• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A path integral approach to electronic friction of a nanometer-sized tip scanning a metal surface

    2021-04-28 02:27:10YangWangandYuJia
    Communications in Theoretical Physics 2021年4期

    Yang Wangand Yu Jia

    1 School of Physics,Zhengzhou University,Zhengzhou 450001,China

    2 International Laboratory for Quantum Functional Materials of Henan,and School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450001,China

    3Key Laboratory for Special Functional Materials of Ministry of Education,and School of Materials and Engineering,Henan University,Kaifeng,475001,China

    Abstract In this work,we study the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface via a path integral approach.The metal,with internal degrees of freedom(c,c?)and a tip with an internal degree of freedom (d,d?) couple with one another by means of an exchanged potential,V.Having integrated out all internal degrees of freedom,we obtain the in-out amplitude.Moreover,we calculate the imaginary part of the in-out amplitude and the frictional force.We find the imaginary part of the in-out amplitude to be positive,and correlated to the sliding velocity in most cases.The frictional force is proportional to the sliding velocity for the case where v <0.01.However,for cases where v >0.01,the frictional force demonstrates nonlinear dependence on sliding velocity.

    Keywords: path integral,electronic friction,quantum field

    1.Introduction

    Electron friction has been the subject of intensive study in recent years.Due to surface force apparatus techniques[1]such as scanning probe microscopy [2],frictional drag experiments involving 2D electron systems have been performed successfully.Electronic friction is the naive damping force that nuclei experience when they move near to or within a manifold of metallic electrons[3].Generally speaking,the mass of a nucleus is much bigger than that of an electron; this results in nuclear motion being slow in comparison to electronic dynamics.As such,the Born–Oppenheimer approximation can be introduced.For instance,nuclear dynamics can be considered in terms of classical(or semi-classical)motion,whereas electron dynamics is a quantum feature.As a result,a nuclear equation of motion(EOM) can be expressed via the Langevin equation [4]:

    where t denotes time,f is the frictional force acting on the nucleus,F is the mean force,and h denotes the random force.There are various of approaches to obtaining this EOM.The main idea is to focus on the time evolution of the density operator for the electrons,and to trace over the electrons’degrees of freedom[5].The electronic friction can be derived from the EOM.The more precise approach is via the path integral and influence functional.In this approach,the random force presented as a background field and can be considered as a mean field when focusing on the classical dynamics.Via this method,the electronic friction is calculated based on the short time dynamics of the nucleus [6].Taking into account the total Hamiltonian of the system,it always contains the following terms:

    The first term refers to the kinetic energy of nucleus,the second term to the kinetic energy of electrons,the third term to the interacting energy between the nucleus and the electrons,and the fourth term to the interacting energy between electrons.The in-out amplitude of the system can be written as

    T denotes a sufficiently large time interval.Treis the partial trace over the electrons’ degrees of freedom.Thus the effective Hamiltonian reads

    Via a Hamiltonian canonical equation,we find the EOM,which is similar to equation (1).In [4],the frictional force is proportional to the relative velocityhowever,in the general case,the fluctuation effect makes all interactions mixed.As such,the frictional force may be not proportional to v[7].For constant velocity,the left hand side(LHS)of(1)is zero;this implies that the value of frictional force equals the value of other forces.In this case we can calculate the frictional force via the dissipation process.Considering that the dissipated energy excites the electrons’ degrees of freedom,the dissipated energy can then be written in the following form [8]:

    where ω denotes single particle energy.From this viewpoint we can calculate the dissipated energy involved in all possible quantum processes (i.e.,a one-loop diagram).As a result of energy balance,the frictional force is expressed as

    A remarkable example of electron friction is the frictional force induced by tunneling electrons between a particle in the tip and a metal surface.Yoichi Shigeno studied a similar model,whereby a nano-scale molecule,having a single energy level,links with an external electrode,and vibration occurs at the linkage bond [9].This model clarified the rapidity of molecule vibration damping due to the presence of electronic current at nano-contact interfaces,from a microscopic viewpoint.Feng Chen provided a more general argument for current-induced friction using near-equilibrium statistical theory [10].Federico derived general expressions for current-induced forces,using a friction coefficient via real-time diagrammatic approach [11].Niels Bode employed the scattering-matrix approach to quantum transport in order to develop a unified theory of nanoelectromechanical systems out of equilibrium,finding that in out-ofequilibrium situations,current-induced forces can destabilize mechanical vibrations,resulting in limit cycle dynamics[12].All of the above works are related to dissipation effects,and their corresponding theories can be regarded as forms of linear response theory.These works focus on the frictional coefficient,owing to the linear dependence of velocity.In this paper,we consider a model consisting of a 2D metal substrate and a scanning tunneling microscope(STM)tip.The tip slides relative to the 2D metal at a constant velocity.We employ the functional approach to derive the expression of the imaginary part of the inout amplitude for the model,which is related to the dissipation effect.In addition,we obtain the expression of the frictional force and the function graph between frictional force and relative velocity.

