• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Charged torus-like black holes as heat engines

    2021-04-28 02:27:06HanwenFengYuchenHuangWeiHongandJunTao
    Communications in Theoretical Physics 2021年4期

    Hanwen Feng,Yuchen Huang,Wei Hongand Jun Tao

    Center for Theoretical Physics,College of Physics,Sichuan University,Chengdu,610064,China

    Abstract We investigate the thermodynamical properties of charged torus-like black holes and take it as the working substance to study the heat engines.In the extended phase space,by interpreting the cosmological constant as the thermodynamic pressure,we derive the thermodynamical quantities by the first law of black hole thermodynamics and obtain the equation of state.Then,we calculate the efficiency of the heat engine in the Carnot cycle as well as the rectangular cycle,and investigate how the efficiency changes with respect to volume.In addition,to avoid a negative temperature,we emphasize that the charge of this black hole cannot be arbitrary.Last,we check the calculation accuracy of a benchmark scheme and discuss the upper bound and lower bound for charged torus-like black hole in the scheme.

    Keywords: charged torus-like black holes,heat engines,benchmark scheme

    1.Introduction

    The pioneering work of Hawking and Bekenstein [1–4] stimulates the interest in the study of black hole thermodynamics.Hawking temperature and Bekenstein–Hawking entropy provides a profound insight into the nature of quantum gravity.In the extended framework,the cosmological constant is considered as a dynamical parameter and the mass of an Anti-de Sitter(AdS)black hole can be interpreted as the enthalpy of the space [5,6].Compared with the classical thermodynamic,people have gradually established four laws of black hole thermodynamics.

    The holographic principle is developed from the Bekenstein–Hawking entropy,while the thermodynamic behaviour of black holes in AdS space reveals the strong coupling gauge theory through various proposed dualities[7].Based on this assumption,Johnson proposed a heat engine defined in the extended thermodynamical space,which takes the AdS black holes as the working substance[8].For a negative cosmological constant,the engine cycle corresponds to a process defined on the space of dual field theories.To understand the holographic heat engine,it is rather important to investigate the microscopic structure.Many different theories have been studied to explore the microscopic property of black holes [9–14].For further investigation,a concept,i.e.the number density n of the virtual black hole molecules,is introduced to study the behaviours of the microscopic thermodynamic variables[15,16].It can be regarded as the order parameter to measure the microscopic degrees of freedom and it is related to the size or radius of the black hole[17].From this point,we can take the process of a black hole doing work as the changes in n,but it remains a conception and still requires more effort to understand the microscopic structure.

    The heat engine is defined in the P–V space as a closed path.At first,we can calculate the efficiency of the holographic heat engines of black holes with vanishing specific heat at constant volume (CV=0) in analytical way.Next,Johnson investigated the efficiency of Born–Infeld black hole in the rectangular cycle [18] and then obtained a efficiency formula for heat engines in this rectangular cycle [19,20].When the engine is defined as a rectangular cycle expressed with mass and internal energy of the black hole,the calculation for black holes with CV≠0 is capable as well [21].Since various black holes can be the working substance of a heat engine,and the efficiency is a dimensionless quantity,we can compare different black holes’ efficiency and investigate their thermodynamical properties further.To avoid the case where one particular heat engine yields advantages for one specific black hole,Chakraborty and Johnson proposed the benchmarking scheme [22,23],which separates a complicated cycle into rectangular cycles and calculates the efficiency approximately with numerical method.Recently,black holes in massive gravity have been discussed as heat engines in [24–26].Then,researchers have studied the thermodynamics and heat engine efficiency of charged accelerating AdS black holes [27,28],nonlinear black holes [29,30] and the general class of accelerating,rotating and charged Plebanski–Demianski black holes[30].Moreover,Johnson have investigated the de sitter Black holes in [32].More work on heat engines can be found in [33–43].

    In this paper,we investigate the heat engine efficiency of the torus-like black hole in Carnot cycle,rectangular cycle and the benchmark cycle.The torus-like black hole is a static solution of the Einstein-Maxwell equation,whose event horizon hasS1×S1× R topology [44–48].Each surface of this black hole of the spacetime at constant radius has a toroidal topology which is different from that of the asymptotically flat spacetimes.

