• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pure annihilation decays of and in the PQCD approach

    2021-04-28 02:26:52YutongChen陳禹同ZewenJiang蔣澤文andXinLiu劉新
    Communications in Theoretical Physics 2021年4期
    關(guān)鍵詞:劉新

    Yutong Chen (陳禹同),Zewen Jiang (蔣澤文) and Xin Liu (劉新)

    Department of Physics,Jiangsu Normal University,Xuzhou 221116,China

    Abstract We study the CP-averaged branching fractions and the CP-violating asymmetries in the pure annihilation decays of and wheredenotes the scalar a0(980) and a0(1450) and with the perturbative QCD factorization approach under the assumption of two-quark structure for the a0 and states.The numerical results show that the branching ratios of thedecays are in the order of 10?6,while the decay rates of the modes are in the order of 10?5.In light of the measured modes with the same quark components in the pseudoscalar sector,namely,→ K+ K ?andthe predictions for the considered decay modes in this work are expected to be measured at the Large Hadron Collider beauty and/or Belle-II experiments in the (near) future.Meanwhile,it is of great interest to find that the twist-3 distribution amplitudes φS and φT with inclusion of the Gegenbauer polynomials for the scalar a0(1450)and states in scenario 2 contribute slightly to the branching ratios while significantly to the CP violations in theand →a0 (1 450)+ a0 (1 450)?decays,which indicates that,compared to the asymptotic φS and φT,these Gegenbauer polynomials could change the strong phases evidently in these pure annihilation decay channels.These predictions await for the future confirmation experimentally,which could further provide useful information to help explore the inner structure of the scalars and shed light on the annihilation decay mechanism.

    Keywords: B meson decays,perturbative QCD factorization approach,light scalar mesons,branching ratios,CP-violating asymmetries

    In the heavy flavor B physics,the annihilation diagrams are highly important in understanding the (non-)perturbative dynamics involved in the related decays,although which are generally considered as the power suppressed ones and then ever neglected because of not knowing how to effectively calculate them at the early stage of investigating the B meson decays [1–3]1It is worth stressing that the annihilation diagrams seem much more important in understanding the dynamics contained in the charmed meson decays,e.g.see [4–7] for detail..However,to interpret well the fundamental quantity,namely,the CP-violating asymmetry,one realized that the annihilation diagrams should be included essentially.Although,to date,both of the soft-collinear effective theory[8] and the pertubative QCD factorization (PQCD) approach[9–11] believed that the annihilation diagrams could be perturbatively calculated,the extremely different observations still made this issue controversial,namely,an almost real amplitude with a tiny strong phase was obtained in the former framework by introducing the zero-bin subtraction [12]; and in contrast,an almost imaginary one with a large strong phase appeared in the latter formalism naturally by keeping the transverse momentum kTof valence quark[13].Furthermore,it is stressed that more recent works based on the QCD factorization approach [3,14],one of the popular factorization methods in the current market,claimed that a complex contribution arising from the annihilation diagrams with significant imaginary parts should be essential in the B(s)→PP,PV and VV decays by fitting to experimental data [15–23].Phenomenologically speaking,they supported the viewpoint of the PQCD approach on the effective calculations of the annihilation diagrams to some extent.And what is more,the measurements from the Large Hadron Collider beauty(LHCb) experiment on the pure annihilation modes [24–26],i.e.andconfirmed the predictions of their branching ratios in the PQCD approach at leading order [27,28].Undoubtedly,the good agreement between theory and experiment is very exciting and inspiring.Therefore,in order to provide solid foundation to understand the annihilation decay mechanism,more and more investigations on the annihilation diagrams in the PQCD approach are necessary.

    Motivated by this success,we shall study theanddecays within the PQCD approach at leading order in this work,where a0anddenote the light scalar states a0(980) and a0(1450),and(800) (o rκ)and(1 430),respectively.Before proceeding,it is essential to give a short review on the current status about the light scalar states a0and.It is well known that the description on the inner structure of light scalars is still in controversial (for a review,see e.g.[29–31]).The states a0(980) and κ with masses below or close to 1 GeV are classified into one nonet,while those ones a0(1450) and1 430)with masses above 1 GeV belong to the other nonet.It has been stressed that these two nonets are hard to be considered as the low-lyingstates simultaneously due to the major difficulties,e.g.see [32] for detail.Therefore,two typical scenarios are suggested for the classification of these light scalar states [33]: in scenario 1(S1),a0(980) and κ are the lowest-lyingstates,while a0(1450) and(1 430)are the first excitedstates correspondingly; in scenario 2(S2),a0(980) and κ are treated as four-quark states,and then a0(1450) and(1 430)are considered as the lowest-lying two-quark states.In the present work,we shall consider the decays ofandwith the scalars in the two-quark model.Then,it is easily found that the considered decays have the same quark components as those measured ones,i.e.andin the pseudoscalar sector.Therefore,the LHCb and/or Belle-II experiments could potentially make a sound examination on the predictions about the branching ratios and/or the CP violations of the consideredanddecays in the PQCD approach.