    2.Model Hamiltonian

    The model considered in this paper consists of a 2D metal and a scanning tunneling microscope(STM)tip.The tip moves parallel to the metal surface at a constant velocity,v,with no contact between the two.We select the rest frame of the substrate to be

    where x0is time coordinate,and x1and x2are the two-dimensional Cartesian coordinates of the metal surface

    The schematic diagram of the system is shown in figure 1.We label the corresponding Fourier momentum coordinates via

    At any time x0,the coordinate of the tip reads

    The Hamiltonian of the system reads

    Here,the first and second terms are the energies of electrons in the tip;ε is a tip-site energy,while J denotes the repulsion energy between electrons.The third term is the tight-binding Hamiltonian of conducting electrons in metal,and the angle bracket indicates that the summation runs over the nearest neighbor lattices;Tijis the hopping energy in-between.The fourth term is the so-called Anderson s-d model,representing the contribution from the interaction between the metal electrons and the tip electrons[13],and the delta function indicates that the s-d interaction only exists at the tip location.Here,the energy U,corresponding to the so-called surface potential experienced by the metal electrons,is taken into account.This energy causes the on-site energy of the metal electrons to change,via Fourier transformation:

    where the Hamiltonian of the system reads

    Figure 1.The model: a nanometer-sized tip scanning a metal surface.

    Without loss of generality we choose the relative velocity v along the x1axis to be

    and introduce the Galilean boost matrix along the x1axis,

    where its corresponding matrix is

    This leads to the coordinate transformation

    such that the spatial coordinates of the tip become

    Therefore,the inner products of the space vector on the exponential in the Hamiltonian are

    The Hamiltonian becomes

    3.The effective action

    By introducing a Legendre transformation,the action of the system can be written as

    There is a quartic term in this action,via the following transformation [14]:

    The quartic term can be written as

    Therefore the action reads

    We introduce the mean field approximation by means of a Hubbard–Stratonovich transformation [15]:

    The in-out amplitude can be written as a functional integral.Here,we use the natural unit

    and the new action reads

    The mean field approximation suggests that the two auxiliary fields are equal to their mean values; thus the following selfconsistent equations hold [15]:

    Here,the electron single occupancy condition is taken into account,such that

    Using (26)–(29)we obtain

    We then obtain the effective action under the mean field approximation as

    4.The in-out amplitude

    In the case where v=0,the model exhibits the corresponding socalled in ground state [16],so that there is no excitation of internal degrees of freedom.If we add an external force on the tip to make it slide,the internal degrees of freedom in the tip and the metal around the slip line are temporally excited; thus the total energy rises.Subsequently,the system transfers to the so-called out ground state[16]and the total energy therefore decreases.As the result of these two competing effects,the system exhibits a non-equilibrium steady state,dependent on the sliding velocity,v.Here,we refer to the transition amplitude between in ground state and out ground state as the in-out amplitude.The in-out amplitude equation (3) can be written as a functional integral

    Here,Γ is the amplitude contributed by the one-particle irreducible Feynman diagram[17].If the system has no dissipation,Z must can be normalized.Thus Γ must have a real value.If the system is a dissipative system,Z must not be normalized,and therefore Γ must contain an imaginary component [17].Having integrated out the degrees of freedom c and d,the connected inout amplitude is

    where the functions are

    Dropping a factor which does not depend on relative velocity v,we obtain

    If we assume that the coupling constants U and V are small enough,the last term can be perturbatively expanded,and up to the second order of UV2,the in-out amplitude then becomes

    Figure 2.Galilean boost of the in-out amplitude.

    Via Fourier transformation,the in-out amplitude can be written in frequency space.By means of straightforward calculation,the leading order terms are as follows:

    and the second order terms are

    These terms are known as the symmetric terms.In addition,

    We call this term the cross term.T is the total time.Here,we note that the Galilean boost transforms the in-out amplitude;the corresponding Feynman diagram is shown in figure 2.

