曾萌冬 徐俊 宋銀都 趙金良
摘要:【目的】比較投喂活餌魚和配合飼料對鱖(Siniperca chuatsi)生長性能、消化功能及腸道PepT1基因表達(dá)的影響,明確其攝食配合飼料后的消化、吸收生理變化,為提高鱖對配合飼料的利用效果提供理論依據(jù)?!痉椒ā刻暨x馴化鱖魚苗(初始平均體質(zhì)量5.92±1.41 g)和未馴化鱖魚苗(初始平均體質(zhì)量6.06±1.73 g)各300尾,分別使用配合飼料或活餌魚喂養(yǎng)30 d,飼養(yǎng)結(jié)束后測定分析其生長性能、肌肉成分、消化道結(jié)構(gòu)、消化酶活性及小肽轉(zhuǎn)運載體(PepT1)基因表達(dá)情況?!窘Y(jié)果】配合飼料組鱖的終末平均體質(zhì)量、總攝食量、尾攝食量、餌料系數(shù)、日增重量、日增重率、特定生長率、蛋白質(zhì)效率、存活率及肥滿度均極顯著低于活餌魚組鱖(P<0.01,下同),臟體比和肝體比顯著高于活餌魚組鱖(P<0.05,下同)。以配合飼料替代活餌魚投喂鱖,對其肌肉成分有明顯影響,具體表現(xiàn)為鱖肌肉水分含量極顯著低于活餌魚組鱖,粗蛋白含量顯著高于活餌魚組鱖。在消化酶活性方面,配合飼料組鱖的幽門盲囊胰蛋白酶活性極顯著低于活餌魚組鱖,幽門盲囊脂肪酶活性顯著低于活餌魚組鱖,但肝臟和腸道中的消化酶活性無顯著差異(P>0.05,下同);配合飼料組鱖的肝細(xì)胞排列松散,肝細(xì)胞間有脂肪堆積,胃、腸道肌層及胃黏膜下層厚度極顯著小于活餌魚組鱖,腸道單個褶皺絨毛層杯狀細(xì)胞數(shù)極顯著多于活餌魚組鱖,幽門盲囊褶皺間距極顯著大于活餌魚組鱖。PepT1基因在鱖腸道中的相對表達(dá)量表現(xiàn)為前腸>中腸>后腸,且在前腸表現(xiàn)為配合飼料組鱖極顯著低于活餌魚組鱖,在中腸和后腸則表現(xiàn)為差異不顯著。【結(jié)論】鱖對配合飼料的攝食量和利用率均低于活餌魚,消化道組織結(jié)構(gòu)及其消化酶活性也因攝食配合飼料發(fā)生適應(yīng)性變化。投喂配合飼料顯著影響鱖的消化吸收功能和生長性能,因此,還需針對其攝食和代謝特性進(jìn)一步改良配合飼料的營養(yǎng)組分或優(yōu)化鱖的配合飼料馴化技術(shù)。
關(guān)鍵詞: 鱖;配合飼料;活餌魚;生長性能;消化功能;小肽轉(zhuǎn)運載體
中圖分類號: S965.127? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2021)01-0228-10
Abstract:【Objective】To compare the differences in growth performance, digestive function and expression of PepT1 gene in intestine of Siniperca chuatsi fed by live bait and compound feed,and clarify the physiological changes of digestion and absorption after feeding compound feed,and provide theoretical basis for improving the utilization effect of compound feed for S. chuatsi. 【Method】A total of 300 individuals with feeding domestication(average initial weight of 5.92±1.41 g)and 300 individuals without feeding domestication(average initial weight of 6.06±1.73 g) were selected and fed with compound dietand live bait fish for 30 d respectively. The growth performance, muscle composition, structure of digestive tract, digestive enzyme activity and small peptide transporter(PepT1) gene expression were determined and analyzed after feeding. 【Result】The final mean body weight, total food intake, average individual feed intake, feed coefficient, daily gain, daily gain, special growth rate, protein efficiency, survival rate and? fatness of the compound feed group were extremely significantly lower than thoseof the live bait group(P<0.01, the same below), while the organ-body weight ratio and liver-body weight ratio were significantly higher than thoseof the live bait group (P<0.05, the same below). The muscle composition of live bait fish was obviously affected by feeding compound feed instead of live bait. The moisture content of muscle was extremely significantly lower than that of the live bait group, and the crude protein content of muscle was significantly higher than that of the live bait group, when compound feed replacedlive bait to feed. In terms of digestive enzyme,activity of trypsin in the pyloriccaecum in the feed group were extremely significantly lower than that in the live bait group,and that of lipase were significantly lower than that in the live bait group, but there was no significant difference in digestive enzyme activity of liver and intestine(P>0.05, the same below). Loose liver cells were observed in compound feed group, the fat accumulation among liver cells was detected, the thickness of stomach, intestinal muscle layer and gastric submucosa in the compound feed group was extremely significantly lower than those in the live bait group. The number of goblet cell in single villuswas extremely significantly more than that in live bait group,and the fold spacing of pyloric caecum was extremely significantly higher than that in the live bait group. The relative expression level of gene PepT1 in the intestine of each group was foregout>midgut>hindgut, and the expression level in foregut of compound feed group was extremely significantly lower than that in the live bait group, but there was no significantly difference in the midgut and hindgut. 【Conclusion】Feed intake and utilization of compound feed are lower than those of live bait fish, and the structure of the digestive tract, digestive enzymes activity also change adaptively due to the compound feed, and it significantly affects the function of digestion and absorption and growth performance. Thus,it is necessary to further improve the nutritional components of feedor optimize the domestication technology of S. chuatsi according to its feeding and metabolic characteristics.