    At the quark level,the consideredanddecays are induced by theand thetransitions,respectively.The related weak effective Hamiltonian Heffcan be written as [34],

    with the Fermi constant GF=1.166 39×10?5GeV?2,the Cabibbo–Kobayashi–Maskawa(CKM)matrix elements Vu(t)band Vu(t)Q,the light Q=d,s quark,and the Wilson coefficients Ci(μ) at the renormalization scale μ.The local fourquark operators Oi(i=1,…,10) are written as

    ? Tree operators

    ? QCD penguin operators

    ? Electroweak penguin operators

    with the color indices α,β and the notationsThe indexq′in the summation of the above operators runs through u,d,s,c,and b.Note that we will use the leading order Wilson coefficients since we work in the framework of the PQCD approach at leading order.For the renormalization group evolution of the Wilson coefficients from higher scale to lower scale,we will adopt straightforwardly the formulas as given in [9,10].

    The Feynman diagrams of thedecays at leading order in the PQCD formalism are illustrated in figure 1: figures 1(a) and (b) describe the factorizable annihilation(fa)diagrams,while figures 1(c)and(d)describe the nonfactorizable annihilation (nfa) ones.By replacing the s and d quarks in thedecays with the d and s ones correspondingly,then we can obtain the annihilation modesdirectly.As we know,several B →SS decays with S denoting the scalar mesons have been studied in the PQCD approach [35–39].Therefore,the analytic expressions for the decay amplitudes of the consideredanddecays can be found easily,for example,in the[37–39].Thedecay amplitudes have been presented in the PQCD approach [39].Then,we just need to replace theandstates in[39]with theand a0ones,as well as the related CKM matrix elements,to obtain easily the corresponding information of thedecays in the PQCD approach.Hence,for simplicity,we will not collect the aforementioned formulas in this paper.The interested readers can refer to [39] for detail.

    Figure 1.Leading order Feynman diagrams for decays in the PQCD formalism.

    where Mnfaandstand for the nonfactorizable annihilation amplitudes arising from the (V ?A)(V ?A) and (S ?P)(S+P) currents [39],respectively.Moreover,the almost exact cancellation of the factorizable annihilation amplitudes appear in the considered two decay modes due to the very small flavor symmetry breaking effects,which can be seen in the numerical calculations later.Similarly,we can easily obtain thedecay amplitude by the corresponding replacement of d ?s in theone,that is,

    Then,we can turn to the numerical calculations of the CP-averaged branching ratios and the CP-violating asymmetries of theanddecays in the PQCD approach.Some comments on the nonperturbative inputs are listed essentially as follows:

    (a) For the heavyandmesons,the wave functions and the distribution amplitudes,and the decay constants are same as those utilized in [39],but with the updated lifetimes= 1.52ps and= 1.509ps [40].It is worth mentioning that,due to its highly small effects,namely,the power-suppressed 1/mBcontributions to B decays in final states with energetic light particles[10,41],the high twist contributions from the B meson wave function in the considered pure annihilation channels have to be left for future studies associated with the precise measurements.For recent development about the B meson wave function and/or distribution amplitude,please see references,e.g.[41–46]for detail.

    (b) For the considered light scalar a0andstates,the decay constants and the Gegenbauer moments in the distribution amplitudes2It is necessary to mention that we firstly adopt the asymptotic form of the twist-3 distribution amplitudes φS and φT(T3A)in the numerical calculations here as usual [33,47].And then we will estimate the effects in this work arising from the twist-3 distribution amplitudes with inclusion of the Gegenbauer polynomials(T3G)in S2 later.It is noted that only the T3G form in S2 is available currently [48].have been derived at the normalization scale μ=1 GeV in the QCD sum rule method [33]:

    Note that the scale-dependent scalar decay constantand the vector decay constant fSare related with each other through the following relation [33],

    in which mSis the mass of the scalar meson,andmq2andmq1are the running quark masses.It is worth pointing out that for the a0states,the isospin symmetry breaking effects from the u and d quark masses are considered.Therefore,the running quark masses for the strange quark and the nonstrange light quarks can be read as ms=0.128 GeV,md=0.006 GeV, and mu=0.003 GeV, respectively,which are translated from those at the MS scale μ ≈2 GeV [40]. For the masses of the a0andstates,the values mκ=0.824 GeV,ma0(980)=0.980 GeV,=1.425 GeV,and=1.474GeV will be adopted in the numerical calculations3As inferred from the Review of Particle Physics[24],the considered scalar a0 andstates are also with finite widths. Generally speaking, the width effect could change the numerical results with different extent [49, 50]. In principle, we should consider the width effect to make relevant predictions more precise. However, it is unfortunate that the distribution amplitudes for the considered S-wave resonance states with the constrained parameters,e.g.Gegenbauer moments,are currently unavailable.Therefore,we have to leave the width effect in this work for future investigations elsewhere. As inferred from the Review of Particle Physics[24],the considered scalar a0 andstates are also with finite widths.Generally speaking,the width effect could change the numerical results with different extent [49,50].In principle,we should consider the width effect to make relevant predictions more precise.However,it is unfortunate that the distribution amplitudes for the considered S-wave resonance states with the constrained parameters,e.g.Gegenbauer moments,are currently unavailable.Therefore,we have to leave the width effect in this work for future investigations elsewhere..

    (c) For the CKM matrix elements, we also adopt the Wolfenstein parametrization at leading order, but with the updated parameters A=0.836, λ=0.22453,[40].