    5.Imaginary part of the in-out amplitude

    The imaginary part of the in-out amplitude represents the excitation of the internal degree of freedom on the metal and the tip,and this excitation leads to dissipation.In this section,we obtain the expression of the imaginary part of the in-out amplitude,and study the relationship between the imaginary part of the in-out amplitude and the sliding velocity.In order to perform the integral over k0,we choose a closed contour formed by the real axes,and a half circle with very large radius on the bottom half complex plane.For the first order terms,using Cauchy’s theorem,we find that these terms vanish.For the second order terms,Cauchy’s theorem indicates that the symmetric terms also vanish.As such,the only nontrivial contribution to the in-out amplitude is the cross term.We rewrite this as

    where the integrand

    has four poles on the bottom half plane:

    We perform the Cauchy integral along the closed contour.Since perturbative expansion can also lead to an imaginary part which independent of the tip’s velocity,we focus only on the tip velocity-dependent imaginary part.Therefore we only select poles 2,3,and 4.The corresponding residues are

    Taking into account the continuous limitation,the summation over momentum k can be replaced by the integral.Thus the inout amplitude becomes

    where Ω is the total area of the substrate.We can set Rl=0 without loss of generality.The in-out amplitude reads

    Taking into account all of the above,and using the identity

    the imaginary part of the in-out amplitude can be calculated as follows:

    The numerical results are shown in figures 3 and 4.It can be seen that the imaginary part of the in-out amplitude and the sliding velocity are positively correlated for different J in figure 3.J=0.3 is a special case,as shown in equation (57).When J=0.3,the second and the last terms of equation(57)give two very large contributions ofwhere N is a very large constant.Moreover,when v →0,this result is divergent.This implies that there must be extra dissipation caused by some new degrees of freedom.Here,J=0.3 means J=ε.Actually,this implies the formation of a local magnetic moment relating to the electrons on the tip.The new degree of freedom is therefore the local spin on the tip.Generally speaking,this large term with respect to the imaginary part of the in-out amplitude does not contribute to frictional force.We will expand on this point in the next section.

    Figure 3.The imaginary part of the in-out amplitude as a function of the relative velocity,v,for the typical caseε=0.3,J=0.1,0.2,0.4,0.5,=0.3,in units of 4πUV2ΩT.

    6.Dissipation and frictional force

    The transition probability is

    Therefore,the in-out probability contributed only by the connected diagrams is

    On the other hand,dissipation arises when the in ground state of the system becomes unstable against the production of onshell c-electrons and on-shell d-electrons [18].As such,the transition probability can be written as

    f(k0)is the probability amplitude of creating an electron with energy and momentum k per unit time and area.The dissipation energy during time T is

    The dissipative power per unit area is

    The dumped power is provided by an external source,which keeps the tip moving at a constant velocity,against the frictional force.Thus the energy balance is

    and the expression of frictional force is

    The numerical result is shown in figure 5.The frictional force is proportional to the sliding velocity when v <0.01 for different J.In contrast,for the case where v >0.01,the frictional force exhibited nonlinear dependence on sliding velocity.This phenomenon may be justified as follows: let us consider the momentum and energy balance in a time interval ΔT,assuming that in the first period of time both the frictional force and the dissipated energy are driven by the excitation of c-electrons.The change in the c-electrons’momentum reads as

    the change of the on-shell c-electrons energy reads

    the condition of c-electrons being excited reads

    and therefore

    when v <0.01,ΔP1<0.033;as such,only c-electrons with a momentum of less than 0.033 are excited.When v >0.01,celectrons with a momentum greater than 0.033 are excited.This leads to vΔP1>ε.Therefore,d-electrons on the tip are excited,and are interacting with c-electrons.This leads to a sharp increase in dissipated power.The dependence of frictional force on velocity will change.Moreover,J=0.3 is still a special case.In equation(63),J=0.3 means that the second and the last terms will vanish.This implies that the large term,of the imaginary part of the in-out amplitude does not contribute to frictional force,unless we consider the new degrees of freedom caused by the formation of a local magnetic moment on the tip.

