• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A path integral approach to electronic friction of a nanometer-sized tip scanning a metal surface

    2021-04-28 02:27:10YangWangandYuJia
    Communications in Theoretical Physics 2021年4期

    Yang Wangand Yu Jia

    1 School of Physics,Zhengzhou University,Zhengzhou 450001,China

    2 International Laboratory for Quantum Functional Materials of Henan,and School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    3Key Laboratory for Special Functional Materials of Ministry of Education,and School of Materials and Engineering,Henan University,Kaifeng,475001,China

    Abstract In this work,we study the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface via a path integral approach.The metal,with internal degrees of freedom(c,c?)and a tip with an internal degree of freedom (d,d?) couple with one another by means of an exchanged potential,V.Having integrated out all internal degrees of freedom,we obtain the in-out amplitude.Moreover,we calculate the imaginary part of the in-out amplitude and the frictional force.We find the imaginary part of the in-out amplitude to be positive,and correlated to the sliding velocity in most cases.The frictional force is proportional to the sliding velocity for the case where v <0.01.However,for cases where v >0.01,the frictional force demonstrates nonlinear dependence on sliding velocity.

    Keywords: path integral,electronic friction,quantum field

    1.Introduction

    Electron friction has been the subject of intensive study in recent years.Due to surface force apparatus techniques[1]such as scanning probe microscopy [2],frictional drag experiments involving 2D electron systems have been performed successfully.Electronic friction is the naive damping force that nuclei experience when they move near to or within a manifold of metallic electrons[3].Generally speaking,the mass of a nucleus is much bigger than that of an electron; this results in nuclear motion being slow in comparison to electronic dynamics.As such,the Born–Oppenheimer approximation can be introduced.For instance,nuclear dynamics can be considered in terms of classical(or semi-classical)motion,whereas electron dynamics is a quantum feature.As a result,a nuclear equation of motion(EOM) can be expressed via the Langevin equation [4]:

    where t denotes time,f is the frictional force acting on the nucleus,F is the mean force,and h denotes the random force.There are various of approaches to obtaining this EOM.The main idea is to focus on the time evolution of the density operator for the electrons,and to trace over the electrons’degrees of freedom[5].The electronic friction can be derived from the EOM.The more precise approach is via the path integral and influence functional.In this approach,the random force presented as a background field and can be considered as a mean field when focusing on the classical dynamics.Via this method,the electronic friction is calculated based on the short time dynamics of the nucleus [6].Taking into account the total Hamiltonian of the system,it always contains the following terms:

    The first term refers to the kinetic energy of nucleus,the second term to the kinetic energy of electrons,the third term to the interacting energy between the nucleus and the electrons,and the fourth term to the interacting energy between electrons.The in-out amplitude of the system can be written as

    T denotes a sufficiently large time interval.Treis the partial trace over the electrons’ degrees of freedom.Thus the effective Hamiltonian reads

    Via a Hamiltonian canonical equation,we find the EOM,which is similar to equation (1).In [4],the frictional force is proportional to the relative velocityhowever,in the general case,the fluctuation effect makes all interactions mixed.As such,the frictional force may be not proportional to v[7].For constant velocity,the left hand side(LHS)of(1)is zero;this implies that the value of frictional force equals the value of other forces.In this case we can calculate the frictional force via the dissipation process.Considering that the dissipated energy excites the electrons’ degrees of freedom,the dissipated energy can then be written in the following form [8]:

    where ω denotes single particle energy.From this viewpoint we can calculate the dissipated energy involved in all possible quantum processes (i.e.,a one-loop diagram).As a result of energy balance,the frictional force is expressed as

    A remarkable example of electron friction is the frictional force induced by tunneling electrons between a particle in the tip and a metal surface.Yoichi Shigeno studied a similar model,whereby a nano-scale molecule,having a single energy level,links with an external electrode,and vibration occurs at the linkage bond [9].This model clarified the rapidity of molecule vibration damping due to the presence of electronic current at nano-contact interfaces,from a microscopic viewpoint.Feng Chen provided a more general argument for current-induced friction using near-equilibrium statistical theory [10].Federico derived general expressions for current-induced forces,using a friction coefficient via real-time diagrammatic approach [11].Niels Bode employed the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium,finding that in out-ofequilibrium situations,current-induced forces can destabilize mechanical vibrations,resulting in limit cycle dynamics[12].All of the above works are related to dissipation effects,and their corresponding theories can be regarded as forms of linear response theory.These works focus on the frictional coefficient,owing to the linear dependence of velocity.In this paper,we consider a model consisting of a 2D metal substrate and a scanning tunneling microscope(STM)tip.The tip slides relative to the 2D metal at a constant velocity.We employ the functional approach to derive the expression of the imaginary part of the inout amplitude for the model,which is related to the dissipation effect.In addition,we obtain the expression of the frictional force and the function graph between frictional force and relative velocity.