    Now, we present the numerical results of theanddecays in the PQCD formalism.Firstly,the PQCD predictions of the CP-averaged branching ratios can be read as follows:

    and

    where, as clearly seen from the above results, the majored errors are mainly induced by the uncertainties of the scalar decay constantsandand the combined Gegenbauer moments Bmof B1and B3in the leading twist distribution amplitudes of the scalar mesons. The other errors induced by the shape parameter ωBin themeson distribution amplitude and by the combined CKM matrix elements V are much smaller. Frankly speaking, these mentioned hadronic parameters of the scalar mesons are currently less constrained from the experiments and/or Lattice QCD calculations. Therefore, we have to adopt those available parameters calculated in the QCD sum rule method to give a rough estimation preliminarily. Of course, both the essential measurements at the experimental aspects and the Lattice QCD computation at the theoretical aspects on the abovementioned nonperturbative inputs for the scalar mesons are urgently demanded, which is expected to help better understand the related hadron dynamics and provide more precise predictions. Note that all the errors from various parameters as specified above have been added in quadrature, which can be seen from the results presented in the square brackets.

    Based on the numerical results with large theoretical uncertainties as shown in the equations (16)–(19), several remarks are in order:

    (c) In light of the large theoretical errors,a precise ratio of the related branching ratios would be more interested because,generally speaking,the theoretical errors resulted from the hadronic inputs could be cancelled to a great extent.Therefore,we define the following ratios to be measured at the relevant experiments of B meson decays,which would help to study the QCD dynamics,even the decay mechanism of these considered pure annihilation decays.

    Of course,it is found that the uncertainties in some of the above ratios are not small,for example,=in equation (22).The underlying reason is that the large uncertainties induced by the Gegenbauer moments B1and B3cannot be cancelled correspondingly,unlike the exact cancellation of the uncertainties resulted from the scalar decay constants that can be isolated from the distribution amplitudes.

    (d) Another eight more interesting ratios could be obtained and are expected to be examined at the future experiments,if we take the already measuredandπ+π?decays as referenced channels.By combing the branching fractions of the→K+K?and→π+π?decays from both of the PQCD predictions[28] and the experimental measurements [24] sides,and the decay rates of theandmodes in this work,they are read as follows,

    Table 1.The factorization decay amplitudes(in units of 10?3 GeV3)in S1 of the pure annihilation → and decays in the PQCD approach,where only the central values are quoted for clarifications.

    Table 1.The factorization decay amplitudes(in units of 10?3 GeV3)in S1 of the pure annihilation → and decays in the PQCD approach,where only the central values are quoted for clarifications.

    Modes Anfa(T3A) Afa(T3A)() ()→+?B K 800K 800 d0 0 0* * ?0.610 ?i1.974 0.0008+i0.0004() ()→+?B K 1430K 1430 d0 0 0* * 1.877 ?i2.658 0.001+i0.003()()→+?B a980a980s000 6.892+i1.325 0.00003 ?i0.002() ()→+?B a1450a1450s000 ?1.588+i10.057 ?0.006+i0.002

    and

    These large values of the above ratios with still large theoretical errors could be easily tested when the related samples are collected with good precision experimentally.

    (e) As mentioned in the above,the isospin symmetry breaking effects from the u and d quark masses have been considered in thedecays.Therefore,the factorizable annihilation decay amplitudes are not exact zero,which can be seen clearly from the numerical results as shown in the tables 1 and 2 in both scenarios S1 and S2.However,they are still tiny and could be neglected safely.It means that the contributions to the pure annihilation decays considered in this work are absolutely from the nonfactorizable annihilation decay amplitudes.It is noticed that,relative to theanddecays,the antisymmetric QCD behavior of the leading twist distribution amplitude could make the destructive interferences in the pseudoscalar sector become the constructive ones in the scalar sector to the nonfactorizable annihilation diagrams between the figure 1(c) with hard gluon radiating from light d(s) quark and the figure 1(d) with hard gluon radiating from heavy anti-b quark,which eventually result in the large CP-averaged decay rates of the considered decays,as presented in the equations (16)–(19).

    Next,we will discuss the CP-violating asymmetries of theanddecays in the PQCD approach.Similar to the CP violations discussed in[39],we will present the direct and the mixing-induced CP violations Adirand Amixfor thedecays.While,except for Adirand Amix,the third CP asymmetryAΔΓsshould be considered simultaneously for thedecays because of the nonzero ratiofor themixing,where ΔΓ is the decay width difference of themeson mass eigenstates[51,52].Then the numerical results of the CP asymmetries Adir,Amix,evenAΔΓs4The definitions of Adir,Amix,andA ΔΓs are as followsrespectively,where the CPviolating parameterwith ηf being the CPeigenvalue of the final states.in the PQCD approach can be read as follows,

    Table 2.Similar to table 1 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Table 2.Similar to table 1 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Modes Anfa(T3A) Afa(T3A) Anfa(T3G) Afa(T3G)() ()→+?B K 1430K 1430 d0 0 0* * ?1.940+i0.188 ?0.0005 ?i0.0006 ?1.617+i1.571 ?0.028+i0.762() ()→+?B a1450a1450s000 5.038 ?i6.778 ?0.002+i0.000 06 4.851 ?i6.812 0.006+i0.003

    and

    (b) For thedecays,

    and

    in which the Gegenbauer moments in the scalar meson distribution amplitudes and the parameters in the CKM matrix elements contribute to the majored errors theoretically,as clearly seen from the above equations (36)–(45).