    This paper is organized as follows.In section 2,we investigate the thermodynamic property of a torus-like black hole and derive the expression for thermodynamic quantities.In section 3,we construct a rectangular heat engine cycle,and then take the torus-like black hole as the working substance to study its efficiency with respect to volume.Since the Carnot heat engine is theoretically with the maximum efficiency,we compare it with the rectangular engine to check.In section 4,we calculate the efficiency of benchmark cycle and investigate how the upper bound limits the charge.In the end,the conclusion is given in section 5.

    2.Thermodynamics of charged torus-like black hole

    We are interested in charged torus-like black hole,the ansatz for metric can be written as [44],

    with

    where M and Q are mass and electric charge of the black hole,Λ is the cosmological constant.The black hole mass can be obtained by f(r+)=0,where r+is the event horizon radius,

    In 4D AdS spacetime,the negative cosmological constant can be considered as thermodynamical pressure with[5],so that M can be rewritten as

    The variation of the mass takes on the form

    According to the definition of surface gravity,the Hawking temperature is only related to the black hole metric[48],

    Substituting equation (4) into (6),the temperature can be written as

    With the relation between the Bekenstein–Hawking entropy and the surface area of the event horizon,the entropy of this black hole can be expressed as

    The thermodynamic volume and electric potential at the event horizon are given by

    In the extended thermodynamics,the mass of an AdS black hole is interpreted to the enthalpy of spacetime [5].And equations (5)–(9) shows the first law of thermodynamics is satisfied,

    As the entropy and volume are both the function of black holes horizon,the heat capacity at constant volume vanishes,

    The state equation of the black hole can be derived from equations (7) and (9),

    As the critical point satisfies the condition that the first-order partial derivative with respect to volume of pressure and the second-order partial derivative are 0,we derive these two partial derivatives to find this point

    From equation(13),we can see thatis not feasible as the square term,temperature and volume are always positive.This result indicates the absence of critical point as shown in figure 1,and correspondingly,this black hole has no secondorder phase transition [49].

    For the purpose of studying the behaviour of torus-like black hole as a heat engine,we prefer writing the enthalpy M entirely in terms of P and V by substituting equation (9) into(4),and then the expression yields:

    Figure 1.The figure shows P versus V for different temperature.Here Q is fixed at 1.

    It should be noted that,when the torus-like black hole carries no electric charge,i.e.Q=0,its enthalpy M reduces to the same form as that of ideal gas,namely M=PV [22],which will be discussed later.

    3.Charged torus-like black hole as a heat engine

    Since the equation of state for the charged black hole is obtained,we could discuss further by considering this black hole as a heat engine and calculating its efficiency.In the following sections,the black hole is set in thermodynamical cycles and produces work via the PdV term.We denote the heat absorbed as QH,and the heat exhausted as QC,so that the mechanical work is W=QH?QC.The efficiency is the ratio of mechanical work W to heat absorbed QH[24],

    The Carnot cycle consists of two isothermal paths and two adiabatic paths and has the highest efficiency.Note that for the black hole engine,the entropy remains constant if the volume does not change,so the adiabatic path is equivalent to the isochoric path.Moreover,we define a rectangular cycle with two isochoric and two isobaric paths and compare its efficiency with that of Carnot cycle.We compare the diagram of the two cycles in figure 2.

    The Carnot heat engine is between two different temperatures,we define the higher temperature as THand the lower one as TL,which are connected through the isochoric paths.We can know from figure 2 that TH=T1=T2,TL=T3=T4,V1=V4and V2=V3for Carnot cycle.The heat QHand QCcan be calculated in the process of isothermal expansion and compression [24],

    Since the volume is connected through isochoric paths,the expression for heat engine efficiency in equation (15) can be written as:

    In order to investigate the relationship between efficiency and volume,one can substitute equations (3) and (9) into (6),the temperature could be rewritten as,

    Then we can obtain the efficiency of Carnot engine,

    Using the above formula to compute Carnot heat engine efficiency with the volume of this black hole is straightforward.Here we choose parameters P2=4,P4=1 and V2=4,V4=1,with different charge Q.Then we can plot the efficiency of Carnot cycle versus the black hole volume V2in figure 3.It shows the efficiency increases monotonously and flattens out with the increase of volume.Note that for a larger volume,the corresponding efficiency is higher.