    2.Model Hamiltonian

    The model considered in this paper consists of a 2D metal and a scanning tunneling microscope(STM)tip.The tip moves parallel to the metal surface at a constant velocity,v,with no contact between the two.We select the rest frame of the substrate to be

    where x0is time coordinate,and x1and x2are the two-dimensional Cartesian coordinates of the metal surface

    The schematic diagram of the system is shown in figure 1.We label the corresponding Fourier momentum coordinates via

    At any time x0,the coordinate of the tip reads

    The Hamiltonian of the system reads

    Here,the first and second terms are the energies of electrons in the tip;ε is a tip-site energy,while J denotes the repulsion energy between electrons.The third term is the tight-binding Hamiltonian of conducting electrons in metal,and the angle bracket indicates that the summation runs over the nearest neighbor lattices;Tijis the hopping energy in-between.The fourth term is the so-called Anderson s-d model,representing the contribution from the interaction between the metal electrons and the tip electrons[13],and the delta function indicates that the s-d interaction only exists at the tip location.Here,the energy U,corresponding to the so-called surface potential experienced by the metal electrons,is taken into account.This energy causes the on-site energy of the metal electrons to change,via Fourier transformation:

    where the Hamiltonian of the system reads

    Figure 1.The model: a nanometer-sized tip scanning a metal surface.

    Without loss of generality we choose the relative velocity v along the x1axis to be

    and introduce the Galilean boost matrix along the x1axis,

    where its corresponding matrix is

    This leads to the coordinate transformation

    such that the spatial coordinates of the tip become

    Therefore,the inner products of the space vector on the exponential in the Hamiltonian are

    The Hamiltonian becomes

    3.The effective action

    By introducing a Legendre transformation,the action of the system can be written as

    There is a quartic term in this action,via the following transformation [14]:

    The quartic term can be written as

    Therefore the action reads

    We introduce the mean field approximation by means of a Hubbard–Stratonovich transformation [15]:

    The in-out amplitude can be written as a functional integral.Here,we use the natural unit

    and the new action reads

    The mean field approximation suggests that the two auxiliary fields are equal to their mean values; thus the following selfconsistent equations hold [15]:

    Here,the electron single occupancy condition is taken into account,such that

    Using (26)–(29)we obtain

    We then obtain the effective action under the mean field approximation as

    4.The in-out amplitude

    In the case where v=0,the model exhibits the corresponding socalled in ground state [16],so that there is no excitation of internal degrees of freedom.If we add an external force on the tip to make it slide,the internal degrees of freedom in the tip and the metal around the slip line are temporally excited; thus the total energy rises.Subsequently,the system transfers to the so-called out ground state[16]and the total energy therefore decreases.As the result of these two competing effects,the system exhibits a non-equilibrium steady state,dependent on the sliding velocity,v.Here,we refer to the transition amplitude between in ground state and out ground state as the in-out amplitude.The in-out amplitude equation (3) can be written as a functional integral

    Here,Γ is the amplitude contributed by the one-particle irreducible Feynman diagram[17].If the system has no dissipation,Z must can be normalized.Thus Γ must have a real value.If the system is a dissipative system,Z must not be normalized,and therefore Γ must contain an imaginary component [17].Having integrated out the degrees of freedom c and d,the connected inout amplitude is

    where the functions are

    Dropping a factor which does not depend on relative velocity v,we obtain

    If we assume that the coupling constants U and V are small enough,the last term can be perturbatively expanded,and up to the second order of UV2,the in-out amplitude then becomes

    Figure 2.Galilean boost of the in-out amplitude.

    Via Fourier transformation,the in-out amplitude can be written in frequency space.By means of straightforward calculation,the leading order terms are as follows:

    and the second order terms are

    These terms are known as the symmetric terms.In addition,

    We call this term the cross term.T is the total time.Here,we note that the Galilean boost transforms the in-out amplitude;the corresponding Feynman diagram is shown in figure 2.

