 10?3 GeV3)in S1 of the pure annihilation → and decays in the PQCD approach,where only the central values are quoted for clarifications.

    Modes Anfa(T3A) Afa(T3A)() ()→+?B K 800K 800 d0 0 0* * ?0.610 ?i1.974 0.0008+i0.0004() ()→+?B K 1430K 1430 d0 0 0* * 1.877 ?i2.658 0.001+i0.003()()→+?B a980a980s000 6.892+i1.325 0.00003 ?i0.002() ()→+?B a1450a1450s000 ?1.588+i10.057 ?0.006+i0.002

    and

    These large values of the above ratios with still large theoretical errors could be easily tested when the related samples are collected with good precision experimentally.

    (e) As mentioned in the above,the isospin symmetry breaking effects from the u and d quark masses have been considered in thedecays.Therefore,the factorizable annihilation decay amplitudes are not exact zero,which can be seen clearly from the numerical results as shown in the tables 1 and 2 in both scenarios S1 and S2.However,they are still tiny and could be neglected safely.It means that the contributions to the pure annihilation decays considered in this work are absolutely from the nonfactorizable annihilation decay amplitudes.It is noticed that,relative to theanddecays,the antisymmetric QCD behavior of the leading twist distribution amplitude could make the destructive interferences in the pseudoscalar sector become the constructive ones in the scalar sector to the nonfactorizable annihilation diagrams between the figure 1(c) with hard gluon radiating from light d(s) quark and the figure 1(d) with hard gluon radiating from heavy anti-b quark,which eventually result in the large CP-averaged decay rates of the considered decays,as presented in the equations (16)–(19).

    Next,we will discuss the CP-violating asymmetries of theanddecays in the PQCD approach.Similar to the CP violations discussed in[39],we will present the direct and the mixing-induced CP violations Adirand Amixfor thedecays.While,except for Adirand Amix,the third CP asymmetryAΔΓsshould be considered simultaneously for thedecays because of the nonzero ratiofor themixing,where ΔΓ is the decay width difference of themeson mass eigenstates[51,52].Then the numerical results of the CP asymmetries Adir,Amix,evenAΔΓs4The definitions of Adir,Amix,andA ΔΓs are as followsrespectively,where the CPviolating parameterwith ηf being the CPeigenvalue of the final states.in the PQCD approach can be read as follows,

    Table 2.Similar to table 1 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Table 2.Similar to table 1 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Modes Anfa(T3A) Afa(T3A) Anfa(T3G) Afa(T3G)() ()→+?B K 1430K 1430 d0 0 0* * ?1.940+i0.188 ?0.0005 ?i0.0006 ?1.617+i1.571 ?0.028+i0.762() ()→+?B a1450a1450s000 5.038 ?i6.778 ?0.002+i0.000 06 4.851 ?i6.812 0.006+i0.003

    and

    (b) For thedecays,

    and

    in which the Gegenbauer moments in the scalar meson distribution amplitudes and the parameters in the CKM matrix elements contribute to the majored errors theoretically,as clearly seen from the above equations (36)–(45).

    Some comments are in order:

    ? It is clear to see that these predicted CP violations are generally insensitive to the variation of the scalar decay constantThe underlying reason is that the decay amplitudes of the considered decays are nearly proportional to the scalar decay constant,due to the vanishing vector decay constant(see equations(7)–(14)for detail)in the leading twist distribution amplitude [33],

    ?

    where fS(μ)andandare the vector and the scalar decay constants,the Gegenbauer moments,and the Gegenbauer polynomials,respectively,and the asymptotic forms of the twist-3 distribution amplitudes of the scalar a0andmesons.While,the CP asymmetries of thedecays are more sensitive to thethan those of theones to theThe fact is that the isospin symmetry breaking effect from the u and d quark masses leads to the tiny and negligible vector decay constanti.e.equation (13),and the SU(3) flavor symmetry breaking effect from the u and s quark masses results in the small but non-negligiblei.e.equation (11).