    It should be noted that the temperature cannot be negative,otherwise it makes no sense in physics,so that the charge Q is not arbitrary.Considering the extremal black hole situation T=0,the maximum charge reads,

    We can set P1=P2=4,P3=P4=1,V1=V4=1,and V2=V3=4,after taking both the lower temperature and the higher one into account,the charge of black hole is restricted as ?0.797Q0.797 to make the expression physical.We can plot the efficiency changing with the varying charge in figure 4.There are two cut-off pointsQc1=0.797andQc2= ?0.797in the curve,when charge Q reaches the limitation,the black hole temperature T=0 and the heat engine efficiency η=1.The cut-off point here reveals the information of Hawking temperature and corresponds to the extremal black holes.Besides,it can be seen from the figure 4 that the efficiency of the Carnot heat engine has a minimum value,if the torus-like black hole carries no electric charge.

    As we will see,the rectangular cycle is the most natural cycle to consider for all AdS black holes,because it can be generalized to an algorithm,which allows more complex cycles to be numerically calculated.The rectangular cycle goes through isobaric and isochoric paths,although there are four states in the cycle,we can set P1=P2,P3=P4,V1=V4,V2=V3as shown in figure 2.The heat engine efficiency for the rectangle cycle can be calculated by a formula deduced in [19,20],

    where

    Figure 2.The thermodynamical cycles.

    Figure 3.The heat engine efficiency of Carnot cycle versus the black hole volume V2 for different charge Q,where we set V4=1,P2=4,and P4=1.

    Figure 4.The Carnot heat engine efficiency with varying charge Q.

    According to equation (22),we can choose parameters P1=P2=4,P4=1 and V1=V4=1,and then we plot the heat engine efficiency of rectangle cycle with respect to the volume V2with different charge Q in figure 5.It is obvious that when the charge is fixed,the efficiency curve flattens out as the volume increases and tends to a stable value.Meanwhile,the larger volume V2leads to a lower efficiency,which differs from the situation for the Carnot cycle we mentioned above.On the other hand,for the same volume,the larger Q results in higher efficiency both for Carnot cycle and rectangular cycle.

    Figure 5.The engine efficiency of rectangle cycle versus the black hole volume V2,with parameters set same as the Carnot cycle.

    4.The benchmark cycle for charged torus-like black hole

    In this section,we introduce a benchmark cycle [22],which could be parameterised as a circle.The scheme is adequately complicated as the thermodynamic variables changes on every segment of the cycle,and thus it is more general than regular cycles.This research method can be applied to compare the heat engine efficiency of different black holes.In addition,an upper bound is obtained in [21] which indicates the efficiency of this cycle is always lower than a specific value.

    Generally,the heat engine efficiency is calculated by numerical method.To simplify our calculation,we choose a circular cycle with center of which set as (Po,Vo) and radius as R.We overlay our circular cycle onto the N×N regular lattice of squares,and we require N to be even for simplicity.The side length of every square is 2L/N,which ensures those squares can cover the circle.Next we check the cases where two squares share a common isobar and it intersects the circle.Then we calculate the ΔM of the left and right endpoints of the isobar.

    Figure 6.Efficiency of the charged torus-like black hole calculated with the numerical method.Here we set the circle origin at Vo=110 and Po=20,the charge Q=20.0 and radius R=10.0.The efficiency equals to 0.587 226 when N=500.

    The heat input QHwill be the sum of ΔM in the upper semicircle and the heat output QCis given by the sum of ΔM in the lower semicircle.Thus we can calculate the efficiency with the numerical method [22]

    where,

    The result converges to the right value with a larger N,as it makes the square smaller and thus fit to the circle more perfectly.Figure 6 shows that as N increases,the efficiency approaches to an exact result.

    In a particular case where the specific heat capacity at constant volume CV=0,we can calculate the efficiency in an analytical way.Then we can check the the accuracy of the above numerical method by comparing it with an analytical method.The heat engine efficiency would be [21]

    where ΔM is the enthalpy difference of two points at the left and right ends of the circle,

    By substituting those parameters of figure 6 into equation (26),we obtain the analytical result ηa=0.589 322.Comparing with the results of numerical method when N reaches 500,ηn=0.587 226,we can conclude that the error of the numerical method is within the acceptable range and the scheme can be applied to the case where analytical method does not work.

