陳玉芝
【摘要】新課改指導(dǎo)下的計算教學(xué)不再是單純?yōu)榱擞嬎愣嬎?,解決問題教學(xué)大多分散在計算教學(xué)中,重視解決問題的過程與思考、方法與策略。但實際教學(xué)中我們不難發(fā)現(xiàn),學(xué)生在計算、解決問題方面方法靈活了,但并不扎實。我們重視學(xué)生的動手實踐、相互合作,關(guān)注學(xué)生學(xué)習(xí)方式的改變,鼓勵學(xué)生在理解算理下應(yīng)用知識解決問題,但在一定程度上忽略了學(xué)生有效的分析策略、扎實準(zhǔn)確地解決問題方式,導(dǎo)致在計算教學(xué)中滲透解決問題的方式單一且無力,經(jīng)常會出現(xiàn)不必要的錯誤。如何有效地在計算教學(xué)中滲透解決問題教學(xué)成為教師最為棘手的問題,如何讓學(xué)生不再為準(zhǔn)確解決實際問題而苦惱成了擺在教師面前的一道大課題。筆者僅以青島版小學(xué)數(shù)學(xué)低中年級計算教學(xué)中滲透解決問題的策略談幾點思考與做法。
【關(guān)鍵詞】教學(xué)情境? 多樣化? 策略
【中圖分類號】G623.5 ? 【文獻標(biāo)識碼】A 【文章編號】2095-3089(2021)41-0187-03
一、合理創(chuàng)設(shè)情境,明確問題方向
青島版小學(xué)數(shù)學(xué)教材采用情境串引發(fā)問題串的形式,將計算教學(xué)編排在情境圖中,既有數(shù)學(xué)價值,又有人文價值,能促使學(xué)生積極主動地獲取新知識。在利用教材,創(chuàng)設(shè)計算教學(xué)情境時,教師應(yīng)靈活處理,恰當(dāng)呈現(xiàn),為滲透解決問題明確方向。
1.整體入手,感知事件
中低年級計算單元的信息窗,均從學(xué)生已有的生活實際出發(fā),創(chuàng)設(shè)了豐富的情境,讓學(xué)生在感興趣的話題中引發(fā)學(xué)習(xí)。由于中低年級學(xué)生年齡小,生活經(jīng)驗不豐富,出示信息窗后直接詢問“你看到了什么”或“你看到了哪些信息”,有時不利于學(xué)生的整體思考和理解,且浪費了學(xué)生注意力集中的“黃金十五分鐘”。因此,教師可以通過聲情并茂地導(dǎo)語,介紹事件的大概,或講故事導(dǎo)出情境圖,也可以讓學(xué)生看情境圖講數(shù)學(xué)故事,從而讓學(xué)生了解事件,整體感知,為學(xué)生有目的的觀察信息窗掃除障礙。
2.分層觀察,突出重點
心理學(xué)研究表明,人的知覺一般都只能將某個特定事物或事物的某一部分當(dāng)做注意對象,對復(fù)雜的事物往往不能清晰、準(zhǔn)確地感知它的全貌?!暗捎谥械湍昙売嬎憬虒W(xué)單元的情境圖色彩豐富、信息量多,而中低年級學(xué)生生活經(jīng)驗缺乏、觀察力差,注意力往往會偏離核心的數(shù)學(xué)問題,或者觀察某個細節(jié)時會流連忘返,很難集中精力學(xué)習(xí)?!盵1]因此,處理情境圖時,教師可做適當(dāng)分層、分割,幫助學(xué)生從數(shù)學(xué)的角度思考、理解。
3.動態(tài)演示,凸顯過程
中低年級教材中情境圖的呈現(xiàn)是通過一定的生活場景、活動場景以靜態(tài)形式呈現(xiàn)的,缺少了必要的思維過程。因此教師有必要挖掘教材中所包含的動態(tài)因素,化“靜”為“動”,凸顯知識形成的過程,讓學(xué)生在演示過程中發(fā)現(xiàn)問題、提出問題,進而促進解決問題。
4.適度補充,幫助理解
受畫圖技巧和學(xué)生理解的影響,有時教材為學(xué)生創(chuàng)設(shè)的情境,信息呈現(xiàn)不明卻,容易讓老師和學(xué)生產(chǎn)生誤解,致使個人有各自的理解,從而導(dǎo)致問題解決理解不一致。因此,教師可以根據(jù)學(xué)生現(xiàn)有的知識起點和生活實際,補充一定的背景材料,或?qū)D例進行說明,使學(xué)生對于情境圖有一致的認識。