Key words: Siniperca chuatsi; compound feed; live bait fish; growth performance; digestive function; small peptide transporter
Foundation item: Construction Project of National Modern Agricultural Industry Technology System(CARS-46);Key Research and Development Project of Anhui(1804a0720137)
0 引言
【研究意義】與草食性魚類不同,肉食性魚類需攝食高蛋白、高脂肪餌料才能快速生長,其腸道雖短,但存在特有的胃和幽門盲囊,以利于餌料貯存及輔助消化(Santinha et al.,1996;韓慶等,2002;Chou et al.,2003)。消化酶活性是衡量肉食性魚類消化能力的重要指標(biāo)之一(Fernández et al.,2001),肉食性魚類的蛋白酶和脂肪酶等活性均高于其他類型魚類,且受餌料組成和消化道結(jié)構(gòu)的顯著影響(吳婷婷和朱曉鳴,1994)。目前,已有較多關(guān)于肉食性魚對餌料消化利用的基礎(chǔ)性研究,包括消化道結(jié)構(gòu)、消化酶活性及生長性能等,為各種重要經(jīng)濟(jì)肉食性魚類的人工養(yǎng)殖提供了科學(xué)依據(jù)。鱖(Siniperca chuatsi)是我國傳統(tǒng)淡水名貴經(jīng)濟(jì)魚類,由于其特殊食性,餌料魚供給成為制約人工養(yǎng)殖增產(chǎn)的主要限制因子。自20世紀(jì)80年代以來,我國學(xué)者開始研究鱖的攝食機(jī)理和配合飼料馴化技術(shù),并取得一定進(jìn)展(梁旭方,1995;吳遵霖等,2002;陳蘇維,2019),但主要針對同等條件下不同配合飼料的養(yǎng)殖效果。因此,探究配合飼料替代活餌魚對鱖幼魚生長速度、飼料利用及消化吸收能力的影響,對開展鱖配合飼料規(guī)模化養(yǎng)殖具重要指導(dǎo)意義。【前人研究進(jìn)展】在掌握鱖馴飼技術(shù)條件下,吳遵霖等(1996)、王貴英等(2005)分別測得配合飼料的蛋白適宜含量為44.7%~45.8%和44.3%~48.4%。王貴英等(2003)研究表明,配合飼料脂肪水平為7%~12%時,鱖的特殊生長率和蛋白質(zhì)效率最高。Li等(2017)分別使用活餌魚和人工飼料喂養(yǎng)雜交鱖(S. chuatsi ♀× S. scherzeri ♂),結(jié)果發(fā)現(xiàn)人工飼料雖然可維持鱖的基本生長,但其增重率、特殊生長率及消化道蛋白酶活性均顯著低于活餌魚投喂。班賽男等(2020)研究表明,翹嘴鱖經(jīng)馴化后可攝食配合飼料,且不影響其生長性能;翹嘴鱖攝食配合飼料后,其肌肉氨基酸未發(fā)生顯著變化,但不飽和脂肪酸含量顯著升高。此外,投喂人工飼料對肉食性魚類的消化道形態(tài)結(jié)構(gòu)及消化酶活性均有明顯影響(鄭銀樺等,2015)。趙盼月等(2017)分別使用活餌魚和配合飼料喂養(yǎng)龍膽石斑魚(Epinephelus lanceolatus),結(jié)果發(fā)現(xiàn)活餌魚組的生長性能最佳,且腸皺襞高度顯著高于飼料組,說明消化道結(jié)構(gòu)健康狀況對魚類營養(yǎng)物質(zhì)消化吸收影響較大。歐紅霞(2018)研究表明,飼料組大口黑鱸(Micropterus salmoides)腸道整體黏膜厚度、絨毛高度及隱窩深度均顯著低于活餌魚組。蛋白作為構(gòu)成魚體主要物質(zhì)和能量的來源,在胃和幽門盲囊中被消化為氨基酸和小肽,繼而被小腸吸收(樂國偉等,1996;胡夢紅等,2007)。在小肽轉(zhuǎn)運蛋白家族中,PepT1是低親和力/高容量的小肽轉(zhuǎn)運載體,具有耗能低而不易飽和的特點(黎航航等,2011;朱宇旌等,2012)。魚類攝食蛋白的可利用性與體重增加直接相關(guān),而PepT1的轉(zhuǎn)運活性直接影響蛋白吸收能力,對魚體生長產(chǎn)生促進(jìn)或制約效果(Wang et al.,2017)。PepT1轉(zhuǎn)運活性還受魚體營養(yǎng)狀態(tài)的影響。大西洋鱈(Gadus morhua)在攝食混合小肽或游離氨基酸飼料后,PepT1隨腸腔蛋白源含量的上升而不斷富集,以保持腸道最大效率地吸收蛋白(Bakke et al.,2010)。【本研究切入點】隨著鱖配合飼料馴養(yǎng)技術(shù)的完善,有關(guān)投喂不同餌料對鱖生長性能及營養(yǎng)需求影響的研究已有較多報道(王貴英等,2003;Li et al.,2017;班賽男等,2020),但目前針對鱖幼魚轉(zhuǎn)食后在配合飼料利用、消化和吸收上發(fā)生的差異與生長速率的關(guān)系尚未得到深入研究?!緮M解決的關(guān)鍵問題】比較投喂活餌魚和配合飼料對鱖生長性能、消化道結(jié)構(gòu)、消化酶活性及腸道PepT1基因表達(dá)的影響,明確攝食配合飼料后的消化、吸收生理變化,為提高鱖對配合飼料的利用效果提供理論依據(jù)。
1 材料與方法