    Figure 7.This figure plots the efficiency of two black holes with respect to Q in the benchmark cycle.

    In the benchmark scheme,an upper bound for the efficiency of black holes with CV=0 in circular cycles with the narrow cycle limit and low temperature limit is obtained[21],

    It is independent of both theory and spacetime dimension,with equality obtained for extremal black holes in the small cycle limit.

    As we mentioned earlier,when the black hole charge Q=0,its enthalpy M is the same as that of ideal gas[22],and we can get the lower limit of the efficiency of the torus-like black hole heat engine.The efficiency of ideal gas is independent of V and spacetime and only depends on the pressure at the center of the cycle and the radius of the circle,as mentioned in [18,22,23]

    We conclude the consideration of benchmarking of the black hole heat engines,and present it in figure 7.The efficiency of ideal gas model is 0.5639 at P=20.0 and R=10.0.When Q=57.7431,η reaches the extremal limit 0.8798.As equation(14)shows,the mass of torus-like black hole has the same form as the ideal gas when the black hole carries no charge,so the efficiency curve of the black hole and the ideal gas start at the exact point.On the other hand,the top horizontal line is the extremal limit,and it forbids the efficiency to exceed itself.

    5.Conclusion

    In this paper,we have studied the thermodynamical behaviour of charged torus-like black hole in the extended phase space.By considering the cosmological constant in AdS space as the thermodynamical pressure and the mass as the enthalpy in the first law of thermodynamics,we can obtain all the thermodynamical quantities and the relationship between them.We derive the equation of state with thermodynamical quantities and find there does not exist a critical point in the phase diagram which represents the absence of phase transition.

    Then,we considered charged torus-like black hole as a working substance and studied the holographic heat engine by Carnot cycle and rectangular cycle.The Carnot cycle consists of two isothermal paths and two adiabatic paths,it is always theoretically highest according to the second law of thermodynamics,and thus it provides an upper bound for us to check the calculation.The rectangular cycle is made up of two isochoric paths and two isobaric paths.It works for all black holes,not requiring the specific heat capacity CV=0,and it could be an operation unit in other cycles and enable us to calculate the efficiency of the benchmark cycle with numerical methods.From figures 5 and 3,we conclude that the rectangular efficiency decreases monotonously with respect to the difference between the volume at initial and final states,while the Carnot efficiency does the opposite.

    The heat engine cycle in the benchmark scheme is more complicated,and we differentiate the curve into line segments and calculate the efficiency approximately.We compare the numerical result with the analytical result and check the calculation accuracy of numerical methods,then we find the error is acceptable.Due to the fact that the torus-like black hole has the same enthalpy with the ideal gas when Q=0 and that Q increases the efficiency,the efficiency of ideal gas is a lower bound for the torus-like black hole.On the other hand,the efficiency of a certain class of asymptotically AdS black holes with CVin the circular cannot exceed a upper bound as well.

    Acknowledgments

    We are grateful to thank Peng Wang and Feiyu Yao for useful discussions.This work is supported by NSFC (Grant No.11947408).