    5.Imaginary part of the in-out amplitude

    The imaginary part of the in-out amplitude represents the excitation of the internal degree of freedom on the metal and the tip,and this excitation leads to dissipation.In this section,we obtain the expression of the imaginary part of the in-out amplitude,and study the relationship between the imaginary part of the in-out amplitude and the sliding velocity.In order to perform the integral over k0,we choose a closed contour formed by the real axes,and a half circle with very large radius on the bottom half complex plane.For the first order terms,using Cauchy’s theorem,we find that these terms vanish.For the second order terms,Cauchy’s theorem indicates that the symmetric terms also vanish.As such,the only nontrivial contribution to the in-out amplitude is the cross term.We rewrite this as

    where the integrand

    has four poles on the bottom half plane:

    We perform the Cauchy integral along the closed contour.Since perturbative expansion can also lead to an imaginary part which independent of the tip’s velocity,we focus only on the tip velocity-dependent imaginary part.Therefore we only select poles 2,3,and 4.The corresponding residues are

    Taking into account the continuous limitation,the summation over momentum k can be replaced by the integral.Thus the inout amplitude becomes

    where Ω is the total area of the substrate.We can set Rl=0 without loss of generality.The in-out amplitude reads

    Taking into account all of the above,and using the identity

    the imaginary part of the in-out amplitude can be calculated as follows:

    The numerical results are shown in figures 3 and 4.It can be seen that the imaginary part of the in-out amplitude and the sliding velocity are positively correlated for different J in figure 3.J=0.3 is a special case,as shown in equation (57).When J=0.3,the second and the last terms of equation(57)give two very large contributions ofwhere N is a very large constant.Moreover,when v →0,this result is divergent.This implies that there must be extra dissipation caused by some new degrees of freedom.Here,J=0.3 means J=ε.Actually,this implies the formation of a local magnetic moment relating to the electrons on the tip.The new degree of freedom is therefore the local spin on the tip.Generally speaking,this large term with respect to the imaginary part of the in-out amplitude does not contribute to frictional force.We will expand on this point in the next section.

    Figure 3.The imaginary part of the in-out amplitude as a function of the relative velocity,v,for the typical caseε=0.3,J=0.1,0.2,0.4,0.5,=0.3,in units of 4πUV2ΩT.

    6.Dissipation and frictional force

    The transition probability is

    Therefore,the in-out probability contributed only by the connected diagrams is

    On the other hand,dissipation arises when the in ground state of the system becomes unstable against the production of onshell c-electrons and on-shell d-electrons [18].As such,the transition probability can be written as

    f(k0)is the probability amplitude of creating an electron with energy and momentum k per unit time and area.The dissipation energy during time T is

    The dissipative power per unit area is

    The dumped power is provided by an external source,which keeps the tip moving at a constant velocity,against the frictional force.Thus the energy balance is

    and the expression of frictional force is

    The numerical result is shown in figure 5.The frictional force is proportional to the sliding velocity when v <0.01 for different J.In contrast,for the case where v >0.01,the frictional force exhibited nonlinear dependence on sliding velocity.This phenomenon may be justified as follows: let us consider the momentum and energy balance in a time interval ΔT,assuming that in the first period of time both the frictional force and the dissipated energy are driven by the excitation of c-electrons.The change in the c-electrons’momentum reads as

    the change of the on-shell c-electrons energy reads

    the condition of c-electrons being excited reads

    and therefore

    when v <0.01,ΔP1<0.033;as such,only c-electrons with a momentum of less than 0.033 are excited.When v >0.01,celectrons with a momentum greater than 0.033 are excited.This leads to vΔP1>ε.Therefore,d-electrons on the tip are excited,and are interacting with c-electrons.This leads to a sharp increase in dissipated power.The dependence of frictional force on velocity will change.Moreover,J=0.3 is still a special case.In equation(63),J=0.3 means that the second and the last terms will vanish.This implies that the large term,of the imaginary part of the in-out amplitude does not contribute to frictional force,unless we consider the new degrees of freedom caused by the formation of a local magnetic moment on the tip.