1. 1 試驗材料
供試鱖魚苗購自浙江省湖州市南潯菱湖沈程程家庭農(nóng)場,在上海海洋大學(xué)新場魚類試驗站暫養(yǎng)2 d。配合飼料組鱖按活餌(5 d)→活餌加死餌(4 d)→死餌加冰鮮餌(4 d)→冰鮮餌加軟顆粒飼料(3 d)→軟顆粒飼料(1 d)的方式進(jìn)行食性馴化,共馴食17 d。鱖專用飼料(粉狀料)購自浙江益祥生物科技有限公司;活餌魚為鯽魚苗(全長2 cm),購自上海市松江水產(chǎn)良種場;死餌魚為當(dāng)場處死的鯽魚苗;冰鮮餌為試驗站將鯽魚成魚切塊制成。配合飼料組投喂前0.5 h,按7∶3的比例取粉狀料和水使用制粒機(jī)混勻并擠壓成粒(粒徑0.3 cm×0.7 cm)。各處理組每天上午6:30和下午17:30分別飽食投喂2次。試驗周期30 d。配合飼料和活餌魚的主要營養(yǎng)組分見表1。
1. 2 飼養(yǎng)管理
在室內(nèi)循環(huán)水池中掛置1.0 m×1.0 m×1.5 m網(wǎng)箱,設(shè)為配合飼料組和活餌魚組,每組3個網(wǎng)箱。每個網(wǎng)箱均投放100尾鱖魚苗,配合飼料組鱖魚苗的初始平均體質(zhì)量為5.92±1.41 g,活餌魚組鱖魚苗的初始平均體質(zhì)量為6.06±1.73 g。試驗期間,水溫保持在(27.0±0.5)℃,溶解氧含量>7.0 mg/L,氨氮含量<0.2 mg/L,亞硝酸鹽含量<0.1 mg/L,pH 7.50±0.50,透明度達(dá)100.0 cm。
1. 3 生長性能測定
飼養(yǎng)結(jié)束后禁食24 h,統(tǒng)計各網(wǎng)箱鱖的攝食量(配合飼料組為日投飼量減剩余量,活餌魚組為日投餌量),并隨機(jī)挑取30尾測定其全長和體質(zhì)量。同時取配合飼料組和活餌魚組各35尾,采用MS-222麻醉液(400 mg/L)進(jìn)行麻醉,然后活體解剖,取內(nèi)臟和肝臟稱重,并測量腸道全長。
增重率(WG,%)=(Wt–Wo)/Wo×100
特定生長率(SGR,%/d)=(lnWt–lnWo)/t×100
蛋白質(zhì)效率(PER,%)=(Wt–Wo)/(Wf×Wp)×100
肥滿度(CF,g/cm3)=Wt/L3×100
臟體比(VSI,%)=Wv/W×100
肝體比(HSI,%)=Wh/W×100
腸體比(RGL,%)=LG/L×100
式中:t為飼養(yǎng)天數(shù)(d),Wp為配合飼料的粗蛋白含量(%),Wf為總攝食量(g),Wo為初始平均體質(zhì)量(g),Wt為終末均體質(zhì)量(g),Wv為內(nèi)臟重(g),Wh為肝臟重(g),W為體質(zhì)量(g),L為體長(cm),LG為腸長(cm)。
1. 4 體成分分析
每組單獨取10尾鱖的背肌進(jìn)行體成分分析,粗蛋白含量采用凱氏定氮儀(Kjeltec 2200,丹麥FOSS公司)進(jìn)行測定,粗脂肪含量采用甲醇—氯仿法進(jìn)行測定,灰分含量采用馬弗爐(納博熱N7/H/P300)550 ℃灼燒法進(jìn)行測定,水分含量采用105 ℃恒溫烘干法進(jìn)行測定。
1. 5 石蠟切片制作
每組單獨取5尾鱖的肝臟、胃、前腸和幽門盲囊,剔除脂肪等黏附物,以Bouin?s固定液固定12 h,再用70%乙醇反復(fù)浸洗至無色。使用常規(guī)石蠟切片法,切片厚6 μm,經(jīng)HE和AB-PAS染色,置于Nikon80i熒光顯微電鏡下進(jìn)行觀察拍照。
1. 6 消化酶活性測定
每組單獨取10尾鱖的肝臟、胃、腸道和幽門盲囊,以冷凍PBS(pH 7.4)洗凈消化道內(nèi)容物,吸水紙吸干水分。取50.0 mg左右的樣本,加入9倍量的冷凍PBS,在冰浴中充分勻漿,勻漿液4 ℃下3000 r/min離心15 min,取上清液用于測定胃蛋白酶、胰蛋白酶、胰淀粉酶和脂肪酶活性。消化酶活性采用上海酶聯(lián)生物科技有公司的試劑盒進(jìn)行測定,于酶標(biāo)儀(Synergy H1,美國BioTek公司)450 nm下分別測定各樣本的吸光值,并通過標(biāo)準(zhǔn)曲線計算樣品中各消化酶活性。
1. 7 PepT1基因定量表達(dá)分析
參照劉知行等(2014)對鱖PepT1基因進(jìn)行分子特征研究的PepT1引物對,并根據(jù)GenBank已公布的鱖β-actin基因cDNA序列,采用Primer 5.0進(jìn)行引物(表2)設(shè)計,并委托上海金唯智生物科技有限公司合成。每組單獨取10尾鱖,冷凍去離子水洗凈腸道內(nèi)容物后分為前腸、中腸和后腸。參照組織RNA提取試劑盒(TaKaRa)說明提取總RNA,去除基因組DNA雜質(zhì),并反轉(zhuǎn)錄合成cDNA,采用1.0%瓊脂糖凝膠電泳檢測其完整性。實時熒光定量PCR反應(yīng)體系20.0 μL:TB Green Premix Ex TaqⅡ10.0 μL,正、反引物各0.8 μL,cDNA模板1.6 μL,ddH2O 6.8 μL。擴(kuò)增程序:95 ℃預(yù)變性3 min;95 ℃ 3 s,60 ℃ 25 s,進(jìn)行40個循環(huán)。然后采用2-ΔΔCt法換算目的基因的相對表達(dá)量。
1. 8 統(tǒng)計分析