    7.Conclusions and outlooks

    In this paper,we have studied the dissipation mechanism and frictional force of a nanometer-sized tip scanning a metal surface,via a path integral approach.The interaction between the 2+1d spinor field in the 2D metal and the 0+1 spinor field in the tip has been taken into account via the coupling constant V.We have seen that the relative motion may generate an imaginary component in the in-out amplitude.Dissipation arises here due to the in ground state of the system being unstable due to the production of on-shell c-electrons and onshell d-electrons.These internal degrees of freedom in the tip and the metal around the slip line are temporally excited,and thus the total energy rises.Subsequently,the system transfer to the out ground state,and thus the total energy decreases.As a result of these two competing effects,the system exhibits a non-equilibrium steady state,which depends on the sliding velocity,v.We also compute the frictional force.

    The numerical results of the in-out amplitude show that the imaginary part of the in-out amplitude and the sliding velocity are related in quadratic function.In addition,the frictional force is proportional to the sliding velocity for the case v <0.01.In contrast,for the case where v >0.01,the frictional force demonstrates nonlinear dependence with respect to sliding velocity; we have provided a classical explanation for this phenomenon.

    Figure 5.Frictional force as a function of relative velocity,v,for the typical case ε= 0.3,J= 0.1,0.2,0.3,0.4,0.5=0.3,in units of 4πUV2.

    In [18],the dissipation mechanism was attributed to the production of on-shell fermion pairs induced by some timedependent external source.Via relative motion,the vacuum state of the electromagnetic field plays the role of a time-dependent external source.In our paper,however,there is no vacuum electromagnetic field; instead,there are two coupling constants,U and V.Equation (23) shows that the relative motion causes U and V to acquire a time-dependent phase factor,eik1vx0,for every momentum k.In this instance,the relative motion causes U and V to become two timedependent external sources.Therefore the system becomes an open system,and the internal degrees of freedom are excited by the time-dependent external source.This leads to energy and momentum flowing into or out of the interacting vertices,as shown in figure 2.

    In one of our ongoing works relating to sliding friction between a magnetic tip and a ferromagnetic surface,we are employing a similar approach to that employed in this work.We started from an anisotropic Heisenberg Hamiltonian

    where the first term is the magnetic exchange energy between spins in the ferromagnetic surface,and the second term is the magnetic exchange energy between the tip spin and the surface spin located on the i-th site.The surface potential induced by the magnetic tip always has the formBy means of a boost transformation between the tip and the substrate,a Holstein–Primakoff transformation,and a Fourier transformation,we obtain a Hamiltonian similar to that in equation (23):

    equations (23) and (69) will then be similar to one another.We therefore conclude that the sliding friction in this system may have the same v-dependence as the sliding friction in the electronic system.In[7],Fusco and Wolf simulated this kind of magnetic friction,and their results were similar to ours.Although the sliding friction in electronic systems and the sliding friction in magnetic systems originate from different physics,the interaction terms in their Hamiltonians have a similar form to the Anderson s-d model.This kind of interaction always results in sliding friction with a linear dependence on v,if |v| is small.

    Acknowledgments

    We would like to thank Qiang Sun,Kai Li,and Fei Wang for valuable insights and discussions.