    7.Conclusions and outlooks

    In this paper,we have studied the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface,via a path integral approach.The interaction between the 2+1d spinor field in the 2D metal and the 0+1 spinor field in the tip has been taken into account via the coupling constant V.We have seen that the relative motion may generate an imaginary component in the in-out amplitude.Dissipation arises here due to the in ground state of the system being unstable due to the production of on-shell c-electrons and onshell d-electrons.These internal degrees of freedom in the tip and the metal around the slip line are temporally excited,and thus the total energy rises.Subsequently,the system transfer to the out ground state,and thus the total energy decreases.As a result of these two competing effects,the system exhibits a non-equilibrium steady state,which depends on the sliding velocity,v.We also compute the frictional force.

    The numerical results of the in-out amplitude show that the imaginary part of the in-out amplitude and the sliding velocity are related in quadratic function.In addition,the frictional force is proportional to the sliding velocity for the case v <0.01.In contrast,for the case where v >0.01,the frictional force demonstrates nonlinear dependence with respect to sliding velocity; we have provided a classical explanation for this phenomenon.

    Figure 5.Frictional force as a function of relative velocity,v,for the typical case ε= 0.3,J= 0.1,0.2,0.3,0.4,0.5=0.3,in units of 4πUV2.

    In [18],the dissipation mechanism was attributed to the production of on-shell fermion pairs induced by some timedependent external source.Via relative motion,the vacuum state of the electromagnetic field plays the role of a time-dependent external source.In our paper,however,there is no vacuum electromagnetic field; instead,there are two coupling constants,U and V.Equation (23) shows that the relative motion causes U and V to acquire a time-dependent phase factor,eik1vx0,for every momentum k.In this instance,the relative motion causes U and V to become two timedependent external sources.Therefore the system becomes an open system,and the internal degrees of freedom are excited by the time-dependent external source.This leads to energy and momentum flowing into or out of the interacting vertices,as shown in figure 2.

    In one of our ongoing works relating to sliding friction between a magnetic tip and a ferromagnetic surface,we are employing a similar approach to that employed in this work.We started from an anisotropic Heisenberg Hamiltonian

    where the first term is the magnetic exchange energy between spins in the ferromagnetic surface,and the second term is the magnetic exchange energy between the tip spin and the surface spin located on the i-th site.The surface potential induced by the magnetic tip always has the formBy means of a boost transformation between the tip and the substrate,a Holstein–Primakoff transformation,and a Fourier transformation,we obtain a Hamiltonian similar to that in equation (23):

    equations (23) and (69) will then be similar to one another.We therefore conclude that the sliding friction in this system may have the same v-dependence as the sliding friction in the electronic system.In[7],Fusco and Wolf simulated this kind of magnetic friction,and their results were similar to ours.Although the sliding friction in electronic systems and the sliding friction in magnetic systems originate from different physics,the interaction terms in their Hamiltonians have a similar form to the Anderson s-d model.This kind of interaction always results in sliding friction with a linear dependence on v,if |v| is small.

    Acknowledgments

    We would like to thank Qiang Sun,Kai Li,and Fei Wang for valuable insights and discussions.