試驗數(shù)據(jù)采用SPSS 21.0進(jìn)行統(tǒng)計分析,并通過t檢驗比較配合飼料組與活餌魚組各指標(biāo)間的差異。
2 結(jié)果與分析
2. 1 配合飼料替代活餌魚對鱖攝食及生長性能的影響
由表3可看出,配合飼料組鱖的終末平均體質(zhì)量、總攝食量、尾攝食量、餌料系數(shù)、日增重量、日增重率、特定生長率、蛋白質(zhì)效率、存活率及肥滿度均極顯著低于活餌魚組鱖(P<0.01,下同),臟體比和肝體比顯著高于活餌魚組鱖(P<0.05,下同)??梢?,投喂配合飼料對鱖的攝食及生長性能有明顯影響,其生長速率和餌料利用能力顯著低于活餌魚組鱖,即活餌魚對促進(jìn)鱖生長具有明顯優(yōu)勢。
2. 2 配合飼料替代活餌魚對鱖肌肉成分的影響
由表4可看出,以配合飼料替代活餌魚投喂鱖,對其肌肉成分有明顯影響,具體表現(xiàn)為:配合飼料組鱖肌肉水分含量極顯著低于活餌魚組鱖,粗蛋白含量顯著高于活餌魚組鱖,而粗脂肪和粗灰分含量與活餌魚組鱖間無顯著差異(P>0.05,下同)。
2. 3 配合飼料替代活餌魚對鱖消化酶活性的影響
由表5可知,無論是投喂配合飼料還是投喂活餌魚,鱖胃蛋白酶及腸道和肝臟中的胰蛋白酶活性均無顯著差異,且鱖腸道、肝臟及幽門盲囊中的胰淀粉酶活性也無顯著差異。配合飼料組鱖幽門盲囊胰蛋白酶活性極顯著低于活餌魚組鱖,幽門盲囊脂肪酶活性顯著低于活餌魚組鱖,但這2種消化酶在肝臟和腸道中的活性無顯著差異。不同處理組的鱖消化酶活性以幽門盲囊胰蛋白酶和脂肪酶活性的差異最明顯,說明配合飼料對鱖不同部位的消化酶活性具一定影響,消化酶活性降低則導(dǎo)致魚體對配合飼料的消化能力減弱。
2. 4 配合飼料替代活餌魚對鱖肝臟及消化道組織結(jié)構(gòu)的影響
由圖1可看出,配合飼料組鱖的肝細(xì)胞排列松散,肝細(xì)胞間有脂肪堆積;活餌魚組鱖的肝細(xì)胞排列致密,肝細(xì)胞間有少量脂肪分布。配合飼料組鱖和活餌魚組鱖的胃組織結(jié)構(gòu)無明顯差異,但配合飼料組鱖的胃肌層厚度(347.65±22.16 μm)和黏膜下層厚度(217.21±22.47 μm)極顯著小于活餌魚組鱖(分別為422.54±46.07和284.25±39.29 μm)。配合飼料組鱖的腸道肌層厚度(52.37±13.11 μm)極顯著小于活餌魚組鱖(69.06±11.64 μm),腸道單個褶皺絨毛層杯狀細(xì)胞數(shù)(85.00±10.89個)則極顯著多于活餌魚組鱖(67.29±9.70個)。配合飼料組鱖的幽門盲囊肌層厚度(22.42±2.85 μm)極顯著小于活餌魚組鱖(28.02±3.63 μm),而褶皺間距(29.81±6.7 μm)顯著大于活餌魚組鱖(17.82±4.23 μm)。
3. 3 配合飼料替代活餌魚對鱖腸道PepT1基因表達(dá)的影響
PepT1在魚類腸道蛋白吸收過程中發(fā)揮重要作用。Terova等(2009)、Ostaszewska等(2010)研究發(fā)現(xiàn),PepT1基因在歐洲黑鱸(Dicentrarchus labrax)和虹鱒(Oncorhynchus mykiss)腸道中的空間分布相似,均以在前腸的表達(dá)水平最高;劉知行等(2014)對鱖胚后不同發(fā)育階段的腸道PepT1基因表達(dá)進(jìn)行檢測分析,結(jié)果顯示PepT1基因在前腸和中腸的相對表達(dá)量顯著高于后腸。本研究通過檢測PepT1基因在腸道中的相對表達(dá)量以評價鱖對蛋白的吸收能力,結(jié)果顯示,無論是投喂配合飼料還是投喂活餌魚,PepT1基因在鱖腸道中的相對表達(dá)量均表現(xiàn)為前腸>中腸>后腸,且在前腸表現(xiàn)為配合飼料組鱖極顯著低于活餌魚組鱖,在中腸和后腸則無顯著差異。此外,經(jīng)胃和幽門盲囊消化后的內(nèi)容物流入前腸,因具較高的蛋白酶活性和小肽底物濃度,而促使近腸端的PepT1基因表達(dá)量增加,與Sangaletti等(2009)的研究結(jié)果相似,即PepT1基因在大口黑鱸小腸前段大量表達(dá)。由此可見,鱖前腸和中腸的小肽吸收能力較強(qiáng)。
4 結(jié)論
鱖對配合飼料的攝食量和利用率均低于活餌魚,消化道組織結(jié)構(gòu)及其消化酶活性也因配合飼料發(fā)生適應(yīng)性變化。投喂配合飼料顯著影響鱖的消化吸收功能和生長性能,因此,還需針對其攝食和代謝特性進(jìn)一步改良配合飼料的營養(yǎng)組分或優(yōu)化鱖的配合飼料馴化技術(shù)。
參考文獻(xiàn):
班賽男,朱傳忠,楊新冬,陳偉軍,李棟,夏冬梅,楊生燦,陳晶,孫云章,易敢峰. 2020. 攝食不同餌料對翹嘴鱖生長、體成分和消化酶活性的影響[J]. 淡水漁業(yè),50(1):93-100. [Ban S N,Zhu C Z,Yang X D,Chen W J,Li D,Xia D M,Yang S C,Chen J,Sun Y Z,Yi G F. 2020. Effect of different diet on the growth performance,body composition and digestive enzymes active of mandarin fish(Siniperca chuatisi)[J]. Fishwater Fisheries,50(1):93-100.]