    ORCID iDs

    国产免费av片在线观看野外av| 亚洲av电影在线进入| 精品一区二区三区视频在线观看免费 | 日本五十路高清| 国产老妇伦熟女老妇高清| 国产亚洲精品一区二区www | 精品亚洲成a人片在线观看| 亚洲色图av天堂| 亚洲午夜理论影院| 啦啦啦中文免费视频观看日本| 国产一区二区 视频在线| 黄片播放在线免费| 精品一区二区三区av网在线观看 | 久久国产亚洲av麻豆专区| 多毛熟女@视频| 国产精品 欧美亚洲| 亚洲欧洲日产国产| 免费不卡黄色视频| 中文欧美无线码| 肉色欧美久久久久久久蜜桃| 亚洲人成77777在线视频| 啦啦啦 在线观看视频| 日韩欧美三级三区| 十八禁网站免费在线| 99精品欧美一区二区三区四区| 99re6热这里在线精品视频| 99re6热这里在线精品视频| 免费在线观看完整版高清| 日韩精品免费视频一区二区三区| 国产日韩欧美在线精品| 日韩欧美国产一区二区入口| 国产男靠女视频免费网站| 新久久久久国产一级毛片| 极品少妇高潮喷水抽搐| 天天躁狠狠躁夜夜躁狠狠躁| 日韩免费av在线播放| 悠悠久久av| 日韩制服丝袜自拍偷拍| 日韩免费av在线播放| 老熟妇仑乱视频hdxx| 国产高清视频在线播放一区| 妹子高潮喷水视频| 久久久精品区二区三区| 老司机靠b影院| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠躁躁| 久久久久久久国产电影| av线在线观看网站| 欧美亚洲日本最大视频资源| 激情视频va一区二区三区| 一级黄色大片毛片| 亚洲欧美激情在线| 亚洲欧美激情在线| 一级黄色大片毛片| 国产一区二区三区视频了| 热re99久久精品国产66热6| 少妇粗大呻吟视频| 丝袜在线中文字幕| 精品人妻1区二区| 少妇精品久久久久久久| 久久久国产欧美日韩av| 色在线成人网| 男女无遮挡免费网站观看| 精品人妻在线不人妻| 一区二区日韩欧美中文字幕| 国产精品香港三级国产av潘金莲| 丁香欧美五月| 蜜桃在线观看..| 久久天堂一区二区三区四区| 国产又色又爽无遮挡免费看| 丁香六月天网| 日韩成人在线观看一区二区三区| 亚洲伊人色综图| 国产亚洲精品第一综合不卡| 国产野战对白在线观看| 亚洲第一av免费看| 午夜福利视频在线观看免费| 日韩精品免费视频一区二区三区| 亚洲视频免费观看视频| 男女床上黄色一级片免费看| 亚洲精品美女久久久久99蜜臀| 亚洲中文av在线| 肉色欧美久久久久久久蜜桃| cao死你这个sao货| 电影成人av| 国产色视频综合| 久久久精品区二区三区| 久久人人97超碰香蕉20202| 国产在线观看jvid| 国产欧美日韩精品亚洲av| 国产男女超爽视频在线观看| 高清黄色对白视频在线免费看| 99riav亚洲国产免费| 精品国产乱码久久久久久小说| 在线av久久热| 欧美成人免费av一区二区三区 | 国产伦人伦偷精品视频| 亚洲国产欧美一区二区综合| 国产熟女午夜一区二区三区| 最新在线观看一区二区三区| 亚洲欧洲日产国产| 窝窝影院91人妻| 岛国在线观看网站| 亚洲中文字幕日韩| 久久精品国产a三级三级三级| tube8黄色片| 欧美午夜高清在线| 在线天堂中文资源库| 久久国产精品大桥未久av| 亚洲av日韩在线播放| 桃红色精品国产亚洲av| 桃花免费在线播放| 久久久久精品国产欧美久久久| 色播在线永久视频| 在线观看66精品国产| 老熟女久久久| 日韩欧美一区二区三区在线观看 | 久久久久久免费高清国产稀缺| 老熟妇仑乱视频hdxx| 国产又爽黄色视频| 天堂动漫精品| 一夜夜www| 桃红色精品国产亚洲av| 久久这里只有精品19| 午夜久久久在线观看| av国产精品久久久久影院| 精品少妇内射三级| a级毛片黄视频| 中文字幕制服av| 新久久久久国产一级毛片| 80岁老熟妇乱子伦牲交| 性高湖久久久久久久久免费观看| 啪啪无遮挡十八禁网站| 久久午夜亚洲精品久久| 亚洲九九香蕉| 一区二区三区激情视频| 成人免费观看视频高清| 高清在线国产一区| 18禁观看日本| 欧美成人免费av一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美黑人精品巨大| 亚洲成av片中文字幕在线观看| 99国产综合亚洲精品| 母亲3免费完整高清在线观看| 成年人黄色毛片网站| 国产欧美日韩一区二区精品| 国产97色在线日韩免费| 国产精品一区二区在线不卡| 亚洲中文日韩欧美视频| 黄色视频在线播放观看不卡| 亚洲精品成人av观看孕妇| 一本综合久久免费| 黄色成人免费大全| 国产免费视频播放在线视频| 香蕉久久夜色| 国产精品99久久99久久久不卡| 亚洲精品中文字幕在线视频| 久久久久久久国产电影| 一个人免费看片子| 国产主播在线观看一区二区| 十八禁网站免费在线| 国产福利在线免费观看视频| 久9热在线精品视频| 国产成人欧美在线观看 | av又黄又爽大尺度在线免费看| av国产精品久久久久影院| 