    ORCID iDs

    亚洲专区中文字幕在线| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 手机成人av网站| 国产男靠女视频免费网站| 深夜精品福利| 亚洲精品影视一区二区三区av| 美女高潮的动态| 成人精品一区二区免费| 日韩免费av在线播放| 丰满人妻一区二区三区视频av | 欧美色视频一区免费| 一卡2卡三卡四卡精品乱码亚洲| 久久久久免费精品人妻一区二区| 成人av一区二区三区在线看| 国产av不卡久久| 高清毛片免费观看视频网站| 欧美国产日韩亚洲一区| 手机成人av网站| www日本黄色视频网| 国产精品精品国产色婷婷| 国产淫片久久久久久久久 | 午夜免费男女啪啪视频观看 | 美女高潮的动态| 在线国产一区二区在线| 男女午夜视频在线观看| 日本免费a在线| 国产中年淑女户外野战色| 免费观看精品视频网站| 国内精品美女久久久久久| 色吧在线观看| 嫁个100分男人电影在线观看| 日本三级黄在线观看| 国内精品一区二区在线观看| 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 国产 一区 欧美 日韩| 变态另类成人亚洲欧美熟女| 宅男免费午夜| 日韩亚洲欧美综合| 成人精品一区二区免费| 国产真实伦视频高清在线观看 | 国产成人福利小说| 久久性视频一级片| 国产在线精品亚洲第一网站| 熟女电影av网| АⅤ资源中文在线天堂| 亚洲欧美日韩高清专用| 免费观看精品视频网站| 午夜免费成人在线视频| 超碰av人人做人人爽久久 | 每晚都被弄得嗷嗷叫到高潮| 国产黄a三级三级三级人| 毛片女人毛片| 一区二区三区国产精品乱码| 色在线成人网| 天天躁日日操中文字幕| 国产成人av激情在线播放| 国产一级毛片七仙女欲春2| 国产精品,欧美在线| 亚洲精品久久国产高清桃花| 欧美一级a爱片免费观看看| 欧美日韩综合久久久久久 | 夜夜看夜夜爽夜夜摸| 午夜免费观看网址| 精品熟女少妇八av免费久了| 中文资源天堂在线| eeuss影院久久| 69av精品久久久久久| 精品日产1卡2卡| 色老头精品视频在线观看| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 一级黄色大片毛片| 哪里可以看免费的av片| 精品无人区乱码1区二区| 中文字幕av在线有码专区| 国产三级中文精品| 久久久久久久午夜电影| 国产单亲对白刺激| 在线a可以看的网站| 高清日韩中文字幕在线| 日韩有码中文字幕| 特级一级黄色大片| 国产蜜桃级精品一区二区三区| 一边摸一边抽搐一进一小说| 看免费av毛片| 婷婷精品国产亚洲av在线| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲av涩爱 | 精品久久久久久久末码| 最新美女视频免费是黄的| 欧美日韩黄片免| 天堂√8在线中文| 成人av在线播放网站| 99热精品在线国产| 午夜福利在线在线| 91久久精品国产一区二区成人 | 一级a爱片免费观看的视频| 欧美成人性av电影在线观看| 亚洲天堂国产精品一区在线| 久久精品91蜜桃| 亚洲精品美女久久久久99蜜臀| 成人性生交大片免费视频hd| 国产亚洲精品一区二区www| 亚洲国产精品999在线| 免费搜索国产男女视频| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片 | 欧美激情久久久久久爽电影| 色综合亚洲欧美另类图片| 久久九九热精品免费| 国产av麻豆久久久久久久| 嫩草影视91久久| 偷拍熟女少妇极品色| 欧美一级毛片孕妇| 全区人妻精品视频| 俄罗斯特黄特色一大片| 国产av一区在线观看免费| 亚洲电影在线观看av| 国产精品三级大全| 美女高潮的动态| 99久久九九国产精品国产免费| 男女做爰动态图高潮gif福利片| 99riav亚洲国产免费| 国产成人av激情在线播放| 大型黄色视频在线免费观看| 超碰av人人做人人爽久久 | 最好的美女福利视频网| 69av精品久久久久久| 最新美女视频免费是黄的| 12—13女人毛片做爰片一| 90打野战视频偷拍视频| 中出人妻视频一区二区| 999久久久精品免费观看国产| 色综合站精品国产| 亚洲av不卡在线观看| 在线观看免费视频日本深夜| АⅤ资源中文在线天堂| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 一二三四社区在线视频社区8| 久久久久性生活片| 日韩中文字幕欧美一区二区| 精品久久久久久久毛片微露脸| 国产精品亚洲av一区麻豆| 国产精品乱码一区二三区的特点| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 又黄又爽又免费观看的视频| 国产成人福利小说| 久久久国产成人精品二区| 黄色成人免费大全| 变态另类丝袜制服| 