    ? It is easy to find that,apart from the Adiranda0(1 450)?)S2with few percent,the rest CP-violating asymmetries for the considered pure annihilation decays ofandin the PQCD approach are large,which means that the contributions from the penguin diagrams are generally sizable.To see this point explicitly,we present the decay amplitudes classified as the tree diagrams and the penguin ones,respectively,in the tables 3–4,where only the central values are quoted for clarifications.Then it is expected that these predictions of the CP violations,associated with the predicted large decay rates,could be confronted with the relevant experiments at LHCb and/or Belle-II in the (near) future.Of course,the Adirandare too small to be measured easily in the near future,though the corresponding branching ratios are as large as 10?5.

    At last,we shall discuss the effects arising from the twist-3 distribution amplitudes of the scalar a0(1450) andmesons by including the Gegenbauer polynomials in S2,as mentioned in the above footnote 2.It is noted that the twist-3 distribution amplitudes with Gegenbauer polynomials of the scalar mesons in S2 have been investigated in[48],

    with the Gegenbauer moments

    at μ=1 GeV for the1430)state,and

    with the Gegenbauer moments

    at μ=1 GeV for the a0(1450)state,respectively5It is necessary to mention that the Gegenbauer moments for the twist-3 distribution amplitudes of and a0(1450) states are originally presented as [48] (1) a1=0.018–0.042,a2=?0.33 to ?0.025,b1=0.037–0.055,and b2=0–0.15 at μ=1 GeV for thestate,and (2) a2=?0.33 to ?0.18,a4=?0.11 to 0.39,b2=0–0.058,and b4=0.070–0.20 for the a0(1450) state,respectively.To give the numerical results as central values with uncertainties,we adopt the form of the Gagenbauer moments in the twist-3 distribution amplitudes as presented in the equations (49) and (52) for convenience..Then,by including the contributions from these twist-3 distribution amplitudes,the numerical results for the branching ratios and the CP-violating asymmetries in S2 could be obtained asfollows,

    Table 4.Similar to table 3 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Table 4.Similar to table 3 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Modes Tree diagrams(T3A) Penguin diagrams(T3A) Tree diagrams(T3G) Penguin diagrams(T3G)() ()→+?B K 1430K 1430 d0 0 0* * ()? ?+1.081 i 1.178 0.129 i 1.593 ()? +? +0.859 i 1.365 1.574 i 0.352 ()? +?0.566 i 0.658 0.850 i 0.171 ()? +? +1.079 i 1.675 1.949 i 0.415() ()→+?B a1450a1450 s000 ()? ?+0.328 i 0.048 0.229 i 0.239 ()??5.364 i 6.730 5.364 i 6.730 ()? +?0.097 i 0.188 0.192 i 0.088 ()??4.954 i 6.998 4.954 i 6.998

    in which the central value of the branching fractionbecomes slightly smaller[larger] than that obtained in the case with adopting the asymptotic form of the twist-3 distribution amplitudes correspondingly.Of course,the CP-averaged branching ratios almost remain unchanged within the still large theoretical errors.And

    where the direct CP-violating asymmetry and the mixing-induced one are changed significantly for theand→a0(1 450)+a0(1 450)?decays in S2.Note that the parameter (ab) in the above equations (55)–(59) denotes the combined Gegenbauer moment of aiand biin the twist-3 distribution amplitudes with Gegenbauer polynomials.In terms of the central value,the Adirvaries from 21.4% in the T3A form to ?73.1% in the T3G form for the former mode,while from 1.4%in the T3A form to 4.6%in the T3G form for the latter one;and the Amixchanges from ?97.5% to ?3.5% for the former channel,while from 7.2% to 0.86% for the latter one,which indicate that the strong phases in these two pure annihilation decays could be dramatically affected by the twist-3 distribution amplitudes with inclusion of the Gegenbauer polynomials.In order to show the significant changes of the mentioned strong phases,we present the decay amplitudes of these two pure annihilation modes,i.e.andin S2 explicitly by considering the twist-3 distribution amplitudes in the T3A and T3G forms respectively,as given in the tables 2 and 4.It is clearly seen that the magnitudes of the dominant contributions from the nonfactorizable annihilation diagrams vary slightly,but the strong phases in both of the factorizable and nonfactorizable annihilation diagrams change remarkably,which means that the considered T3G contributions are also important to the strong phases in the annihilation diagrams of this work.Therefore,the clear understanding of the hadron dynamics about the scalar mesons considered in this work could be very helpful to provide precise predictions theoretically,even to explore the presently unknown annihilation decay mechanism.