中文字幕av电影在线播放| 欧美国产精品va在线观看不卡| 老汉色∧v一级毛片| 久久精品熟女亚洲av麻豆精品| 日韩三级视频一区二区三区| 一夜夜www| 69精品国产乱码久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产aⅴ精品一区二区三区波| 99国产精品99久久久久| 一级a爱视频在线免费观看| 黄色 视频免费看| 在线观看一区二区三区激情| 日韩欧美一区二区三区在线观看 | 亚洲专区中文字幕在线| 无遮挡黄片免费观看| 国产一区二区三区综合在线观看| 免费观看人在逋| 丝袜在线中文字幕| 老熟妇仑乱视频hdxx| 伊人久久大香线蕉亚洲五| 考比视频在线观看| 大陆偷拍与自拍| 色精品久久人妻99蜜桃| 精品熟女少妇八av免费久了| 一级片'在线观看视频| 窝窝影院91人妻| 亚洲中文字幕日韩| 久久毛片免费看一区二区三区| 黑丝袜美女国产一区| 又大又爽又粗| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 久久国产精品影院| 日韩欧美国产一区二区入口| 老汉色av国产亚洲站长工具| av超薄肉色丝袜交足视频| 国产欧美日韩综合在线一区二区| 一级毛片电影观看| 国产成+人综合+亚洲专区| 老熟女久久久| 成年人免费黄色播放视频| 高清毛片免费观看视频网站 | 欧美日韩黄片免| 一本一本久久a久久精品综合妖精| 色精品久久人妻99蜜桃| 色综合欧美亚洲国产小说| 一级毛片精品| 黄网站色视频无遮挡免费观看| 国产一区有黄有色的免费视频| 亚洲,欧美精品.| 亚洲七黄色美女视频| 日本撒尿小便嘘嘘汇集6| 精品少妇久久久久久888优播| 国产精品98久久久久久宅男小说| 丝袜喷水一区| 成在线人永久免费视频| 美女主播在线视频| 黑人欧美特级aaaaaa片| 欧美 亚洲 国产 日韩一| 亚洲伊人色综图| 99re6热这里在线精品视频| 亚洲国产欧美一区二区综合| 亚洲第一欧美日韩一区二区三区 | 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区三| 国产精品久久久久久人妻精品电影 | 高清毛片免费观看视频网站 | 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看 | 久久毛片免费看一区二区三区| 天天操日日干夜夜撸| 成人国语在线视频| 欧美乱码精品一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲第一青青草原| 狠狠狠狠99中文字幕| 女人精品久久久久毛片| 91九色精品人成在线观看| 999精品在线视频| 久久毛片免费看一区二区三区| 69av精品久久久久久 | 自线自在国产av| 欧美激情极品国产一区二区三区| 国产色视频综合| 久久人人爽av亚洲精品天堂| 侵犯人妻中文字幕一二三四区| 日韩欧美一区视频在线观看| 大陆偷拍与自拍| 久久香蕉激情| 淫妇啪啪啪对白视频| 中文亚洲av片在线观看爽 | 91成人精品电影| 热99久久久久精品小说推荐| 国产精品九九99| 日韩大码丰满熟妇| 久久久国产一区二区| 亚洲自偷自拍图片 自拍| 国产在线一区二区三区精| 人人妻人人爽人人添夜夜欢视频| 夜夜爽天天搞| 欧美一级毛片孕妇| 久久精品国产综合久久久| 成人国产一区最新在线观看| 一本一本久久a久久精品综合妖精| 老鸭窝网址在线观看| 法律面前人人平等表现在哪些方面| a级毛片黄视频| 1024香蕉在线观看| 欧美在线一区亚洲| 最新在线观看一区二区三区| 在线观看免费高清a一片| 免费在线观看影片大全网站| 宅男免费午夜| 久久精品亚洲av国产电影网| www.熟女人妻精品国产| 久久国产精品影院| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 国产亚洲午夜精品一区二区久久| 精品福利观看| 美女午夜性视频免费| 国产精品久久久久久人妻精品电影 | 青青草视频在线视频观看| 不卡一级毛片| 午夜福利,免费看| 欧美精品一区二区免费开放| 国产一区二区 视频在线| 精品少妇一区二区三区视频日本电影| 久热这里只有精品99| 久久精品91无色码中文字幕| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲高清精品| 国产精品二区激情视频| 精品熟女少妇八av免费久了| 窝窝影院91人妻| 欧美 日韩 精品 国产| 亚洲精品美女久久av网站| 男男h啪啪无遮挡| 黄色a级毛片大全视频| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| 一区二区三区精品91| 国产在线精品亚洲第一网站| 欧美成人午夜精品| 中文字幕人妻丝袜一区二区| 香蕉国产在线看| 精品少妇久久久久久888优播| 日韩免费av在线播放| 天天添夜夜摸| 