    ORCID iDs

    伊人久久精品亚洲午夜| 黑人高潮一二区| 一级二级三级毛片免费看| 日本欧美国产在线视频| 久久精品国产亚洲网站| 一级黄片播放器| 99热6这里只有精品| 禁无遮挡网站| 卡戴珊不雅视频在线播放| 日本爱情动作片www.在线观看| 91久久精品国产一区二区三区| 精品久久国产蜜桃| 午夜福利在线在线| 一个人看视频在线观看www免费| 成人综合一区亚洲| 中文在线观看免费www的网站| 午夜精品国产一区二区电影 | 99久久成人亚洲精品观看| 亚洲性久久影院| 欧美+亚洲+日韩+国产| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 在线播放国产精品三级| 美女脱内裤让男人舔精品视频 | 麻豆国产av国片精品| 一本精品99久久精品77| 国产亚洲精品久久久久久毛片| 欧美bdsm另类| 久久韩国三级中文字幕| 内地一区二区视频在线| 黄色日韩在线| 美女国产视频在线观看| 在线观看午夜福利视频| 真实男女啪啪啪动态图| av.在线天堂| 精品一区二区免费观看| 好男人视频免费观看在线| 校园春色视频在线观看| 一个人看的www免费观看视频| 日本色播在线视频| 成人午夜高清在线视频| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 日韩一区二区三区影片| 久久久久久久久久成人| av免费观看日本| 美女xxoo啪啪120秒动态图| 欧美xxxx性猛交bbbb| 亚洲欧美日韩高清在线视频| 色哟哟哟哟哟哟| 亚洲自偷自拍三级| 国产美女午夜福利| 国产亚洲精品av在线| 亚洲精品自拍成人| 深爱激情五月婷婷| 极品教师在线视频| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩| 九九热线精品视视频播放| а√天堂www在线а√下载| 男女视频在线观看网站免费| 99久久无色码亚洲精品果冻| 69av精品久久久久久| а√天堂www在线а√下载| 欧美日韩乱码在线| 91久久精品电影网| 全区人妻精品视频| 日韩欧美 国产精品| 12—13女人毛片做爰片一| 神马国产精品三级电影在线观看| 精华霜和精华液先用哪个| 最新中文字幕久久久久| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 国产不卡一卡二| 成人午夜高清在线视频| 老师上课跳d突然被开到最大视频| av福利片在线观看| 国产一区亚洲一区在线观看| 亚洲成人久久爱视频| 精品久久久久久久人妻蜜臀av| 男的添女的下面高潮视频| 精品久久国产蜜桃| 久久精品国产99精品国产亚洲性色| 欧美日韩国产亚洲二区| 亚洲欧美成人综合另类久久久 | 午夜福利成人在线免费观看| 国产精品一区二区三区四区免费观看| avwww免费| 天天躁日日操中文字幕| 国产日韩欧美在线精品| 99久久久亚洲精品蜜臀av| 久久久久久国产a免费观看| 久99久视频精品免费| 久久久久久久久中文| 波多野结衣高清无吗| 欧美性猛交╳xxx乱大交人| 欧美丝袜亚洲另类| 人妻制服诱惑在线中文字幕| 久久久久久伊人网av| 亚洲va在线va天堂va国产| 丝袜喷水一区| 波多野结衣高清无吗| 国产精品女同一区二区软件| 国产v大片淫在线免费观看| 人妻制服诱惑在线中文字幕| 亚洲av免费在线观看| 久久久国产成人免费| 国产激情偷乱视频一区二区| 男女啪啪激烈高潮av片| 狠狠狠狠99中文字幕| 久久精品国产亚洲av天美| 女同久久另类99精品国产91| 丰满人妻一区二区三区视频av| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清在线视频| 亚洲乱码一区二区免费版| 久久久久久大精品| 国产片特级美女逼逼视频| 九九爱精品视频在线观看| 成人综合一区亚洲| 中文资源天堂在线| 看十八女毛片水多多多| 日本黄色视频三级网站网址| 国内精品美女久久久久久| 男女啪啪激烈高潮av片| 亚洲欧美日韩无卡精品| 国产一区二区在线观看日韩| 欧美性猛交╳xxx乱大交人| 狠狠狠狠99中文字幕| 国产精品美女特级片免费视频播放器| 麻豆精品久久久久久蜜桃| 九九爱精品视频在线观看| 国产白丝娇喘喷水9色精品| 日韩人妻高清精品专区| 精品免费久久久久久久清纯| 又爽又黄a免费视频| 久久精品91蜜桃| 变态另类丝袜制服| 成人二区视频| 亚洲国产高清在线一区二区三| 国产真实伦视频高清在线观看| 亚洲欧美日韩无卡精品| av在线亚洲专区| 在线播放无遮挡| 人妻制服诱惑在线中文字幕| 亚洲经典国产精华液单| 日本黄大片高清| 国产av在哪里看| 亚洲精品色激情综合| 黄色视频,在线免费观看| 少妇猛男粗大的猛烈进出视频 | 美女 人体艺术 gogo| 亚洲久久久久久中文字幕| 