陳蘇維. 2019. 漢江上游翹嘴鱖年齡鑒定及其生長性能和血液生理生化指標(biāo)的分析[J]. 河南農(nóng)業(yè)科學(xué),48(3):137-144. [Chen S W. 2019. Analysis of age,growth and blood physiological and biochemical indexes of mandarin fish(Siniperca chuatsi) in upper stream of Hanjiang River[J]. Journal of Henan Agricultural Sciences,48(3):137-144.]
叢林梅,王蔚芳,高淳仁,黃濱,雷霽霖,王桂芹. 2016. 配合飼料和冰鮮太平洋玉筋魚對珍珠龍膽石斑魚幼魚生長、抗氧化和脂質(zhì)代謝的影響[J]. 水產(chǎn)學(xué)報,40(9):1398-1407. [Cong L M,Wang W F,Gao C R,Huang B,Lei J L,Wang G Q. 2016. Effects of compound diet and fresh frozen Ammodytes persontus on growth,antioxidant ability and lipid metabolism of hybrid grouper(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂) juvenile[J]. Journal of Fisheries of China,40(9):1398-1407.]
公緒鵬,李寶山,張利民,張燕,王際英. 2018. 飼料蛋白質(zhì)和能量含量對云紋龍膽石斑魚幼魚生長、體組成及消化酶活力的影響[J]. 漁業(yè)科學(xué)進(jìn)展,39(2):85-95. [Gong X P,Li B S,Zhang L M,Zhang Y,Wang J Y. 2018. Effects of dietary protein and energy levels on growth,body composition and digestive enzymes activities of juvenile hybrid grouper,Epinephelus lanceolatus ♂×E. Moara ♀[J]. Progress in Fishery Sciences,39(2):85-95.]
韓慶,羅玉雙,夏維福,王文彬. 2002. 不同飼料蛋白源對黃顙魚生長的影響[J]. 上海水產(chǎn)大學(xué)學(xué)報,11(3):259-263. [Han Q,Luo Y S,Xia W F,Wang W B. 2002. Effects of different protein levels and animal protein percentage on Pelteobagrus fulvidraco[J]. Journal of Shanghai Fisheries University,11(3):259-263.]
韓慶煒,梁萌青,姚宏波,常青,吳立新. 2011. 鱸魚對7種飼料原料的表觀消化率及其對肝臟、腸道組織結(jié)構(gòu)的影響[J]. 漁業(yè)科學(xué)進(jìn)展,32(1):32-39. [Han Q W,Liang M Q,Yao H B,Chang Q,Wu L X. 2011. Effects of seven feed ingredients on growth performance,and liver and intestine histology of Lateolabrax japonicas[J]. Progress in Fishery Sciences,32(1):32-39.]
胡夢紅,王有基,熊邦喜. 2007. 小肽的吸收機(jī)制及其對魚類的營養(yǎng)生理學(xué)效應(yīng)[J]. 長江大學(xué)學(xué)報(自科版),4(1):39-44. [Hu M H,Wang Y J,Xiong B X. 2007. The absorption mechanism of small peptides and its nutritional and physiological effects on fish[J]. Journal of Yangtze University (Natural Science Edition),4(1):39-44.]
黃愛霞,陳建明,沈斌乾,姜建湖,孫麗慧. 2019. 攝食不同飼料對大口黑鱸全魚及肌肉營養(yǎng)組成的影響[J]. 科技通報,35(2):42-45. [Huang A X,Chen J M,Shen B Q,Jiang J H,Sun L H. 2019. Comparison analysis of body composition,body profile index and muscle nutritive value of largemouth bass fed with different diets[J]. Bulletin of Science And Techenology,35(2):42-45.]
江嵐,黎玥,申曉東,韓碧澤,李建光. 2001. 鱖魚攝食感覺機(jī)制及餌料投喂技術(shù)[J]. 淡水漁業(yè),31(6):37-39. [Jiang L,Li Y,Shen X D,Han B Z,Li J G. 2001. Sensation mechanism of mandarin fish ingestion and feeding technique[J]. Fishwater Fisheries,31(6):37-39.]