二、系統(tǒng)整理信息,建立問題表象
“在情境圖中找信息、提問題,是一種數(shù)學(xué)能力,也是一種思維方法?!盵2]實際教學(xué)中,我們要培養(yǎng)學(xué)生良好的找信息、提問題習(xí)慣,通過系統(tǒng)板書呈現(xiàn)條件和問題,把情境圖表現(xiàn)的實際問題加工成規(guī)范的數(shù)學(xué)語言,形成問題表象。
1.有序觀察,初步思考
情境圖給學(xué)生創(chuàng)設(shè)了一個生動的學(xué)習(xí)場景,但通常解決問題所需要的數(shù)學(xué)信息是以圖畫、對話、表格、文字等多種形式鑲嵌其間的,且呈現(xiàn)一定的無序性、隱蔽性,很難形成對問題的完整印象。因此,指導(dǎo)學(xué)生從紛亂的現(xiàn)實情境中收集、整理數(shù)學(xué)信息,并按事情發(fā)生、發(fā)展的線索把,把相關(guān)聯(lián)的信息說清楚、說完整、說準(zhǔn)確,顯得尤為重要。同樣,提出問題的過程,不僅僅是羅列信息的過程,它需要學(xué)生努力發(fā)現(xiàn)相關(guān)聯(lián)條件之間的聯(lián)系,進而生成新的、有用的數(shù)學(xué)問題。教學(xué)中,教師應(yīng)注重培養(yǎng)學(xué)生有序?qū)ふ蚁嚓P(guān)聯(lián)信息的能力,以及根據(jù)相關(guān)聯(lián)信息提有用問題的能力,從而孕育“由條件想問題”的綜合思路。
2.系統(tǒng)板書,感知結(jié)構(gòu)
學(xué)生找信息、提問題的過程,緊靠口頭稍縱即逝的互問互答,還不足以起到深化認識、激發(fā)思考的作用。教學(xué)中,教師應(yīng)根據(jù)學(xué)生的回答,有選擇性、有目的地、條理地,真正實現(xiàn)把情境圖表現(xiàn)的實際問題加工成規(guī)范的數(shù)學(xué)語言。抬眼就能看到了條件和問題,不僅有助于學(xué)生完整感知數(shù)學(xué)問題,形成完整的問題結(jié)構(gòu),而且有助于學(xué)生理解題意,激活隱含在個體經(jīng)驗里的解題策略,形成躍躍欲試的參與狀態(tài)。
3.完整讀題,激發(fā)思考
完整地讀信息和問題的過程,就是讓學(xué)生在看、讀、想的活動中,練習(xí)用三句話或幾句話來描述事件的變化過程,實際上就是讓學(xué)生積累從現(xiàn)實情境中抽象出數(shù)學(xué)問題的經(jīng)驗,不僅可以培養(yǎng)學(xué)生收集信息、表述信息、加工信息的能力,而且可以促進學(xué)生的思維條理化、清晰化。問題解答是否成功,首先就取決于學(xué)生對問題內(nèi)容的明確程度。讀的過程,促使學(xué)生從事件發(fā)生、發(fā)展的順序中建構(gòu)數(shù)量關(guān)系,激活已有知識,為理解題意和探索算法提供了必要的經(jīng)驗支持。此處的完整讀題,可采用默讀、齊讀、指名讀等方式進行。
三、重視運算理解,滲透解題策略
中低年級數(shù)學(xué)學(xué)習(xí)內(nèi)容主要是加減乘除四則運算,是為整個數(shù)學(xué)計算學(xué)習(xí)打基礎(chǔ)的重要階段,也是理解運算意義、為合理解決問題打基礎(chǔ)的重要階段。因此,中低年級的計算教學(xué)應(yīng)引導(dǎo)學(xué)生根據(jù)已經(jīng)抽象出來的數(shù)學(xué)問題,分析其中的數(shù)量關(guān)系,探索解決問題的方法,這是計算教學(xué)中滲透解決問題教學(xué)的重點環(huán)節(jié),是引發(fā)學(xué)生對加減乘除法運算意義理解、豐富數(shù)學(xué)活動經(jīng)驗,感悟數(shù)學(xué)策略思想的要害所在。
1.打破沙鍋追問意義