日本wwww免费看| 香蕉久久夜色| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 久久午夜综合久久蜜桃| 每晚都被弄得嗷嗷叫到高潮| 国产一区二区激情短视频| 亚洲伊人久久精品综合| 高清欧美精品videossex| av视频免费观看在线观看| 嫁个100分男人电影在线观看| 制服人妻中文乱码| 飞空精品影院首页| 99国产综合亚洲精品| 亚洲人成伊人成综合网2020| 亚洲专区字幕在线| 精品人妻在线不人妻| tocl精华| 精品高清国产在线一区| 97在线人人人人妻| 国产亚洲精品久久久久5区| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩另类电影网站| 欧美黄色片欧美黄色片| 欧美激情极品国产一区二区三区| 日韩大码丰满熟妇| 国产免费视频播放在线视频| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91| 丰满人妻熟妇乱又伦精品不卡| 国产精品1区2区在线观看. | 亚洲成人免费电影在线观看| 精品少妇黑人巨大在线播放| 国产成人av教育| 一本大道久久a久久精品| 一区福利在线观看| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 午夜福利视频在线观看免费| 亚洲国产欧美一区二区综合| 黄色丝袜av网址大全| 在线亚洲精品国产二区图片欧美| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡| 菩萨蛮人人尽说江南好唐韦庄| 97人妻天天添夜夜摸| 深夜精品福利| 极品人妻少妇av视频| 欧美精品啪啪一区二区三区| 国产一区有黄有色的免费视频| 超色免费av| 亚洲午夜理论影院| 久久精品熟女亚洲av麻豆精品| 青草久久国产| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| 9191精品国产免费久久| 成年动漫av网址| 久久九九热精品免费| 久久人妻av系列| 亚洲精品在线观看二区| 电影成人av| 亚洲精品av麻豆狂野| 少妇精品久久久久久久| 91国产中文字幕| 日韩免费高清中文字幕av| 亚洲精品一二三| 三级毛片av免费| 亚洲五月色婷婷综合| 国产精品.久久久| 国产精品久久电影中文字幕 | 黄色丝袜av网址大全| 国产无遮挡羞羞视频在线观看| 日本五十路高清| 久久久久久久精品吃奶| 国产精品一区二区在线不卡| 久久国产精品影院| 国产91精品成人一区二区三区 | 美国免费a级毛片| 欧美精品高潮呻吟av久久| 天天添夜夜摸| svipshipincom国产片| 亚洲国产成人一精品久久久| 亚洲国产精品一区二区三区在线| 大片电影免费在线观看免费| 日韩中文字幕欧美一区二区| 国产精品九九99| 精品欧美一区二区三区在线| 美女视频免费永久观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 久久狼人影院| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 欧美日本中文国产一区发布| 亚洲avbb在线观看| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 国产成人免费无遮挡视频| h视频一区二区三区| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 亚洲成人国产一区在线观看| 女人精品久久久久毛片| 另类精品久久| 免费观看av网站的网址| 亚洲欧美日韩高清在线视频 | 淫妇啪啪啪对白视频| 91字幕亚洲| 久久久久国内视频| 亚洲国产欧美网| 久久精品aⅴ一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 中文亚洲av片在线观看爽 | 国产欧美亚洲国产| 91麻豆av在线| 三上悠亚av全集在线观看| 久久精品91无色码中文字幕| 9191精品国产免费久久| 高清视频免费观看一区二区| 777米奇影视久久| 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 黑人操中国人逼视频| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 天天躁夜夜躁狠狠躁躁| 久久天躁狠狠躁夜夜2o2o| 大陆偷拍与自拍| 久久久久久久久免费视频了| 在线亚洲精品国产二区图片欧美| 久久精品91无色码中文字幕| 亚洲欧美一区二区三区久久| 亚洲av美国av| 2018国产大陆天天弄谢| 老熟妇仑乱视频hdxx| 超色免费av| www日本在线高清视频| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂| 