黎航航,陳立祥,蘇建明. 2011. 魚類小肽轉(zhuǎn)運載體PepT1研究進(jìn)展[J]. 中國飼料,(10):26-29. [Li H H,Chen L X,Su J M. 2011. Progress on the peptide transporter PepT1 of fishes[J]. China Feed,(10):26-29.]
李傳陽,Thammaratsuntorn Jeerawat,查丹琳,趙金良,錢葉周,吳超,錢德. 2016. 3種鱖魚消化道結(jié)構(gòu)與胃中泌酸胃酶細(xì)胞分布比較[J]. 水產(chǎn)科學(xué),35(4):340-345. [Li C Y,Thammaratsuntorn J,Zha D L,Zhao J L,Qian Y Z,Wu C,Qian D. 2016. Comparison of digestive tract structure and distribution of gastric oxynticopeptic cells among three mandarin fish Siniperca species[J]. Fisheries Scien-ces,35(4):340-345.]
李燕,史建華,施順昌,李住. 2014. 不同飼料對雜交鱖生長、成活率及體成分影響的比較[J]. 水產(chǎn)科技情報,41(3):127-130. [Li Y,Shi J H,Shi S C,Li Z. 2014. Comparison of the effects of different feeds on the growth,survi-val rate and body composition of hybrid mandarin fish (Siniperca chuatsi ♀×S. scherzeri ♂)[J]. Fisheries Science & Technology Information,41(3):127-130.]
梁旭方. 1995. 鱖魚攝食的感覺原理[J]. 動物學(xué)雜志,30(1):56. [Liang X F. 1995. The sensory principle of the ingestion of Siniperca chuatsi[J]. Chinese Journal of Zoology,30(1):56.]
劉立鶴,黃綺雯,胡先勤,胡奇?zhèn)?,何廣文,譚斌,李彪. 2009. 不同商品飼料對鮰生長、體色及肝臟組織結(jié)構(gòu)的影響[J]. 淡水漁業(yè),39(3):57-63. [Liu L H,Huang Q W,Hu X Q,Hu Q W,He G W,Tan B,Li B. 2009. Effects of different commercial feeds on growth,body color and live tissue structure of channel catfish (Ictalurus punctatus)[J]. Fishwater Fisheries,39(3):57-63.]
劉知行,張健東,劉小燕,李虹輝,王開卓,陳琳,褚武英,張建社. 2014. 鱖小肽轉(zhuǎn)運載體PepT1基因分子特征及其表達(dá)研究[J]. 水生生物學(xué)報,38(3):160-166. [Liu Z X,Zhang J D,Liu X Y,Li H H,Wang K Z,Chen L,Chu W Y,Zhang J S. 2014. Molecular characterization and expression research of oligopeptide transporter PepT1 in Siniperca chuatsi[J]. Acta Hydrobiologica Sinica,38(3):160-166.]
馬燕梅,梅景良,林樹根. 2004. 鱖胃腸道和肝臟主要消化酶活性的研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,26(4):584-588. [Ma Y M,Mei J L,Lin S G. 2004. Studies on the main digestive enzyme activities in stomach intestine and liver of Siniperca chautsi[J]. Acta Agriculturae Universitatis Jiangxiensis,26(4):584-588.]
牟明明,蔣余,羅強(qiáng),陳擁軍,羅莉,林仕梅. 2018. 配合飼料和冰鮮鰱對大口黑鱸生長、血漿生化指標(biāo)、抗氧化能力和組織學(xué)的影響[J]. 水產(chǎn)學(xué)報,42(9):1408-1416. [Mou M M,Jiang Y,Luo Q,Chen Y J,Luo l,Lin S M. 2018. Effects of formulated diet and fresh frozen Hypophthalmichthys molitrix on growth, plasma biochemical index and antioxidant ability and histology of Micropterus salmoides[J]. Journal of Fisheries of China,42(9):1408-1416.]
歐紅霞. 2018. 不同飼料對大口黑鱸消化酶及腸道形態(tài)結(jié)構(gòu)的影響[D]. 上海:上海海洋大學(xué). [Ou H X. 2018. Effects of different feed on digestive tract index and amylase activity of Micropterus salmoides[D]. Shanghai:Shanghai Ocean University.]
錢國英. 1998. 不同馴食方式對鱖魚胃腸道消化酶活性的影響[J]. 浙江農(nóng)業(yè)大學(xué)學(xué)報,24(2):207-210. [Qian G Y. 1998. Change of digestive enzyme activities in intestinal canal of domesticated mandarin fish[J]. Journal of Zhe-jiang Agricultural University,24(2):207-210.]
慶寧,呂鳳義,陳曼娜,鄭文彪. 2003. 不同pH條件下鱖魚消化道蛋白酶活性研究[J]. 華南師范大學(xué)學(xué)報(自然科學(xué)版),(4):89-92. [Qing N,Lü F Y,Chen M N,Zheng W B. 2003. Study on protease activities in digestive tube of Siniperca chuatsi at diferent pH[J]. Journal of South China Normal University(Natural Science Edition),(4):89-92.]