    In short,it is well known that the annihilation diagrams,although which are power suppressed and with currently unknown mechanism,could play important roles in the heavy flavor B and D meson decays.As one of the popular tools theoretically,the PQCD approach has the advantages in computing the annihilation contributions.Therefore,by assuming the scalar a0andbeing themesons in two different scenarios,we have investigated the CP-averaged branching ratios and the CP-violating asymmetries for the pure annihilation decays ofandin the PQCD approach,which embrace the same quark structure asandin the pseudoscalar sector.At the same time,for theand→a0(1 450)+a0(1 450)?decays,we also studied the contributions from the twist-3 distribution amplitudes in the Gegenbauer polynomial forms of the1 430)and a0(1450) in S2.Based on the numerical results within still large theoretical errors and the phenomenological analyses,the predictions in the PQCD approach showed that:

    ? The large decay rates in the order of 10?6and 10?5have been obtained in the PQCD calculations for the pure annihilationanddecays,respectively,but which suffer from large theoretical uncertainties mainly arising from the hadronic parameters of the scalar a0andmesons,such as the Gegenbauer moments,the scalar decay constants,etc.Undoubtedly,these large predictions in the PQCD approach could be examined at the LHCb and/or Belle-II experiments in the (near) future.

    ? The unknown inner structure or QCD dynamics of the scalar states demands the reliable studies from the experimental examinations,or in the nonperturbative techniques,for example,Lattice QCD.The clear understanding about the QCD dynamics of the scalars must constrain the errors of the predictions in the PQCD approach of the pure annihilation modes in this work,which would provide opportunities to shed light on the mechanism of the annihilation decays.

    Acknowledgments

    Y Chen thanks L Su for helpful discussions.This work is supported in part by the National Natural Science Foundation of China under Grant Nos.11765012 and 11 205 072,and by the Research Fund of Jiangsu Normal University(No.HB2016004).Y C is supported by the Undergraduate Research & Practice Innovation Program of Jiangsu Province (No.201810320103Z).