在找信息、提問題、反復(fù)讀題的基礎(chǔ)上,學(xué)生對從情境中抽象出的數(shù)學(xué)問題已有了充分感知,教師通常點名列算式后,便開始算理算法的探究。我校師生調(diào)查發(fā)現(xiàn),能根據(jù)題目準(zhǔn)確列式的學(xué)生并不是全部,有時甚至不到一半,隨著年級的升高情況越明顯。究其原因,學(xué)生已有經(jīng)驗和認知能力各不相同,接受新知有快有慢,尤其是班級學(xué)習(xí)處于后30%的學(xué)生遇到的學(xué)習(xí)困難更多,因此造成解決問題能力的兩極分化現(xiàn)象嚴重。教學(xué)此環(huán)節(jié)時,教師可在提出問題后靜等片刻,給學(xué)生留有思考時間,讓每個學(xué)生都能參與其中。學(xué)生正確列出算式后,教師不要急于進行下個環(huán)節(jié),可追問:為什么這樣列式?引發(fā)學(xué)生梳理數(shù)量關(guān)系,深化加減乘除四則運算意義的理解,為今后學(xué)生獨立解決問題做好鋪墊。
2.借助操作積累經(jīng)驗
“分析信息之間的關(guān)系,并用數(shù)學(xué)語言表述數(shù)量關(guān)系,形成解決問題的思路,是解決實際問題的核心?!盵3]數(shù)量關(guān)系簡單的數(shù)學(xué)問題,可通過“追問為什么”的形式展開;數(shù)量關(guān)系復(fù)雜或理解起來有困難時,則需要教師為學(xué)生提供充分的可操作體驗,擺一擺,畫一畫,使抽象的思考直觀化、形象化,幫助學(xué)生清楚、完整、有條理地表述自己的思維過程,積累解決問題的活動經(jīng)驗。
3.滲透策略形成能力
古人云,授之以魚不如授之以漁。教學(xué)中,教師可根據(jù)所要解決問題,靈活滲透解決問題的策略,給學(xué)生提供一個思考的“腳手架”,讓他們在解決問題的過程中找到支撐,掌握策略,形成能力。中低年級可滲透的解決問題策略的形式是多樣的,如畫圖、列表、嘗試、假設(shè)、分析和綜合等等。就某一個問題而言,求解的策略往往是多樣的而非唯一的;然而就某課時內(nèi)容而言,策略卻又是需要突出其一而不應(yīng)該面面俱到,否則新的策略就不能很順當(dāng)?shù)剡M入學(xué)生原有的“策略庫”。解決問題策略的產(chǎn)生,以“觀察、思考、猜測、交流、推理”等富有思維成分的活動過程為載體,因此,教師不能包辦代替,應(yīng)精心設(shè)計探究活動,觸發(fā)學(xué)生內(nèi)心深處的“知識生長點”,讓學(xué)生對解決問題的策略不斷反思、不斷內(nèi)化,培養(yǎng)學(xué)生數(shù)學(xué)思維能力,幫助學(xué)生形成數(shù)學(xué)思想。
4.抓住契機對比反思
讓學(xué)生自主探索解決問題的方法,是教師的普遍共識。但有時,我們往往只關(guān)注學(xué)生的算法和結(jié)果是否正確,而忽視了解題思路的呈現(xiàn),因此,部分學(xué)生很難將例題學(xué)習(xí)的經(jīng)驗遷移到新的問題情境中去,從而形成例題講解容易、自主練習(xí)困難的尷尬局面。究其原因不難發(fā)現(xiàn),“學(xué)生獨立解決問題往往是在生活經(jīng)驗的支持下進行的,他們雖然解決了紅點、綠點的問題,但對解決問題的過程與方法缺乏數(shù)學(xué)層面的反思、比較與提升,其認識表現(xiàn)出明顯的情境性與局限性?!盵4]因此,在學(xué)生積累一定的解題經(jīng)驗之后,教師應(yīng)及時組織學(xué)生回顧自己的解題過程與方法,從解題經(jīng)驗中提取可操作的成分。
四、關(guān)注算理探究,領(lǐng)悟解決方式
1.借助直觀,探究算理,滲透解決問題方式多樣性
算理教學(xué)一直以來都是計算教學(xué)的重中之重,往往也是教師忽視或效果打折扣的環(huán)節(jié)。算理教學(xué)解決要解決為什么這樣計算的問題,僅靠想一想、說一說,有時很難厘清。實踐證明,借助直觀操作,讓學(xué)生擺一擺,圈一圈,畫一畫,理一理,不僅有助于支撐算理,推進算法,而且有助于學(xué)生體會解決問題方式的多樣性。