亚洲男人的天堂狠狠| 不卡一级毛片| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 不卡一级毛片| 18禁在线播放成人免费| 在线播放国产精品三级| 精品人妻1区二区| 91久久精品国产一区二区成人 | 99久久精品热视频| 精品无人区乱码1区二区| 成人国产综合亚洲| 九九热线精品视视频播放| 老司机福利观看| 亚洲电影在线观看av| 中文字幕熟女人妻在线| 蜜桃久久精品国产亚洲av| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 欧美一级毛片孕妇| 成人国产一区最新在线观看| 午夜老司机福利剧场| 成人一区二区视频在线观看| 99久久精品热视频| 午夜激情福利司机影院| 精品国产亚洲在线| 91在线精品国自产拍蜜月 | 乱人视频在线观看| 日本一本二区三区精品| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 18+在线观看网站| 国产精品香港三级国产av潘金莲| 少妇人妻精品综合一区二区 | 亚洲一区二区三区色噜噜| 偷拍熟女少妇极品色| 日韩欧美国产在线观看| 日韩精品青青久久久久久| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 成人三级黄色视频| 亚洲五月婷婷丁香| 亚洲最大成人中文| 精品久久久久久久毛片微露脸| 国产精品 欧美亚洲| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| xxx96com| 搡女人真爽免费视频火全软件 | 亚洲 欧美 日韩 在线 免费| 99国产精品一区二区蜜桃av| 国产探花在线观看一区二区| 精品国产美女av久久久久小说| 可以在线观看的亚洲视频| 婷婷亚洲欧美| 少妇的逼好多水| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 51午夜福利影视在线观看| 天堂网av新在线| 18禁黄网站禁片免费观看直播| 欧美乱妇无乱码| 国产成+人综合+亚洲专区| 国产欧美日韩一区二区三| 无人区码免费观看不卡| 国产黄片美女视频| 偷拍熟女少妇极品色| 黑人欧美特级aaaaaa片| 精品久久久久久,| 日本一二三区视频观看| 少妇高潮的动态图| 亚洲av一区综合| 国内精品久久久久精免费| 亚洲国产精品999在线| 精品一区二区三区视频在线 | 午夜福利视频1000在线观看| 日韩精品中文字幕看吧| 久久久精品欧美日韩精品| 精品人妻一区二区三区麻豆 | 成人av在线播放网站| 日韩精品中文字幕看吧| 免费看美女性在线毛片视频| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 色视频www国产| 亚洲中文字幕一区二区三区有码在线看| 18禁美女被吸乳视频| 午夜精品一区二区三区免费看| 中文字幕人成人乱码亚洲影| 亚洲一区高清亚洲精品| 人妻夜夜爽99麻豆av| 最近最新中文字幕大全免费视频| 免费av观看视频| 亚洲,欧美精品.| 91麻豆av在线| 亚洲自拍偷在线| 久久久国产成人免费| 婷婷精品国产亚洲av| 噜噜噜噜噜久久久久久91| 天天躁日日操中文字幕| 搡老熟女国产l中国老女人| 国产精品,欧美在线| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 国产精品 国内视频| 亚洲午夜理论影院| 国产一区二区在线av高清观看| 国产精品 欧美亚洲| 男女午夜视频在线观看| 别揉我奶头~嗯~啊~动态视频| 少妇高潮的动态图| 天天添夜夜摸| 看片在线看免费视频| 免费电影在线观看免费观看| 成人18禁在线播放| 亚洲片人在线观看| 老司机午夜福利在线观看视频| 欧美一区二区精品小视频在线| 亚洲精华国产精华精| 国产精品99久久久久久久久| 综合色av麻豆| 国产av麻豆久久久久久久| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 久久久久久人人人人人| 久久久国产成人免费| 一级黄色大片毛片| 亚洲精品影视一区二区三区av| 久久精品亚洲精品国产色婷小说| 一个人免费在线观看的高清视频| 可以在线观看毛片的网站| 久久婷婷人人爽人人干人人爱| 国产单亲对白刺激| 精品久久久久久,| 黄色片一级片一级黄色片| 久久精品91蜜桃| 天天躁日日操中文字幕| 免费无遮挡裸体视频| 欧美性感艳星| 亚洲午夜理论影院| 国产一区二区在线av高清观看| 最近最新中文字幕大全电影3| 国产一区在线观看成人免费| 99久久综合精品五月天人人| 亚洲精品日韩av片在线观看 | 999久久久精品免费观看国产| 天天躁日日操中文字幕| 国产精品乱码一区二三区的特点| 精品免费久久久久久久清纯| 国产探花极品一区二区| 51午夜福利影视在线观看| 