    Some comments are in order:

    ? It is clear to see that these predicted CP violations are generally insensitive to the variation of the scalar decay constantThe underlying reason is that the decay amplitudes of the considered decays are nearly proportional to the scalar decay constant,due to the vanishing vector decay constant(see equations(7)–(14)for detail)in the leading twist distribution amplitude [33],

    ?

    where fS(μ)andandare the vector and the scalar decay constants,the Gegenbauer moments,and the Gegenbauer polynomials,respectively,and the asymptotic forms of the twist-3 distribution amplitudes of the scalar a0andmesons.While,the CP asymmetries of thedecays are more sensitive to thethan those of theones to theThe fact is that the isospin symmetry breaking effect from the u and d quark masses leads to the tiny and negligible vector decay constanti.e.equation (13),and the SU(3) flavor symmetry breaking effect from the u and s quark masses results in the small but non-negligiblei.e.equation (11).

    ? It is easy to find that,apart from the Adiranda0(1 450)?)S2with few percent,the rest CP-violating asymmetries for the considered pure annihilation decays ofandin the PQCD approach are large,which means that the contributions from the penguin diagrams are generally sizable.To see this point explicitly,we present the decay amplitudes classified as the tree diagrams and the penguin ones,respectively,in the tables 3–4,where only the central values are quoted for clarifications.Then it is expected that these predictions of the CP violations,associated with the predicted large decay rates,could be confronted with the relevant experiments at LHCb and/or Belle-II in the (near) future.Of course,the Adirandare too small to be measured easily in the near future,though the corresponding branching ratios are as large as 10?5.

    At last,we shall discuss the effects arising from the twist-3 distribution amplitudes of the scalar a0(1450) andmesons by including the Gegenbauer polynomials in S2,as mentioned in the above footnote 2.It is noted that the twist-3 distribution amplitudes with Gegenbauer polynomials of the scalar mesons in S2 have been investigated in[48],

    with the Gegenbauer moments

    at μ=1 GeV for the1430)state,and

    with the Gegenbauer moments

    at μ=1 GeV for the a0(1450)state,respectively5It is necessary to mention that the Gegenbauer moments for the twist-3 distribution amplitudes of and a0(1450) states are originally presented as [48] (1) a1=0.018–0.042,a2=?0.33 to ?0.025,b1=0.037–0.055,and b2=0–0.15 at μ=1 GeV for thestate,and (2) a2=?0.33 to ?0.18,a4=?0.11 to 0.39,b2=0–0.058,and b4=0.070–0.20 for the a0(1450) state,respectively.To give the numerical results as central values with uncertainties,we adopt the form of the Gagenbauer moments in the twist-3 distribution amplitudes as presented in the equations (49) and (52) for convenience..Then,by including the contributions from these twist-3 distribution amplitudes,the numerical results for the branching ratios and the CP-violating asymmetries in S2 could be obtained asfollows,

    Table 4.Similar to table 3 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Table 4.Similar to table 3 but in S2 for the → (1 430)+ (1 430)?and →a0 (1 450)+ a0 (1 450)?decays.

    Modes Tree diagrams(T3A) Penguin diagrams(T3A) Tree diagrams(T3G) Penguin diagrams(T3G)() ()→+?B K 1430K 1430 d0 0 0* * ()? ?+1.081 i 1.178 0.129 i 1.593 ()? +? +0.859 i 1.365 1.574 i 0.352 ()? +?0.566 i 0.658 0.850 i 0.171 ()? +? +1.079 i 1.675 1.949 i 0.415() ()→+?B a1450a1450 s000 ()? ?+0.328 i 0.048 0.229 i 0.239 ()??5.364 i 6.730 5.364 i 6.730 ()? +?0.097 i 0.188 0.192 i 0.088 ()??4.954 i 6.998 4.954 i 6.998

    in which the central value of the branching fractionbecomes slightly smaller[larger] than that obtained in the case with adopting the asymptotic form of the twist-3 distribution amplitudes correspondingly.Of course,the CP-averaged branching ratios almost remain unchanged within the still large theoretical errors.And

    where the direct CP-violating asymmetry and the mixing-induced one are changed significantly for theand→a0(1 450)+a0(1 450)?decays in S2.Note that the parameter (ab) in the above equations (55)–(59) denotes the combined Gegenbauer moment of aiand biin the twist-3 distribution amplitudes with Gegenbauer polynomials.In terms of the central value,the Adirvaries from 21.4% in the T3A form to ?73.1% in the T3G form for the former mode,while from 1.4%in the T3A form to 4.6%in the T3G form for the latter one;and the Amixchanges from ?97.5% to ?3.5% for the former channel,while from 7.2% to 0.86% for the latter one,which indicate that the strong phases in these two pure annihilation decays could be dramatically affected by the twist-3 distribution amplitudes with inclusion of the Gegenbauer polynomials.In order to show the significant changes of the mentioned strong phases,we present the decay amplitudes of these two pure annihilation modes,i.e.andin S2 explicitly by considering the twist-3 distribution amplitudes in the T3A and T3G forms respectively,as given in the tables 2 and 4.It is clearly seen that the magnitudes of the dominant contributions from the nonfactorizable annihilation diagrams vary slightly,but the strong phases in both of the factorizable and nonfactorizable annihilation diagrams change remarkably,which means that the considered T3G contributions are also important to the strong phases in the annihilation diagrams of this work.Therefore,the clear understanding of the hadron dynamics about the scalar mesons considered in this work could be very helpful to provide precise predictions theoretically,even to explore the presently unknown annihilation decay mechanism.