    猜你喜歡
    劉新
    生死關(guān)頭“最美一跳”
    黨員生活(2024年8期)2024-09-24 00:00:00
    劉新和
    基于CSPI的云南省1961—2016年六大流域季節(jié)干旱差異分析
    假酒風(fēng)波
    糾結(jié)
    “生菜屋”可持續(xù)生活實(shí)驗(yàn),北京,中國(guó)
    世界建筑(2017年3期)2017-04-05 06:25:06
    游戲取景師劉新游山玩水也能月賺2萬(wàn)
    福建人(2016年7期)2016-09-13 08:21:58
    游戲取景師:游山玩水也賺錢(qián)
    家庭百事通(2016年7期)2016-07-11 17:43:30
    繼父背上的“漫畫(huà)少女”:我這輩子就粘死你了
    劉新 京城滇菜開(kāi)拓者
    餐飲世界(2015年2期)2016-02-23 09:44:47
    能在线免费观看的黄片| 美女脱内裤让男人舔精品视频 | 国产私拍福利视频在线观看| 免费搜索国产男女视频| 亚洲av电影不卡..在线观看| 色综合色国产| 国产伦精品一区二区三区视频9| 久久精品综合一区二区三区| 精品欧美国产一区二区三| 99久国产av精品| 男女那种视频在线观看| 国产探花极品一区二区| 美女大奶头视频| 长腿黑丝高跟| 在现免费观看毛片| 亚洲在线观看片| 网址你懂的国产日韩在线| 久久人人精品亚洲av| 色哟哟·www| 好男人在线观看高清免费视频| 中文字幕免费在线视频6| 国产精品不卡视频一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲无线在线观看| 可以在线观看的亚洲视频| 成人亚洲精品av一区二区| 联通29元200g的流量卡| 最近最新中文字幕大全电影3| 一进一出抽搐动态| 午夜老司机福利剧场| 嫩草影院精品99| 亚洲18禁久久av| 国产精品日韩av在线免费观看| 我要看日韩黄色一级片| 日韩成人av中文字幕在线观看| 日韩av在线大香蕉| 精品久久久久久久末码| 日本欧美国产在线视频| 日韩 亚洲 欧美在线| 少妇熟女欧美另类| 婷婷色av中文字幕| 精品人妻一区二区三区麻豆| 成人综合一区亚洲| 日韩欧美在线乱码| 日本黄大片高清| 亚洲av.av天堂| 18禁在线无遮挡免费观看视频| 欧美成人免费av一区二区三区| 色5月婷婷丁香| 国产爱豆传媒在线观看| 超碰av人人做人人爽久久| 美女 人体艺术 gogo| 亚洲在线自拍视频| 国产午夜福利久久久久久| 国产精品久久久久久精品电影| 成人午夜高清在线视频| 嘟嘟电影网在线观看| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 亚洲一区二区三区色噜噜| 精品一区二区免费观看| 免费观看的影片在线观看| 99久久成人亚洲精品观看| .国产精品久久| 最新中文字幕久久久久| 亚洲av熟女| 蜜桃亚洲精品一区二区三区| 国产精品.久久久| 少妇丰满av| 日本爱情动作片www.在线观看| 男人狂女人下面高潮的视频| 黄色配什么色好看| 亚洲欧洲国产日韩| 高清毛片免费观看视频网站| 久久久精品大字幕| 日日啪夜夜撸| 欧美激情在线99| 欧美成人免费av一区二区三区| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕| 国产极品精品免费视频能看的| 99热网站在线观看| 国产片特级美女逼逼视频| 十八禁国产超污无遮挡网站| 国产精品一区二区性色av| 国产精品免费一区二区三区在线| 麻豆成人午夜福利视频| 欧美人与善性xxx| 国产一区二区三区av在线 | 黄色一级大片看看| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 欧洲精品卡2卡3卡4卡5卡区| 熟女电影av网| 床上黄色一级片| 国产黄色视频一区二区在线观看 | 悠悠久久av| 国产一区二区在线av高清观看| 国产人妻一区二区三区在| 日韩大尺度精品在线看网址| 亚洲精品久久久久久婷婷小说 | 91久久精品国产一区二区成人| 精品日产1卡2卡| 特级一级黄色大片| 日韩欧美一区二区三区在线观看| 国产精华一区二区三区| 国产乱人偷精品视频| 少妇的逼水好多| 亚洲一区二区三区色噜噜| 国产一区二区激情短视频| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 成人国产麻豆网| 在线观看午夜福利视频| 成人欧美大片| 中文字幕av成人在线电影| 亚洲欧洲日产国产| 人妻久久中文字幕网| 网址你懂的国产日韩在线| 国产精品一及| 午夜激情欧美在线| 精品少妇黑人巨大在线播放 | 丝袜美腿在线中文| 国产在线精品亚洲第一网站| 亚洲精品久久久久久婷婷小说 | 日韩高清综合在线| 赤兔流量卡办理| av天堂在线播放| 免费观看人在逋| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 免费看美女性在线毛片视频| 校园春色视频在线观看| 色综合色国产| АⅤ资源中文在线天堂| 午夜精品国产一区二区电影 | 狂野欧美激情性xxxx在线观看| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 国产成人精品婷婷| 成人鲁丝片一二三区免费| 国产精品国产高清国产av| 日韩欧美一区二区三区在线观看| 国产日本99.