中文在线观看免费www的网站| 久久久久国产网址| 久久精品影院6| 麻豆av噜噜一区二区三区| 亚洲最大成人中文| 久久热精品热| 日本与韩国留学比较| 国产精品99久久久久久久久| 伦精品一区二区三区| 欧美区成人在线视频| 国产一区二区在线观看日韩| 又粗又硬又长又爽又黄的视频 | 深爱激情五月婷婷| 好男人在线观看高清免费视频| 精品欧美国产一区二区三| 美女 人体艺术 gogo| 亚洲欧美精品综合久久99| 美女xxoo啪啪120秒动态图| 日本免费a在线| 亚洲五月天丁香| 亚洲国产色片| 中文字幕免费在线视频6| 大又大粗又爽又黄少妇毛片口| 国产精品人妻久久久久久| 永久网站在线| 婷婷六月久久综合丁香| 欧美性感艳星| 国产淫片久久久久久久久| 麻豆av噜噜一区二区三区| 亚洲图色成人| 国产综合懂色| 成熟少妇高潮喷水视频| 嘟嘟电影网在线观看| 中文在线观看免费www的网站| 成人永久免费在线观看视频| 国产91av在线免费观看| 最近最新中文字幕大全电影3| 欧美成人免费av一区二区三区| 日韩欧美国产在线观看| 日韩国内少妇激情av| 边亲边吃奶的免费视频| 国产精品av视频在线免费观看| 亚洲精品粉嫩美女一区| 国模一区二区三区四区视频| 麻豆国产av国片精品| 少妇人妻精品综合一区二区 | 99精品在免费线老司机午夜| 伊人久久精品亚洲午夜| 一区二区三区高清视频在线| 免费观看a级毛片全部| 国产成人福利小说| 亚洲欧美日韩卡通动漫| 美女cb高潮喷水在线观看| 国产黄色视频一区二区在线观看 | a级一级毛片免费在线观看| 国内精品一区二区在线观看| 国产三级中文精品| 亚洲av免费在线观看| 色播亚洲综合网| 午夜老司机福利剧场| 国产精品美女特级片免费视频播放器| 日本黄色片子视频| 真实男女啪啪啪动态图| www.av在线官网国产| 国产一级毛片七仙女欲春2| 男女下面进入的视频免费午夜| 高清日韩中文字幕在线| 嫩草影院新地址| 99在线视频只有这里精品首页| 色尼玛亚洲综合影院| 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 亚洲综合色惰| 亚洲七黄色美女视频| 美女cb高潮喷水在线观看| 国产精品一二三区在线看| 免费一级毛片在线播放高清视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美+亚洲+日韩+国产| avwww免费| 国产精品久久视频播放| 久久精品国产亚洲av天美| 特级一级黄色大片| 又粗又爽又猛毛片免费看| 亚洲成人精品中文字幕电影| 丰满人妻一区二区三区视频av| 超碰av人人做人人爽久久| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 欧美高清成人免费视频www| 永久网站在线| 我的女老师完整版在线观看| 国产黄片视频在线免费观看| 日韩亚洲欧美综合| 亚洲在线自拍视频| h日本视频在线播放| 国产一区二区在线观看日韩| 国产高清有码在线观看视频| 久久草成人影院| 国产成人a区在线观看| 精品不卡国产一区二区三区| 中文欧美无线码| 久久久久久大精品| 国内精品宾馆在线| 亚洲人成网站高清观看| 亚洲国产精品合色在线| 中文欧美无线码| 99国产精品一区二区蜜桃av| 天堂影院成人在线观看| 只有这里有精品99| 好男人视频免费观看在线| 欧洲精品卡2卡3卡4卡5卡区| 国产白丝娇喘喷水9色精品| 亚洲精品成人久久久久久| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 小蜜桃在线观看免费完整版高清| 欧美三级亚洲精品| 在线观看一区二区三区| 黄色视频,在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产久久久一区二区三区| 人妻制服诱惑在线中文字幕| 蜜臀久久99精品久久宅男| 国国产精品蜜臀av免费| 国产伦精品一区二区三区视频9| 18禁在线无遮挡免费观看视频| 国产 一区 欧美 日韩| 国产伦一二天堂av在线观看| 久久热精品热| 久久精品影院6| 国产黄色视频一区二区在线观看 | 日韩av在线大香蕉| 欧美高清成人免费视频www| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 22中文网久久字幕| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 少妇猛男粗大的猛烈进出视频 | 毛片一级片免费看久久久久| 内射极品少妇av片p| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲四区av| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 黄色视频,在线免费观看| 高清毛片免费看| 人体艺术视频欧美日本| 亚洲精品粉嫩美女一区| 性欧美人与动物交配| 亚洲av二区三区四区| 久久久成人免费电影| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| 国产精品久久久久久久电影| 国国产精品蜜臀av免费| 日本撒尿小便嘘嘘汇集6| 日韩欧美在线乱码| 亚洲自拍偷在线| 亚洲精品国产成人久久av| 亚洲欧美日韩高清专用| 99久久精品一区二区三区| 两个人的视频大全免费| 亚洲精品国产成人久久av| 91精品国产九色| 不卡视频在线观看欧美| 深夜精品福利| 国产日本99.