    In short,it is well known that the annihilation diagrams,although which are power suppressed and with currently unknown mechanism,could play important roles in the heavy flavor B and D meson decays.As one of the popular tools theoretically,the PQCD approach has the advantages in computing the annihilation contributions.Therefore,by assuming the scalar a0andbeing themesons in two different scenarios,we have investigated the CP-averaged branching ratios and the CP-violating asymmetries for the pure annihilation decays ofandin the PQCD approach,which embrace the same quark structure asandin the pseudoscalar sector.At the same time,for theand→a0(1 450)+a0(1 450)?decays,we also studied the contributions from the twist-3 distribution amplitudes in the Gegenbauer polynomial forms of the1 430)and a0(1450) in S2.Based on the numerical results within still large theoretical errors and the phenomenological analyses,the predictions in the PQCD approach showed that:

    ? The large decay rates in the order of 10?6and 10?5have been obtained in the PQCD calculations for the pure annihilationanddecays,respectively,but which suffer from large theoretical uncertainties mainly arising from the hadronic parameters of the scalar a0andmesons,such as the Gegenbauer moments,the scalar decay constants,etc.Undoubtedly,these large predictions in the PQCD approach could be examined at the LHCb and/or Belle-II experiments in the (near) future.

    ? The unknown inner structure or QCD dynamics of the scalar states demands the reliable studies from the experimental examinations,or in the nonperturbative techniques,for example,Lattice QCD.The clear understanding about the QCD dynamics of the scalars must constrain the errors of the predictions in the PQCD approach of the pure annihilation modes in this work,which would provide opportunities to shed light on the mechanism of the annihilation decays.

    Acknowledgments

    Y Chen thanks L Su for helpful discussions.This work is supported in part by the National Natural Science Foundation of China under Grant Nos.11765012 and 11 205 072,and by the Research Fund of Jiangsu Normal University(No.HB2016004).Y C is supported by the Undergraduate Research & Practice Innovation Program of Jiangsu Province (No.201810320103Z).