免费观看| 久久鲁丝午夜福利片| 久久亚洲精品不卡| 国产精品一区www在线观看| 亚洲国产日韩欧美精品在线观看| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 中文欧美无线码| 亚洲欧美日韩卡通动漫| 国产探花在线观看一区二区| 亚洲精品久久久久久婷婷小说 | 欧美精品国产亚洲| av卡一久久| 成熟少妇高潮喷水视频| 国内精品美女久久久久久| 久久人人爽人人爽人人片va| 国产一区二区在线av高清观看| 国产精品久久久久久亚洲av鲁大| 日产精品乱码卡一卡2卡三| 村上凉子中文字幕在线| 亚洲av中文av极速乱| 精品国产三级普通话版| 嫩草影院精品99| 国产真实乱freesex| 99热这里只有是精品50| 免费无遮挡裸体视频| 亚洲成人精品中文字幕电影| 97在线视频观看| 毛片女人毛片| 99久久成人亚洲精品观看| 黄色一级大片看看| 免费看a级黄色片| 亚洲av成人av| 午夜福利视频1000在线观看| 国产精品久久久久久精品电影小说 | 国产精品99久久久久久久久| 亚洲国产精品合色在线| 在线观看av片永久免费下载| 日日撸夜夜添| 嫩草影院入口| 特大巨黑吊av在线直播| 亚洲成av人片在线播放无| 国产精品一区二区性色av| 亚洲一级一片aⅴ在线观看| 免费人成视频x8x8入口观看| 免费看日本二区| 麻豆一二三区av精品| 精品熟女少妇av免费看| 婷婷六月久久综合丁香| 少妇猛男粗大的猛烈进出视频 | 日本色播在线视频| 亚洲四区av| 亚洲性久久影院| 日韩制服骚丝袜av| 亚洲人与动物交配视频| 女同久久另类99精品国产91| 欧美一区二区亚洲| 成人美女网站在线观看视频| 3wmmmm亚洲av在线观看| 最近2019中文字幕mv第一页| 大香蕉久久网| 一边亲一边摸免费视频| 国产乱人偷精品视频| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 亚洲最大成人中文| 国产一区亚洲一区在线观看| 男人狂女人下面高潮的视频| 日韩精品青青久久久久久| 日韩av在线大香蕉| 亚洲无线观看免费| 国产一区亚洲一区在线观看| 久久久久久久久久久丰满| 日韩av不卡免费在线播放| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 草草在线视频免费看| 热99re8久久精品国产| 天天一区二区日本电影三级| 淫秽高清视频在线观看| 真实男女啪啪啪动态图| 精品久久久久久久久亚洲| 成人av在线播放网站| 国产精品国产高清国产av| 国产成人福利小说| 国产 一区 欧美 日韩| 久久99精品国语久久久| 午夜精品在线福利| 一个人看的www免费观看视频| 99在线人妻在线中文字幕| 内地一区二区视频在线| 国产真实伦视频高清在线观看| 亚洲va在线va天堂va国产| 国产精品野战在线观看| 99久久久亚洲精品蜜臀av| 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 亚洲美女视频黄频| 一级av片app| 午夜福利在线观看免费完整高清在 | 午夜久久久久精精品| 欧美精品一区二区大全| 成人无遮挡网站| 亚洲性久久影院| 精品午夜福利在线看| 婷婷色av中文字幕| 久久久久久九九精品二区国产| av卡一久久| 国产午夜精品论理片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高潮美女av| 国产成人a∨麻豆精品| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av香蕉五月| 超碰av人人做人人爽久久| 又粗又爽又猛毛片免费看| 三级男女做爰猛烈吃奶摸视频| eeuss影院久久| 女人十人毛片免费观看3o分钟| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| 国产精品福利在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 在线免费观看不下载黄p国产| 国产精品野战在线观看| 波多野结衣高清无吗| 美女xxoo啪啪120秒动态图| 校园春色视频在线观看| 女同久久另类99精品国产91| 亚洲精品色激情综合| 日本欧美国产在线视频| 午夜视频国产福利| 最好的美女福利视频网| 亚洲av第一区精品v没综合| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 又粗又硬又长又爽又黄的视频 | 熟女电影av网| 欧美在线一区亚洲| 日韩国内少妇激情av| 97在线视频观看| 国产色爽女视频免费观看| 国产一区二区在线观看日韩| 晚上一个人看的免费电影| 波多野结衣高清无吗| 