宋鵬,曹申平,唐建洲,彭亮,羅文婕,熊鼎,鄧岳松,賀喜,劉臻. 2019. 飼料中發(fā)酵芝麻粕替代菜粕對草魚生長性能、腸道形態(tài)和微生物及小肽轉(zhuǎn)運相關(guān)基因表達(dá)的影響[J]. 水生生物學(xué)報,43(6):1147-1154. [Song P,Cao S P,Tang J Z,Peng L,Luo W J,Xiong D,Deng Y S,He X,Liu Z. 2019. Effects of dietary rapeseed meal on the growth performance,intestinal morphology and microflora of grass carp(Ctenopharyngodon idellus)[J]. Acta Hydrobiologica Sinica,43(6):1147-1154.]
孫翰昌. 2009. 不同餌料對鱖生長性能及消化酶活性的影響[J]. 中國飼料,(24):32-35. [Sun H C. 2009. Effects of different daits on the growth performance and digestive enzyme activity of Siniperca chuatsi[J]. China Feed,(24):32-35.]
孫麗華,陳浩如,黃洪輝,黃良民. 2009. 攝食水平對幾種重要海水養(yǎng)殖魚類生長和氮收支的影響[J]. 水產(chǎn)學(xué)報,33(3):470-478. [Sun L H,Chen H R,Huang H H,Huang L M. 2009. Effects of ration on growth and nitrogen budgets of several important marine cultured fishes[J]. Journal of Fisheries of China,33(3):470-478.]
王貴英,曾可為,高銀愛,李清,夏儒龍. 2005. 鱖配合飼料的最適蛋白質(zhì)含量[J]. 水生生物學(xué)報,29(2):189-192. [Wang G Y,Zeng K W,Gao Y A,Li Q,Xia R L. 2005. The optimum dietary protein level for Siniperca chuatsi[J]. Acta Hydrobiologica Sinica,29(2):189-192.]
王貴英,曾可為,鄭翠華,李清. 2003. 飼料脂肪水平對鱖魚生長的影響研究[J]. 淡水漁業(yè),33(2):11-12. [Wang G Y,Zeng K W,Zheng C H,Li Q. 2003. Effect of dietary li-pid levels on growth performance of Siniperca chuatsi[J]. Fishwater Fisheries,33(2):11-12.]
吳婷婷,朱曉鳴. 1994. 鱖魚、青魚、草魚、鯉、鯽、鰱消化酶活性的研究[J]. 中國水產(chǎn)科學(xué),1(2):10-17. [Wu T T,Zhu X M. 1994. Studies on the activity of digestive enzymes in mandarin fish,black carp,grass carp,common carp,crucian carp and silver carp[J]. Jouranl of Fishery Sciences of China,1(2):10-17.]
吳遵霖,李蓓,吳凡,趙建利,王世國. 2002. 鱖魚馴飼集約式網(wǎng)箱養(yǎng)殖技術(shù)[J]. 淡水漁業(yè),32(4):55-56. [Wu Z L,Li B,Wu F,Zhao J L,Wang S G. 2002. Intensive cage culture technology of domestication of Siniperca chuatsi [J]. Fishwater Fisheries,32(4):55-56.]
吳遵霖,李蓓,李桂云,何順清,張亮,左晟旻. 1996. 鱖魚配合飼料馴飼與養(yǎng)殖研究[J]. 淡水漁業(yè),26(1):16-19. [Wu Z L,Li B,Li G Y,He S Q,Zhang L,Zuo S M. 1996. Domestication and culture with compound feed of Siniperca chuatsi[J]. Fishwater Fisheries,26(1):16-19.]
徐革鋒,陳俠君,杜佳,牟振波. 2009. 魚類消化系統(tǒng)的結(jié)構(gòu)、功能及消化酶的分布與特性[J]. 水產(chǎn)學(xué)雜志,22(4):49-55. [Xu G F,Chen X J,Du J,Mou Z B. 2009. Fish digestive system:Its structure,function and the distributions and characteristics of digestive enzymes[J]. Chinese Journal Fisheries,22(4):49-55.]
原居林,郭建林,劉梅,顧志敏. 2017. 不同飼料類型和放養(yǎng)密度對烏鱧生長特性及營養(yǎng)品質(zhì)的影響[J]. 大連海洋大學(xué)學(xué)報,32(5):534-543. [Yuan J L,Guo J L,Liu M,Gu Z M. 2017. Comparison of growth performances and nutritional quality of muscle in snakehead Channa argus fed different diets at different stocking densities[J]. Journal of Dalian Ocean University,32(5):534-543.]
樂國偉,施用暉,楊鳳. 1996. 肽在動物蛋白質(zhì)營養(yǎng)中的作用──小肽在動物氨基酸吸收中的作用[J]. 四川農(nóng)業(yè)大學(xué)學(xué)報,14(S1):19-26. [Yue G W,Shi Y H,Yang F. 1996. The role of small peptides in the intestinal absorption of amino acids[J]. Journal of Sichuan Agricultural University,14(S1):19-26.]
張海濤,王安利,李國立,孫翠慈. 2004. 營養(yǎng)素對魚類脂肪肝病變的影響[J]. 海洋通報,23(1):82-89. [Zhang H T,Wang A L,Li G L,Sun C C. 2004. Effect of nutrient on the fatty liver disease of fish[J]. Marine Science Bulletin,23(1):82-89.]
張麗,許國煥,郭慧青,江永明,王珺,董小林. 2011. 攝食不同餌料對加州鱸生長性能及體成分的影響[J]. 淡水漁業(yè),41(6):60-63. [Zhang L,Xu G H,Guo H Q,Jiang Y M,Wang J,Dong X L. 2011. Effect of different feeding stuff on growth performance and body biochemical composition of Micropterus salmoides[J]. Fishwater Fishe-ries,41(6):60-63.]