    猜你喜歡
    劉新
    生死關(guān)頭“最美一跳”
    黨員生活(2024年8期)2024-09-24 00:00:00
    劉新和
    基于CSPI的云南省1961—2016年六大流域季節(jié)干旱差異分析
    假酒風(fēng)波
    糾結(jié)
    “生菜屋”可持續(xù)生活實(shí)驗(yàn),北京,中國(guó)
    世界建筑(2017年3期)2017-04-05 06:25:06
    游戲取景師劉新游山玩水也能月賺2萬(wàn)
    福建人(2016年7期)2016-09-13 08:21:58
    游戲取景師:游山玩水也賺錢(qián)
    家庭百事通(2016年7期)2016-07-11 17:43:30
    繼父背上的“漫畫(huà)少女”:我這輩子就粘死你了
    劉新 京城滇菜開(kāi)拓者
    餐飲世界(2015年2期)2016-02-23 09:44:47
    欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 国产熟女xx| 一级毛片高清免费大全| 久久久久精品国产欧美久久久| 国产v大片淫在线免费观看| 精品一区二区三区视频在线 | 成人国产综合亚洲| 久久精品国产亚洲av涩爱 | 精华霜和精华液先用哪个| 成年版毛片免费区| 老熟妇乱子伦视频在线观看| 欧美精品啪啪一区二区三区| 熟妇人妻久久中文字幕3abv| 国产探花极品一区二区| 欧美绝顶高潮抽搐喷水| 免费av观看视频| 亚洲国产欧美网| 淫妇啪啪啪对白视频| 亚洲人成网站高清观看| 欧洲精品卡2卡3卡4卡5卡区| 老司机福利观看| 国产精品亚洲av一区麻豆| 桃色一区二区三区在线观看| 在线看三级毛片| 黄色片一级片一级黄色片| x7x7x7水蜜桃| 欧美色欧美亚洲另类二区| 一级黄片播放器| 亚洲精品456在线播放app | 国产精品1区2区在线观看.| 99精品在免费线老司机午夜| 丁香六月欧美| 啦啦啦韩国在线观看视频| 国产av麻豆久久久久久久| 久久久精品大字幕| 少妇的逼水好多| 国产亚洲精品av在线| 人人妻人人看人人澡| av专区在线播放| 免费一级毛片在线播放高清视频| 看免费av毛片| 看免费av毛片| 法律面前人人平等表现在哪些方面| 国产v大片淫在线免费观看| 成人18禁在线播放| 亚洲人成网站高清观看| 亚洲第一电影网av| 亚洲欧美日韩高清在线视频| 一本精品99久久精品77| 欧美最黄视频在线播放免费| 午夜日韩欧美国产| 亚洲中文日韩欧美视频| 99久久99久久久精品蜜桃| 亚洲成av人片在线播放无| 欧美一级a爱片免费观看看| 中文字幕久久专区| 怎么达到女性高潮| 人人妻人人看人人澡| 看黄色毛片网站| 欧美乱色亚洲激情| 中文资源天堂在线| 一本综合久久免费| 又黄又爽又免费观看的视频| 女同久久另类99精品国产91| 欧美日韩黄片免| 久久久久久人人人人人| 人人妻,人人澡人人爽秒播| 美女大奶头视频| avwww免费| 美女黄网站色视频| 麻豆国产97在线/欧美| 99在线人妻在线中文字幕| 久久久久久大精品| 国内毛片毛片毛片毛片毛片| 狠狠狠狠99中文字幕| 狠狠狠狠99中文字幕| 欧美成人a在线观看| 欧美乱妇无乱码| 欧美日韩福利视频一区二区| 99在线视频只有这里精品首页| 99精品久久久久人妻精品| 一级黄片播放器| 成人鲁丝片一二三区免费| 一卡2卡三卡四卡精品乱码亚洲| 国产色爽女视频免费观看| 国产在线精品亚洲第一网站| 在线播放无遮挡| 婷婷精品国产亚洲av| 白带黄色成豆腐渣| 精品福利观看| 1000部很黄的大片| 97碰自拍视频| 亚洲真实伦在线观看| 国产真人三级小视频在线观看| 国产高清视频在线观看网站| 久久久久久国产a免费观看| 欧美成人性av电影在线观看| 亚洲黑人精品在线| 一级作爱视频免费观看| 国产亚洲欧美98| 精品久久久久久成人av| 国产精品 欧美亚洲| 中文在线观看免费www的网站| 国产探花在线观看一区二区| 国产伦在线观看视频一区| 免费无遮挡裸体视频| 欧美三级亚洲精品| 国产乱人视频| 少妇人妻一区二区三区视频| 欧美在线一区亚洲| 最近最新中文字幕大全免费视频| 亚洲精品影视一区二区三区av| 午夜精品久久久久久毛片777| 在线免费观看不下载黄p国产 | 99久久久亚洲精品蜜臀av| 午夜福利18| 亚洲,欧美精品.| 99在线人妻在线中文字幕| 69av精品久久久久久| 日韩亚洲欧美综合| 色视频www国产| 欧美另类亚洲清纯唯美| 国产成人a区在线观看| 人人妻人人看人人澡| 成人高潮视频无遮挡免费网站| 日本成人三级电影网站| ponron亚洲| 亚洲成人中文字幕在线播放| 久久久久久久久久黄片| 久久久久久大精品| 成人午夜高清在线视频| 午夜福利视频1000在线观看| 欧美日韩一级在线毛片| 在线观看免费午夜福利视频| 国产精品 欧美亚洲| 小蜜桃在线观看免费完整版高清| 亚洲av二区三区四区| 免费在线观看影片大全网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品三级大全| 国模一区二区三区四区视频| 美女高潮的动态| 中文在线观看免费www的网站| 久久精品亚洲精品国产色婷小说| 婷婷亚洲欧美| 亚洲av成人不卡在线观看播放网| 国内揄拍国产精品人妻在线| 久久久成人免费电影| 俄罗斯特黄特色一大片| 桃红色精品国产亚洲av| 免费在线观看亚洲国产| 午夜福利成人在线免费观看| 99热精品在线国产| 激情在线观看视频在线高清| 悠悠久久av| 少妇人妻一区二区三区视频| 美女高潮喷水抽搐中文字幕| 亚洲av第一区精品v没综合| 一级黄片播放器| 国产av一区在线观看免费| 少妇的逼水好多| 欧美区成人在线视频| 女人高潮潮喷娇喘18禁视频| 黄色女人牲交| 色综合站精品国产| 男插女下体视频免费在线播放| 女人被狂操c到高潮| 国产精品一区二区免费欧美| 欧美+日韩+精品| 动漫黄色视频在线观看| 精品国产三级普通话版| or卡值多少钱| 老鸭窝网址在线观看| aaaaa片日本免费| www.