久久午夜亚洲精品久久| 国产精品久久久久久久电影| 一边摸一边抽搐一进一小说| 久久久久久久久久久免费av| 岛国在线免费视频观看| 日韩在线高清观看一区二区三区| 97在线视频观看| 日本一本二区三区精品| 亚洲av男天堂| 国内久久婷婷六月综合欲色啪| av在线观看视频网站免费| 99久国产av精品国产电影| 国语自产精品视频在线第100页| 偷拍熟女少妇极品色| 午夜精品一区二区三区免费看| 一区福利在线观看| 欧美另类亚洲清纯唯美| www日本黄色视频网| 秋霞在线观看毛片| 亚洲精品自拍成人| 午夜激情福利司机影院| 欧美精品一区二区大全| 亚洲国产精品成人久久小说 | 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看| 国产黄片视频在线免费观看| 内射极品少妇av片p| 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 日日撸夜夜添| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 欧美成人免费av一区二区三区| 国产精品无大码| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 午夜精品在线福利| 三级国产精品欧美在线观看| 老司机影院成人| 在线观看66精品国产| 日本av手机在线免费观看| 国产伦在线观看视频一区| 男女边吃奶边做爰视频| 国产精品野战在线观看| 97在线视频观看| 可以在线观看毛片的网站| 日韩三级伦理在线观看| 丝袜喷水一区| 亚洲18禁久久av| 精品久久久久久久久久免费视频| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 国产精品久久电影中文字幕| 综合色av麻豆| 亚洲四区av| 三级毛片av免费| av在线天堂中文字幕| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| 免费看光身美女| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 国产又黄又爽又无遮挡在线| 伦精品一区二区三区| av国产免费在线观看| 午夜激情欧美在线| av.在线天堂| 国产精品精品国产色婷婷| 老师上课跳d突然被开到最大视频| 日本五十路高清| 夜夜爽天天搞| 国产成人午夜福利电影在线观看| 五月伊人婷婷丁香| 我要看日韩黄色一级片| 女人被狂操c到高潮| 国产爱豆传媒在线观看| 99国产精品一区二区蜜桃av| 国产精品久久电影中文字幕| 熟女电影av网| 听说在线观看完整版免费高清| 久久精品久久久久久久性| 成人永久免费在线观看视频| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 亚洲最大成人中文| 亚州av有码| 欧美色欧美亚洲另类二区| 波野结衣二区三区在线| 亚洲无线在线观看| 欧美极品一区二区三区四区| av天堂中文字幕网| 国产精品一及| 午夜激情欧美在线| 久久鲁丝午夜福利片| 久久久久久久久大av| 人妻少妇偷人精品九色| 欧美激情国产日韩精品一区| 六月丁香七月| 国产成人aa在线观看| av在线亚洲专区| 国产精品,欧美在线| 人妻系列 视频| 婷婷亚洲欧美| av又黄又爽大尺度在线免费看 | 国产真实伦视频高清在线观看| 亚洲va在线va天堂va国产| 尾随美女入室| 麻豆国产97在线/欧美| 久久久久久久久久久丰满| 亚洲乱码一区二区免费版| 久久精品夜色国产| 亚洲国产高清在线一区二区三| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 人妻系列 视频| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 国产伦一二天堂av在线观看| 97在线视频观看| 最近最新中文字幕大全电影3| 婷婷色综合大香蕉| 边亲边吃奶的免费视频| 超碰av人人做人人爽久久| a级一级毛片免费在线观看| 久久中文看片网| 中出人妻视频一区二区| 欧美又色又爽又黄视频| 男人和女人高潮做爰伦理| 国语自产精品视频在线第100页| 欧美性猛交╳xxx乱大交人| 亚洲av成人精品一区久久| 日韩欧美精品v在线| 亚洲人与动物交配视频| 日本黄色视频三级网站网址| 69人妻影院| 人人妻人人看人人澡| 国产精品免费一区二区三区在线| 中文字幕制服av| 国产三级在线视频| 熟女人妻精品中文字幕| 国产精品一区二区在线观看99 | 国产伦理片在线播放av一区 | 简卡轻食公司| 国产熟女欧美一区二区| 国产高清有码在线观看视频| 亚洲av中文字字幕乱码综合| 亚洲自偷自拍三级| 国内久久婷婷六月综合欲色啪| 最好的美女福利视频网| 国产精品美女特级片免费视频播放器| 看十八女毛片水多多多| 色综合站精品国产| 国产一区亚洲一区在线观看| 久久草成人影院| 国产极品天堂在线| 好男人在线观看高清免费视频| .