免费观看| 国产精品乱码一区二三区的特点| 国产 一区精品| 日日摸夜夜添夜夜爱| 久久久久久久久久久丰满| 小说图片视频综合网站| 精品人妻视频免费看| 亚洲婷婷狠狠爱综合网| 天堂影院成人在线观看| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| 亚洲人成网站高清观看| 久久精品91蜜桃| 国产成人精品婷婷| 国产精品一区www在线观看| av专区在线播放| 日日啪夜夜撸| 午夜亚洲福利在线播放| 亚洲欧美精品综合久久99| 国产亚洲精品久久久久久毛片| 欧美成人a在线观看| 欧美激情久久久久久爽电影| 亚洲国产精品成人综合色| 天天一区二区日本电影三级| 69人妻影院| 国产伦一二天堂av在线观看| 日本免费a在线| 欧美日韩国产亚洲二区| 精品免费久久久久久久清纯| 国产探花极品一区二区| 欧美激情在线99| 亚洲欧美日韩东京热| 99九九线精品视频在线观看视频| 伦精品一区二区三区| av在线天堂中文字幕| 91精品一卡2卡3卡4卡| 色综合站精品国产| 观看免费一级毛片| 国产三级在线视频| 色播亚洲综合网| 日韩欧美国产在线观看| 欧美三级亚洲精品| 18禁在线播放成人免费| 国产精品伦人一区二区| 永久网站在线| 亚洲av免费高清在线观看| 精品不卡国产一区二区三区| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产| 免费av不卡在线播放| av在线天堂中文字幕| 免费观看精品视频网站| 亚洲国产欧美人成| kizo精华| 嫩草影院新地址| 亚洲最大成人中文| 天天躁日日操中文字幕| 亚洲人成网站在线播放欧美日韩| 一本一本综合久久| 22中文网久久字幕| 99热这里只有是精品在线观看| 国产精品久久久久久亚洲av鲁大| 久久精品久久久久久久性| 午夜福利在线在线| 国产精品伦人一区二区| 久久精品夜夜夜夜夜久久蜜豆| 精品日产1卡2卡| 在线观看一区二区三区| 精品人妻一区二区三区麻豆| 亚洲18禁久久av| 乱码一卡2卡4卡精品| av免费观看日本| 国产片特级美女逼逼视频| 日本熟妇午夜| 亚洲精品日韩av片在线观看| 春色校园在线视频观看| 欧美高清成人免费视频www| 一区福利在线观看| 精品人妻熟女av久视频| 1000部很黄的大片| 好男人在线观看高清免费视频| 1000部很黄的大片| 美女 人体艺术 gogo| 国产极品天堂在线| 晚上一个人看的免费电影| 亚洲图色成人| 国产 一区精品| 国产精品蜜桃在线观看 | 精品久久国产蜜桃| 大又大粗又爽又黄少妇毛片口| 国产国拍精品亚洲av在线观看| 亚洲美女搞黄在线观看| 国产午夜精品久久久久久一区二区三区| 人妻系列 视频| 国产精品久久久久久亚洲av鲁大| 高清毛片免费观看视频网站| 久久精品国产亚洲av涩爱 | 亚洲人成网站在线播| 男女啪啪激烈高潮av片| 18禁在线无遮挡免费观看视频| 久久这里有精品视频免费| 国产伦精品一区二区三区视频9| 亚洲欧美中文字幕日韩二区| 久久鲁丝午夜福利片| 免费大片18禁| 天堂网av新在线| 午夜a级毛片| 简卡轻食公司| 婷婷亚洲欧美| 有码 亚洲区| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 一进一出抽搐动态| 亚洲国产精品sss在线观看| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 免费大片18禁| 国产毛片a区久久久久| videossex国产| 国产午夜福利久久久久久| 成人性生交大片免费视频hd| 黄片无遮挡物在线观看| 99久久人妻综合| 国产精品人妻久久久影院| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 中文在线观看免费www的网站| av又黄又爽大尺度在线免费看 | 麻豆一二三区av精品| 乱人视频在线观看| 亚洲国产精品合色在线| 午夜福利视频1000在线观看| 亚洲精品亚洲一区二区| 精品日产1卡2卡| 久久久久久久久大av| 联通29元200g的流量卡| 欧美一区二区亚洲| 久久久久久久久久久免费av| 