免费黄频网站在线观看国产| 亚洲人成电影免费在线| 一二三四在线观看免费中文在| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 少妇被粗大的猛进出69影院| 中文字幕色久视频| 久久久久久人人人人人| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 亚洲熟妇熟女久久| 国产精品 欧美亚洲| 色在线成人网| 99热国产这里只有精品6| 麻豆成人av在线观看| 免费女性裸体啪啪无遮挡网站| 99国产精品99久久久久| 一本一本久久a久久精品综合妖精| 午夜激情久久久久久久| 乱人伦中国视频| 国产黄频视频在线观看| a级毛片黄视频| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 成人国产av品久久久| 1024香蕉在线观看| 欧美另类亚洲清纯唯美| 国产精品影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 我要看黄色一级片免费的| 日韩熟女老妇一区二区性免费视频| 天堂8中文在线网| 热99久久久久精品小说推荐| 91麻豆av在线| 91成人精品电影| 国产麻豆69| 国产成人欧美| 十八禁人妻一区二区| 色婷婷久久久亚洲欧美| 午夜福利在线免费观看网站| 久久 成人 亚洲| 99国产精品免费福利视频| 国产高清国产精品国产三级| 97在线人人人人妻| aaaaa片日本免费| 日韩欧美国产一区二区入口| 日韩有码中文字幕| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| 久久精品亚洲熟妇少妇任你| 国产一区二区三区在线臀色熟女 | 国产欧美亚洲国产| www.熟女人妻精品国产| 国产又色又爽无遮挡免费看| 国产成人欧美在线观看 | 999久久久国产精品视频| 麻豆国产av国片精品| 精品国产亚洲在线| 99riav亚洲国产免费| 精品少妇一区二区三区视频日本电影| 久久亚洲真实| 国产精品国产高清国产av | 男女之事视频高清在线观看| 我要看黄色一级片免费的| 日韩欧美免费精品| 国产在视频线精品| 大陆偷拍与自拍| 一本大道久久a久久精品| 国产av精品麻豆| 黑人操中国人逼视频| 色94色欧美一区二区| 黄色毛片三级朝国网站| 黄色视频不卡| 在线观看免费高清a一片| 国产一区二区激情短视频| 看免费av毛片| 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| 亚洲av美国av| 久久久久久久久免费视频了| 久久中文看片网| 亚洲欧洲精品一区二区精品久久久| 欧美黑人精品巨大| 正在播放国产对白刺激| 亚洲成人国产一区在线观看| 久久影院123| 亚洲,欧美精品.| 天堂8中文在线网| 十八禁网站免费在线| 国产精品一区二区免费欧美| 亚洲,欧美精品.| 淫妇啪啪啪对白视频| 深夜精品福利| 精品国产乱子伦一区二区三区| 久久久水蜜桃国产精品网| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 日日摸夜夜添夜夜添小说| 日韩视频一区二区在线观看| 午夜91福利影院| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 一夜夜www| 美女国产高潮福利片在线看| 日韩人妻精品一区2区三区| 亚洲人成伊人成综合网2020| 成人av一区二区三区在线看| 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| 午夜福利视频在线观看免费| 久久久久国产一级毛片高清牌| 成年动漫av网址| 日本一区二区免费在线视频| 国产日韩欧美视频二区| 欧美成狂野欧美在线观看| 国产无遮挡羞羞视频在线观看| 中文字幕人妻熟女乱码| 国产男靠女视频免费网站| 日韩中文字幕视频在线看片| 成年动漫av网址| 精品第一国产精品| 91成年电影在线观看| 久久精品亚洲熟妇少妇任你| 日韩人妻精品一区2区三区| 超碰97精品在线观看| 国产成人av教育| 国产亚洲精品第一综合不卡| 精品久久蜜臀av无| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图| 十八禁网站免费在线| 99久久99久久久精品蜜桃| 亚洲七黄色美女视频| 国产亚洲av高清不卡| 久久性视频一级片| 国产欧美日韩一区二区三区在线| 热99re8久久精品国产| 国产精品麻豆人妻色哟哟久久| 午夜激情久久久久久久| 亚洲精品一二三| 国产99久久九九免费精品| 久久久国产精品麻豆| 亚洲自偷自拍图片 自拍| 老鸭窝网址在线观看| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 精品亚洲成国产av| 亚洲国产中文字幕在线视频| 宅男免费午夜|