熟女人妻精品国产| 又黄又粗又硬又大视频| 1000部很黄的大片| 色综合亚洲欧美另类图片| 日本a在线网址| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| 欧美日韩瑟瑟在线播放| 97碰自拍视频| 丰满人妻一区二区三区视频av | 成年女人毛片免费观看观看9| 日日摸夜夜添夜夜添小说| 久久国产精品影院| 午夜福利18| 国产一区二区亚洲精品在线观看| 欧美黑人巨大hd| 99久久综合精品五月天人人| 91在线观看av| 日韩欧美 国产精品| 免费av毛片视频| а√天堂www在线а√下载| 久久性视频一级片| 成人18禁在线播放| 国产黄片美女视频| 美女大奶头视频| 午夜福利免费观看在线| 久9热在线精品视频| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 日本五十路高清| 国产三级黄色录像| 男人的好看免费观看在线视频| 欧美一级毛片孕妇| 国产伦在线观看视频一区| 日本五十路高清| 亚洲无线在线观看| 欧美日韩福利视频一区二区| 中文字幕人妻熟人妻熟丝袜美 | 欧美日韩中文字幕国产精品一区二区三区| 久久亚洲真实| 久久久国产成人精品二区| 真人做人爱边吃奶动态| 老熟妇仑乱视频hdxx| 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 欧美激情久久久久久爽电影| 人人妻,人人澡人人爽秒播| 欧美性猛交黑人性爽| 午夜精品久久久久久毛片777| 18+在线观看网站| 麻豆久久精品国产亚洲av| 午夜免费观看网址| 在线观看午夜福利视频| 国产精品永久免费网站| 激情在线观看视频在线高清| 亚洲欧美日韩无卡精品| 成人特级av手机在线观看| 亚洲人成电影免费在线| 国产高清三级在线| 动漫黄色视频在线观看| 亚洲成人中文字幕在线播放| 俄罗斯特黄特色一大片| 亚洲成a人片在线一区二区| 亚洲一区二区三区不卡视频| 此物有八面人人有两片| 乱人视频在线观看| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 欧美成狂野欧美在线观看| 观看免费一级毛片| 国产精品1区2区在线观看.| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播| 又黄又爽又免费观看的视频| 一级a爱片免费观看的视频| 精品人妻偷拍中文字幕| 午夜a级毛片| 久久久久久久精品吃奶| 熟女少妇亚洲综合色aaa.| 在线十欧美十亚洲十日本专区| 国产真人三级小视频在线观看| 观看美女的网站| 首页视频小说图片口味搜索| 国产午夜精品论理片| 亚洲精品成人久久久久久| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 国产黄片美女视频| 久久精品国产清高在天天线| 高清毛片免费观看视频网站| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 亚洲狠狠婷婷综合久久图片| 两人在一起打扑克的视频| 中文资源天堂在线| 免费看a级黄色片| 欧美日韩乱码在线| 午夜福利成人在线免费观看| 国产黄片美女视频| 国产欧美日韩一区二区三| 日韩欧美精品免费久久 | 99热这里只有精品一区| 又黄又爽又免费观看的视频| 国产高清激情床上av| 午夜老司机福利剧场| 欧美大码av| 久久国产精品影院| 丰满人妻一区二区三区视频av | 最新美女视频免费是黄的| 18+在线观看网站| 国产欧美日韩精品一区二区| 少妇的逼好多水| 久久久久久九九精品二区国产| 久久久久久久久中文| 最近最新中文字幕大全免费视频| 啦啦啦免费观看视频1| 淫秽高清视频在线观看| 18美女黄网站色大片免费观看| 久久伊人香网站| 人妻夜夜爽99麻豆av| 一个人免费在线观看的高清视频| 99久久精品国产亚洲精品| 欧美+日韩+精品| 热99在线观看视频| 欧美成人一区二区免费高清观看| 亚洲在线观看片| 久久久久久人人人人人| 乱人视频在线观看| 中出人妻视频一区二区| 欧美日韩国产亚洲二区| 亚洲国产精品999在线| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区| 国产精品亚洲一级av第二区| 一二三四社区在线视频社区8| 午夜激情欧美在线| 国产伦在线观看视频一区| 午夜福利欧美成人| 午夜福利在线观看吧| xxx96com| 亚洲中文字幕一区二区三区有码在线看| 哪里可以看免费的av片| tocl精华| 成人精品一区二区免费| 91av网一区二区| 夜夜爽天天搞| 国内精品久久久久精免费| 97碰自拍视频| 成人午夜高清在线视频| 亚洲久久久久久中文字幕| 手机成人av网站| 日本精品一区二区三区蜜桃| 一进一出抽搐动态| 日本熟妇午夜| 精品国产三级普通话版| 青草久久国产| 中文资源天堂在线| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 在线观看av片永久免费下载| 国产高清有码在线观看视频| 一本精品99久久精品77| 大型黄色视频在线免费观看| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久国产成人精品二区| 岛国在线观看网站| 国产主播在线观看一区二区| 男人和女人高潮做爰伦理| 香蕉久久夜色| 国内揄拍国产精品人妻在线| 免费观看的影片在线观看| 国产激情欧美一区二区| 午夜福利免费观看在线| 成人av在线播放网站| 国产探花极品一区二区| 九九久久精品国产亚洲av麻豆| 99精品久久久久人妻精品| 亚洲va日本ⅴa欧美va伊人久久| 色综合亚洲欧美另类图片| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 精品国产美女av久久久久小说| 可以在线观看的亚洲视频| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 97超级碰碰碰精品色视频在线观看| 国产精品99久久久久久久久| 最新中文字幕久久久久| 99在线视频只有这里精品首页| 国产熟女xx| 午夜免费观看网址| 精品无人区乱码1区二区| 特级一级黄色大片| 国产精品,欧美在线| 一进一出抽搐动态| 亚洲av五月六月丁香网| 成年女人永久免费观看视频| 色av中文字幕| 不卡一级毛片| 两个人视频免费观看高清| 亚洲在线观看片| 亚洲精品成人久久久久久| 欧美乱妇无乱码| 国产精品乱码一区二三区的特点| 免费高清视频大片| 国产精品久久久久久久久免 | 国内久久婷婷六月综合欲色啪| 日本黄色视频三级网站网址| a级毛片a级免费在线| 欧美国产日韩亚洲一区| ponron亚洲| 老鸭窝网址在线观看| 少妇的逼水好多| 午夜免费观看网址| 国产成人av教育| 国产精品99久久久久久久久| 男女床上黄色一级片免费看| 久久久久性生活片| 熟女电影av网| 深爱激情五月婷婷| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 特级一级黄色大片| 五月玫瑰六月丁香| 人妻久久中文字幕网| av在线蜜桃| 