国内精品宾馆在线| av天堂在线播放| 晚上一个人看的免费电影| 色综合亚洲欧美另类图片| 中文字幕久久专区| 一级毛片久久久久久久久女| 三级经典国产精品| 国产亚洲精品久久久com| 男女啪啪激烈高潮av片| 亚洲av不卡在线观看| 国产精品久久久久久精品电影| 天堂影院成人在线观看| 亚洲欧洲国产日韩| 女人被狂操c到高潮| 亚洲精品亚洲一区二区| 老司机影院成人| 在线a可以看的网站| 99国产精品一区二区蜜桃av| av在线亚洲专区| 天堂√8在线中文| 欧美高清成人免费视频www| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 国产黄色视频一区二区在线观看 | 一级二级三级毛片免费看| 伦理电影大哥的女人| 99久久精品国产国产毛片| 亚洲激情五月婷婷啪啪| 亚洲人成网站在线播| 日韩精品有码人妻一区| 国产人妻一区二区三区在| 欧美激情国产日韩精品一区| 国产精品av视频在线免费观看| 美女cb高潮喷水在线观看| 欧美潮喷喷水| 精品人妻视频免费看| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| or卡值多少钱| 国产亚洲精品av在线| 久久久久久国产a免费观看| 免费人成在线观看视频色| 国产成人精品婷婷| 欧美最黄视频在线播放免费| 哪里可以看免费的av片| 免费人成在线观看视频色| 波多野结衣高清作品| 国产在线精品亚洲第一网站| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 亚洲av免费在线观看| av在线老鸭窝| 国产成年人精品一区二区| 精品久久久久久久久久免费视频| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 国产精品av视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩制服骚丝袜av| 一本精品99久久精品77| 久久久久久久久久黄片| 天堂网av新在线| 国产av不卡久久| 久久精品国产亚洲av天美| 天天躁夜夜躁狠狠久久av| 91精品国产国语对白视频| 一级毛片aaaaaa免费看小| 观看av在线不卡| 久久久久精品性色| videosex国产| 男女国产视频网站| 久久精品国产亚洲av天美| 日韩av在线免费看完整版不卡| 日日摸夜夜添夜夜爱| 亚洲久久久国产精品| 国产高清有码在线观看视频| 免费大片黄手机在线观看| 男男h啪啪无遮挡| 久久女婷五月综合色啪小说| 欧美日韩国产mv在线观看视频| 人体艺术视频欧美日本| 欧美日韩国产mv在线观看视频| 成人亚洲欧美一区二区av| 国语对白做爰xxxⅹ性视频网站| 性高湖久久久久久久久免费观看| 亚洲av电影在线观看一区二区三区| kizo精华| 国产成人av激情在线播放 | 亚洲av国产av综合av卡| 久久精品国产a三级三级三级| 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| 一级a做视频免费观看| kizo精华| av电影中文网址| 成人毛片a级毛片在线播放| 久久精品夜色国产| 超色免费av| 如何舔出高潮| 亚洲av福利一区| 国产欧美亚洲国产| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 最近的中文字幕免费完整| 国产黄色免费在线视频| 亚洲精品成人av观看孕妇| 亚洲精品视频女| 国产视频内射| 欧美bdsm另类| 日韩欧美一区视频在线观看| 国产成人a∨麻豆精品| 视频在线观看一区二区三区| 伊人久久国产一区二区| 99九九线精品视频在线观看视频| 狠狠婷婷综合久久久久久88av| 欧美亚洲日本最大视频资源| 久久久国产一区二区| 黄色一级大片看看| 51国产日韩欧美| 亚洲av男天堂| 久久久欧美国产精品| 最近手机中文字幕大全| 一区在线观看完整版| 免费人成在线观看视频色| av卡一久久| 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 校园人妻丝袜中文字幕| 亚洲精品aⅴ在线观看| 内地一区二区视频在线| 国产成人精品婷婷| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 少妇被粗大的猛进出69影院 | 91aial.com中文字幕在线观看| 少妇精品久久久久久久| 久久99热这里只频精品6学生| 伊人亚洲综合成人网| 97在线人人人人妻| 天美传媒精品一区二区| 国产女主播在线喷水免费视频网站| 欧美成人午夜免费资源| 亚洲av电影在线观看一区二区三区| 午夜福利在线观看免费完整高清在| 中文字幕制服av| 中文字幕最新亚洲高清| 高清午夜精品一区二区三区| 特大巨黑吊av在线直播|