国产精品久久| 亚洲av熟女| 久久久久久久久久成人| 久久久久久久午夜电影| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| 国产一级毛片在线| 亚洲av中文av极速乱| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 99国产精品一区二区蜜桃av| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 久久人妻av系列| 国产av在哪里看| 51国产日韩欧美| 日本黄大片高清| 午夜福利视频1000在线观看| 欧美日韩一区二区视频在线观看视频在线 | 精华霜和精华液先用哪个| 日韩一区二区三区影片| 22中文网久久字幕| 日本一二三区视频观看| 在线观看免费视频日本深夜| 亚洲五月天丁香| 成人高潮视频无遮挡免费网站| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 国产男人的电影天堂91| 国产在线精品亚洲第一网站| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 国产精品蜜桃在线观看 | 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| 国产视频首页在线观看| 国产精品电影一区二区三区| 国产成人福利小说| 干丝袜人妻中文字幕| 国产三级中文精品| 最近2019中文字幕mv第一页| 22中文网久久字幕| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 一个人观看的视频www高清免费观看| 人妻制服诱惑在线中文字幕| 一级二级三级毛片免费看| 欧美日本视频| 欧美一区二区亚洲| 国产精品99久久久久久久久| 深爱激情五月婷婷| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 观看免费一级毛片| 免费不卡的大黄色大毛片视频在线观看 | eeuss影院久久| 国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| 如何舔出高潮| 亚洲精品成人久久久久久| 老司机福利观看| www日本黄色视频网| 中文字幕免费在线视频6| 搡女人真爽免费视频火全软件| 特大巨黑吊av在线直播| 26uuu在线亚洲综合色| 极品教师在线视频| 国产一区二区在线观看日韩| 亚洲久久久久久中文字幕| 男人舔女人下体高潮全视频| 免费黄网站久久成人精品| 精品国产三级普通话版| 国内久久婷婷六月综合欲色啪| 久久精品国产清高在天天线| 一本精品99久久精品77| www.色视频.com| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片| 国产大屁股一区二区在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av在线老鸭窝| 亚洲国产欧洲综合997久久,| 联通29元200g的流量卡| 淫秽高清视频在线观看| 欧美高清成人免费视频www| 舔av片在线| 欧美日本视频| 两个人视频免费观看高清| 岛国毛片在线播放| 嫩草影院入口| 夜夜看夜夜爽夜夜摸| 好男人在线观看高清免费视频| 22中文网久久字幕| 夜夜夜夜夜久久久久| 久久国产乱子免费精品| 亚洲人成网站在线播| 亚洲美女视频黄频| 国产亚洲av片在线观看秒播厂 | 性欧美人与动物交配| 国产真实伦视频高清在线观看| 亚洲欧美精品综合久久99| 亚洲美女视频黄频| 国产大屁股一区二区在线视频| av又黄又爽大尺度在线免费看 | 老女人水多毛片| АⅤ资源中文在线天堂| 少妇的逼水好多| 91在线精品国自产拍蜜月| 人人妻人人澡人人爽人人夜夜 | 国产精品一区二区性色av| 久久精品国产亚洲网站| 97人妻精品一区二区三区麻豆| 成年av动漫网址| av免费在线看不卡| 国产伦精品一区二区三区四那| 黄色视频,在线免费观看| 熟妇人妻久久中文字幕3abv| 69av精品久久久久久| 国产极品精品免费视频能看的| 亚洲人与动物交配视频| 国产一区二区三区av在线 | 亚洲av男天堂| 精品久久久久久久人妻蜜臀av| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| 国产精品美女特级片免费视频播放器| 美女大奶头视频| 国产色爽女视频免费观看| 亚洲无线在线观看| 色综合色国产| 精品欧美国产一区二区三| 小说图片视频综合网站| 一进一出抽搐动态| 国产一区二区三区av在线 | 黑人高潮一二区| 97超碰精品成人国产| 久久韩国三级中文字幕| 1000部很黄的大片| 日本黄色片子视频| 99热网站在线观看| 免费观看精品视频网站| 欧美性感艳星| av天堂中文字幕网| 一进一出抽搐动态| 看非洲黑人一级黄片| 欧美一级a爱片免费观看看| 我要搜黄色片| 高清午夜精品一区二区三区 | 身体一侧抽搐| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 亚洲欧美精品专区久久| 国产单亲对白刺激| 身体一侧抽搐| 中出人妻视频一区二区| 亚洲国产欧美在线一区|