亚洲午夜理论影院| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 观看免费一级毛片| 97超视频在线观看视频| 国产高清三级在线| 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 久久精品国产清高在天天线| 精品人妻一区二区三区麻豆 | 少妇的丰满在线观看| 男人舔奶头视频| 1024手机看黄色片| 12—13女人毛片做爰片一| 男插女下体视频免费在线播放| 波野结衣二区三区在线 | 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区| 免费人成在线观看视频色| 亚洲av免费在线观看| 精品久久久久久久久久久久久| 日韩 欧美 亚洲 中文字幕| 性欧美人与动物交配| 女人高潮潮喷娇喘18禁视频| 成年免费大片在线观看| 日韩成人在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 午夜免费成人在线视频| 日本黄色片子视频| 村上凉子中文字幕在线| 亚洲一区高清亚洲精品| 国产午夜精品久久久久久一区二区三区 | 久久人妻av系列| 热99在线观看视频| 日本三级黄在线观看| 色噜噜av男人的天堂激情| 成年女人毛片免费观看观看9| 99国产极品粉嫩在线观看| 久99久视频精品免费| 又紧又爽又黄一区二区| 国产成人影院久久av| 麻豆成人av在线观看| 天天躁日日操中文字幕| 欧美最新免费一区二区三区 | 国产美女午夜福利| 久久久久亚洲av毛片大全| 可以在线观看的亚洲视频| 成人av一区二区三区在线看| bbb黄色大片| 午夜福利高清视频| 热99re8久久精品国产| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| 中文字幕av成人在线电影| 久久久国产成人免费| 国产免费一级a男人的天堂| 男人的好看免费观看在线视频| 欧美最新免费一区二区三区 | 无人区码免费观看不卡| 波多野结衣高清无吗| 一进一出抽搐动态| av天堂在线播放| x7x7x7水蜜桃| 欧美日本亚洲视频在线播放| 99久国产av精品| 亚洲国产精品999在线| 狂野欧美激情性xxxx| 一级a爱片免费观看的视频| 老司机午夜福利在线观看视频| 91av网一区二区| 色综合欧美亚洲国产小说| 国产一区在线观看成人免费| 亚洲国产精品久久男人天堂| 国产精品免费一区二区三区在线| 怎么达到女性高潮| 国产一区二区激情短视频| 国产精品电影一区二区三区| 亚洲av电影在线进入| 韩国av一区二区三区四区| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 色老头精品视频在线观看| 一个人观看的视频www高清免费观看| 国产精品99久久久久久久久| 欧美在线一区亚洲| 在线天堂最新版资源| 亚洲五月婷婷丁香| 国内少妇人妻偷人精品xxx网站| 狂野欧美白嫩少妇大欣赏| 久久久久亚洲av毛片大全| 桃色一区二区三区在线观看| eeuss影院久久| 亚洲精品乱码久久久v下载方式 | 亚洲国产日韩欧美精品在线观看 | 黄色成人免费大全| 成年人黄色毛片网站| 国内精品美女久久久久久| 亚洲人成电影免费在线| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 国产高清激情床上av| 一本精品99久久精品77| 国产黄a三级三级三级人| 少妇的逼水好多| 九九热线精品视视频播放| 在线观看舔阴道视频| 一夜夜www| 精品福利观看| 桃红色精品国产亚洲av| 日本免费一区二区三区高清不卡| 成人国产一区最新在线观看| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 亚洲av熟女| 欧美激情久久久久久爽电影| 99久久无色码亚洲精品果冻| 老司机在亚洲福利影院| 亚洲aⅴ乱码一区二区在线播放| 成年版毛片免费区| 亚洲电影在线观看av| 国产亚洲精品久久久com| 精品国产亚洲在线| 青草久久国产| 身体一侧抽搐| 一进一出抽搐动态| 日本五十路高清| 亚洲成a人片在线一区二区| 成年女人看的毛片在线观看| 欧美乱妇无乱码| 不卡一级毛片| 国产美女午夜福利| 婷婷精品国产亚洲av在线| 成人性生交大片免费视频hd| 嫩草影视91久久| 一级黄片播放器| 在线观看av片永久免费下载| 三级毛片av免费| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 亚洲自拍偷在线| 亚洲第一欧美日韩一区二区三区| 国产一区在线观看成人免费| 午夜福利成人在线免费观看| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美 | 国产高清videossex| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| 