趙盼月,陳學(xué)豪,翟少偉,楊歡,李惠. 2017. 不同形態(tài)飼料對珍珠龍膽石斑魚腸道消化酶活性和組織形態(tài)的影響[J]. 飼料廣角,(5):42-44. [Zhao P Y,Chen X H,Zhai S W,Yang H,Li H. 2017. Effect of different diets on digestive enzyme activity and tissue morphology of intestine of hybrid grouper(Epinephelus fuscoguttatus ♀×Epinephelus lanceolatus ♂)[J]. Feed China,(5):42-44.]
趙月月,趙健蓉,胡佐燦,楊洋,詹素平,劉小紅,王志堅. 2018. 不同餌料對稀有鮈鯽仔稚魚生長、消化道及消化酶的影響[J]. 水生生物學(xué)報,42(1):114-122. [Zhao Y Y,Zhao J R,Hu Z C,Yang Y,Zhan S P,Liu X H,Wang Z J. 2018. The effects of different baits on the growth and activities of the digestive tract and enzyme of the larvae and juvenile Gobiocypris rarus[J]. Acta Hydrobiologica Sinica,42(1):114-122.]
鄭銀樺,彭聰,吳秀峰,韓芳,薛敏,王嘉,胡亮. 2015. 酵母酶解物對大口黑鱸生長性能、脂類代謝及腸道組織結(jié)構(gòu)的影響[J]. 動物營養(yǎng)學(xué)報,27(5):1605-1612. [Zheng Y H,Peng C,Wu X F,Han F,Xue M,Wang J,Hu L. 2015. Effects of hydrolyzed yeast on growth performance,li-pids metabolism and intestinal structure of largemouth bass(Micropterus salmoides)[J]. Chinese Journal of Animal Nutrition,27(5):1605-1612.]
朱曉鳴,解綬啟,崔奕波. 2000. 攝食水平對異育銀鯽生長及能量收支的影響[J]. 海洋與湖沼,31(5):471-479. [Zhu X M,Xie S Q,Cui Y B. 2000. Effect of ration level on growth and energy budget of the gibel carp,Carassius auratus gibelio[J]. Oceanologia et Limnologia Sinica,31(5):471-479]
朱宇旌,王秉玉,張勇,李欣蔚,邵彩梅. 2012. 小肽轉(zhuǎn)運載體1的生物學(xué)特性及其功能[J]. 動物營養(yǎng)學(xué)報,24(10):1847-1853. [Zhu Y J,Wang B Y,Zhang Y,Li X W,Shao C M. 2012. Peptide transporter 1:Biological characteristics and functions[J]. Chinese Journal of Animal Nutrition,24(10):1847-1853.]
Bakke S,Jordala A E O,Gómez Requeni P,Verri T,Kousoulaki K,Aksnes A,R?nnestad I. 2010. Dietary protein hydrolysates and free amino acids affect the spatial expression of peptide transporter PepT1 in the digestive tract of Atlantic cod(Gadus morhua)[J]. Comparative Bioche-mistry and Physiology. Part B:Biochemistry & Molecular Biology,156(1):48-55.
Chou R L,Su M S,Chen H Y. 2003. Optimal dietary protein and lipid levels for juvenile cobia(Rachycentron canadum)[J]. Aquaculture,193(1-2):81-89.
Fernández I,Moyano F J,Díaz M,Martinez T. 2001. Characterization of α-amylase activity in five species of Mediterranean sparid fishes(Sparidae,Teleostei)[J]. Journal of Experimental Marine Biology and Ecology,262(1):1-12.
Fu S J,Xie X J,Cao Z D. 2005. Effect of dietary composition on specific dynamic action in southern catfish Silurus meridionalis Chen[J]. Aquaculture Research,36(14):1384-1390.
Kolkovski S. 2001. Digestive enzymes in fish larvae and juveniles—Implications and applications to formulated diets[J]. Aquaculture,200(1-2):181-201.
Li Y,Li J Z,Lu J T,Li Z,Shi S C,Liu Z J. 2017. Effects of live and artificial feeds onthe growth,digestion,immunity and intestinal microflora of mandarinfish hybrid (Siniperca chuatsi ♀×Siniperca scherzeri ♂)[J]. Aquaculture Research,48(8):4479-4485.
Ostaszewska T,Kamaszewski M,Grochowski P,Dabrowski K,Verri T,Aksakal E,Szatkowska L,Nowak Z,Dobosz S. 2010. The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout(Oncorhynchus mykiss)[J]. Comparative Biochemistry and Physiology. Part A:Molecular & Integrative Phy-siology,155(1):107-114.
Sangaletti R,Terova G,Peres A,Bossi E,Corà S,Saroglia M. 2009. Functional expression of the oligopeptide transpor-ter PepT1 from the sea bass(Dicentrarchus labrax)[J]. Pflugers Archiv:European Journal of Physiology,459(1):47-54.
Santinha P J M,Gomes E F S,Coimbra J O. 1996. Effects of protein level of the diet on digestibility and growth of gilthead sea bream,Sparus auratus L.[J]. Aquacult Nutrition,2(2):81-87.
Terova G,Corá S,Verri T,Rimoldi S,Bernardini G,Saroglia M. 2009. Impact of feed availability on PepT1 mRNA expression levels in seabass(Dicentrarchus labrax)[J]. Aquaculture,294(3-4):288-299.
Wang J L,Yan X,Lu R H,Meng X L, Nie G X. 2017. Peptide transporter 1(PepT1) in fish:A review[J]. Aquaculture and Fisheries,2(5):193-206.
(責(zé)任編輯 蘭宗寶)