99国产精品一区二区蜜桃av| 麻豆一二三区av精品| 草草在线视频免费看| 两人在一起打扑克的视频| 激情在线观看视频在线高清| 国产三级黄色录像| 亚洲第一电影网av| 日本五十路高清| 一本久久中文字幕| 免费看光身美女| 国产黄a三级三级三级人| 蜜桃亚洲精品一区二区三区| 国产免费一级a男人的天堂| 欧美激情在线99| 18+在线观看网站| 97超视频在线观看视频| 女人被狂操c到高潮| 久久精品人妻少妇| 国模一区二区三区四区视频| 国产亚洲精品av在线| 美女黄网站色视频| 欧美中文日本在线观看视频| 亚洲国产高清在线一区二区三| 我要搜黄色片| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 亚洲av熟女| 欧美日本视频| 亚洲av成人av| 内地一区二区视频在线| 免费看a级黄色片| 麻豆成人午夜福利视频| av福利片在线观看| 午夜亚洲福利在线播放| 国产精品电影一区二区三区| 91麻豆精品激情在线观看国产| 国产精品久久久久久久久免 | 国产亚洲精品一区二区www| 天堂动漫精品| 黄色丝袜av网址大全| 亚洲 国产 在线| 国产精华一区二区三区| 色老头精品视频在线观看| 欧美一区二区国产精品久久精品| 欧美中文综合在线视频| 中文字幕av成人在线电影| 一本一本综合久久| 在线观看66精品国产| 91在线精品国自产拍蜜月 | 天天一区二区日本电影三级| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 久久久久国产精品人妻aⅴ院| 叶爱在线成人免费视频播放| 日日摸夜夜添夜夜添小说| 88av欧美| 最新美女视频免费是黄的| 搡女人真爽免费视频火全软件 | 一a级毛片在线观看| 成年女人毛片免费观看观看9| 亚洲欧美日韩东京热| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 久久久久久大精品| 日韩欧美在线乱码| 国产亚洲欧美在线一区二区| 窝窝影院91人妻| 成年女人永久免费观看视频| 国产色婷婷99| 变态另类丝袜制服| 午夜视频国产福利| 淫秽高清视频在线观看| 国产亚洲精品一区二区www| 日本a在线网址| 白带黄色成豆腐渣| 最后的刺客免费高清国语| 欧美最新免费一区二区三区 | 日本精品一区二区三区蜜桃| 久久久久精品国产欧美久久久| 一区福利在线观看| 中出人妻视频一区二区| 18禁黄网站禁片免费观看直播| 女人被狂操c到高潮| 2021天堂中文幕一二区在线观| 国产69精品久久久久777片| av国产免费在线观看| 校园春色视频在线观看| 午夜福利欧美成人| 99在线人妻在线中文字幕| 男女那种视频在线观看| 国产免费av片在线观看野外av| 亚洲无线在线观看| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| 久久九九热精品免费| 国产一区二区三区视频了| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 午夜老司机福利剧场| 一级黄色大片毛片| 天天躁日日操中文字幕| 婷婷精品国产亚洲av| 18禁美女被吸乳视频| 欧美乱色亚洲激情| 亚洲av第一区精品v没综合| 内射极品少妇av片p| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 国产精品女同一区二区软件 | 亚洲18禁久久av| 最新美女视频免费是黄的| www.色视频.com| 成人18禁在线播放| www.色视频.com| 国内久久婷婷六月综合欲色啪| 男女下面进入的视频免费午夜| 色av中文字幕| 日本 av在线| 欧美中文综合在线视频| 亚洲美女视频黄频| 久久伊人香网站| 国产精品av视频在线免费观看| 亚洲人成网站在线播| 精品国产三级普通话版| 欧美国产日韩亚洲一区| 色综合亚洲欧美另类图片| 欧美一级毛片孕妇| 精品国产三级普通话版| 欧洲精品卡2卡3卡4卡5卡区| 色噜噜av男人的天堂激情| 色综合欧美亚洲国产小说| 精品久久久久久,| 99久国产av精品| 久久亚洲精品不卡| 日本在线视频免费播放| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| avwww免费| 久久伊人香网站| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 男女做爰动态图高潮gif福利片| 法律面前人人平等表现在哪些方面| 九九久久精品国产亚洲av麻豆| 精品99又大又爽又粗少妇毛片 | 欧美一级毛片孕妇| 美女大奶头视频| 精品日产1卡2卡| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 婷婷六月久久综合丁香| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 看免费av毛片| 国产精品日韩av在线免费观看| 亚洲中文日韩欧美视频| 国产一区二区三区在线臀色熟女| 一本综合久久免费| 亚洲欧美日韩卡通动漫| 国产乱人伦免费视频| 成人无遮挡网站| 国产极品精品免费视频能看的| 一级作爱视频免费观看| 波多野结衣高清无吗| 亚洲一区高清亚洲精品| 91av网一区二区| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 99精品在免费线老司机午夜| 久久精品综合一区二区三区| 国产亚洲精品一区二区www| 91在线精品国自产拍蜜月 | 狠狠狠狠99中文字幕| 少妇高潮的动态图| 国产成人影院久久av| 1000部很黄的大片| 少妇人妻精品综合一区二区 | 国产麻豆成人av免费视频| 欧美日本亚洲视频在线播放| 又爽又黄无遮挡网站| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国产欧美日韩精品亚洲av| 国产精品电影一区二区三区| 黄色视频,在线免费观看| 色老头精品视频在线观看| 一区二区三区免费毛片| 不卡一级毛片| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 老司机福利观看| 亚洲,欧美精品.| 少妇的逼水好多| 51午夜福利影视在线观看| 麻豆成人av在线观看| 成人av在线播放网站| 2021天堂中文幕一二区在线观| 亚洲人成网站在线播| 香蕉av资源在线| a级一级毛片免费在线观看| 欧美性感艳星| 国内精品一区二区在线观看| 免费搜索国产男女视频| 国产极品精品免费视频能看的| 国产中年淑女户外野战色|