免费在线观看日本一区| 露出奶头的视频| 中文字幕av在线有码专区| 听说在线观看完整版免费高清| 国产伦在线观看视频一区| 少妇裸体淫交视频免费看高清| 国产免费男女视频| 国产高清有码在线观看视频| 亚洲专区国产一区二区| 俺也久久电影网| 999久久久精品免费观看国产| 国产亚洲精品久久久com| 12—13女人毛片做爰片一| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 亚洲av不卡在线观看| 高清日韩中文字幕在线| 欧美最黄视频在线播放免费| 国内毛片毛片毛片毛片毛片| 激情在线观看视频在线高清| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 国产一区二区亚洲精品在线观看| 亚洲av免费在线观看| 1024手机看黄色片| 激情在线观看视频在线高清| 亚洲国产欧洲综合997久久,| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 99久久久亚洲精品蜜臀av| 一本久久中文字幕| 激情在线观看视频在线高清| 香蕉丝袜av| 99热这里只有是精品50| 欧美bdsm另类| 女人被狂操c到高潮| 在线观看av片永久免费下载| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| 国产高清视频在线观看网站| 欧美中文综合在线视频| 中文字幕人成人乱码亚洲影| 国产v大片淫在线免费观看| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 美女高潮的动态| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 国产精品99久久99久久久不卡| 丝袜美腿在线中文| 久久久久免费精品人妻一区二区| 久久99热这里只有精品18| 久久草成人影院| av天堂在线播放| 给我免费播放毛片高清在线观看| 网址你懂的国产日韩在线| 51午夜福利影视在线观看| 国产午夜精品论理片| 日韩欧美免费精品| 日韩国内少妇激情av| 亚洲av熟女| 国产乱人伦免费视频| 一区二区三区免费毛片| av天堂中文字幕网| 黄片大片在线免费观看| 国产极品精品免费视频能看的| 99在线视频只有这里精品首页| 欧美一区二区精品小视频在线| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 美女高潮的动态| www日本黄色视频网| 内地一区二区视频在线| 久久99热这里只有精品18| 久久国产精品人妻蜜桃| 99热只有精品国产| 淫妇啪啪啪对白视频| 国产av不卡久久| 中文字幕高清在线视频| 中亚洲国语对白在线视频| 国产乱人视频| 高清在线国产一区| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费| 免费看日本二区| 久久精品影院6| 少妇高潮的动态图| 热99re8久久精品国产| 一进一出好大好爽视频| 国产午夜精品论理片| 成年人黄色毛片网站| 国产一区在线观看成人免费| 国产精品野战在线观看| 国产精品久久视频播放| 午夜免费成人在线视频| 男女那种视频在线观看| 天美传媒精品一区二区| 麻豆久久精品国产亚洲av| 亚洲avbb在线观看| 露出奶头的视频| 夜夜看夜夜爽夜夜摸| 久久草成人影院| 国产一区二区在线av高清观看| 亚洲av二区三区四区| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看| 禁无遮挡网站| 美女高潮的动态| 丁香欧美五月| 国产v大片淫在线免费观看| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站| 十八禁网站免费在线| 久久久久久久久中文| 69人妻影院| 国产亚洲精品久久久久久毛片| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| 国产中年淑女户外野战色| 午夜福利在线在线| 成年女人毛片免费观看观看9| av欧美777| 99热这里只有是精品50| 国产精品三级大全| 熟妇人妻久久中文字幕3abv| 嫩草影院入口| 国产久久久一区二区三区| 深夜精品福利| 欧美高清成人免费视频www| 亚洲av第一区精品v没综合| 亚洲色图av天堂| 日韩亚洲欧美综合| 国产野战对白在线观看| 日本三级黄在线观看| 天堂√8在线中文| 91九色精品人成在线观看| 免费搜索国产男女视频| 日本黄大片高清| e午夜精品久久久久久久| 在线观看一区二区三区| 国产在线精品亚洲第一网站| 久久久久久大精品| 激情在线观看视频在线高清| 久久久久九九精品影院| 波多野结衣高清无吗| 淫妇啪啪啪对白视频| 老鸭窝网址在线观看| 精品久久久久久,|