2.對比論證,優(yōu)化算法,凸顯解決問題方式簡潔性
計算教學(xué)重視算法多樣化,同時提倡優(yōu)化算法。算法優(yōu)化的過程,是學(xué)生認知去粗取精的過程,也是感悟解決問題簡潔性的過程。教學(xué)中,教師應(yīng)注意及時引導(dǎo)學(xué)生回顧算法,對比解決過程,找到問題解決的最佳途徑,提高計算效率的同時,增強篩選解決問題方式的能力。
五、精心設(shè)計練習(xí),提升運用能力
1.講練結(jié)合,及時鞏固
學(xué)生解決問題能力的培養(yǎng)并非是一節(jié)課所能完成的,而是一個連續(xù)漸進、螺旋上升的過程。在探究環(huán)節(jié)學(xué)生初步體驗解決問題的思維方法后,教師應(yīng)及時提供題材豐富、數(shù)量關(guān)系多變的問題情境,讓學(xué)生在應(yīng)用方法解決問題的過程中,實現(xiàn)陳述性知識向程序性知識的轉(zhuǎn)化。
2.分層設(shè)計,凸顯能力
設(shè)計鞏固練習(xí)題目時,教師的教學(xué)視點不能僅放在單純地口算、筆算上,應(yīng)結(jié)合教學(xué)目標(biāo)設(shè)計豐富的練習(xí)情境,在解決實際問題中,突顯學(xué)生對基本策略的體驗。練習(xí)題可呈現(xiàn)由易到難、由單一到復(fù)雜的編排梯度,檢測知識掌握的同時,發(fā)展學(xué)生的應(yīng)用意識和學(xué)習(xí)能力。有挑戰(zhàn)的練習(xí)的過程,是學(xué)生數(shù)學(xué)經(jīng)驗、思維方法得以展示的過程,隱藏在學(xué)生創(chuàng)造性勞動成果背后的,是分析內(nèi)在聯(lián)系、綜合的思維方法的充分歷練。
六、培養(yǎng)良好習(xí)慣,提高學(xué)習(xí)效率
1.培養(yǎng)審題習(xí)慣
課堂教學(xué)中,我們經(jīng)??吹竭@樣一幕:教師苦口婆心地強調(diào)“好好讀題,讀懂了再做”,但學(xué)生總會“眼光如閃電,做題憑經(jīng)驗”,結(jié)果可想而知??梢哉f,很多時候?qū)W生解決問題出錯,不能僅歸結(jié)為不仔細、不會,很重要的原因在于學(xué)生沒有養(yǎng)成良好的審題習(xí)慣。認真審題是一種良好的學(xué)習(xí)習(xí)慣,是通過細心認真地觀察,抓住關(guān)鍵信息,認識問題本質(zhì),合理地選擇解題方法的過程,是長期實踐和應(yīng)用形成的比較穩(wěn)固的學(xué)習(xí)行為。教學(xué)中,教師應(yīng)從認真地讀、思考著畫、清晰地說等環(huán)節(jié),教給學(xué)生審題的具體方法,培養(yǎng)學(xué)生良好的審題習(xí)慣。
2.培養(yǎng)檢查習(xí)慣
在數(shù)學(xué)知識的探索中,有錯誤是難免的。我們經(jīng)常抱怨,學(xué)生做完題之后不知道檢查,或者根本就是走馬觀花,檢查不出錯誤。究其原因,是因為學(xué)生沒有掌握檢查的步驟與方法,致使檢查無從下手。教學(xué)中,教師應(yīng)考慮學(xué)生年齡特點和認知規(guī)律,結(jié)合具體題型,幫助學(xué)生總結(jié)檢查的方法與步驟,促使學(xué)生養(yǎng)成良好的檢查習(xí)慣。
計算教學(xué)與解決問題教學(xué)是義務(wù)教育階段小學(xué)數(shù)學(xué)教學(xué)中密不可分兩大內(nèi)容,教師們只有根據(jù)學(xué)生的認知發(fā)展水平和已有的經(jīng)驗,不斷調(diào)整教學(xué)策略,時刻注重啟發(fā)式和因材施教,才能實現(xiàn)計算教學(xué)與問題解決教學(xué)的雙贏。
參考文獻:
[1]許曉玲.低段數(shù)學(xué)“主題圖”教學(xué)的策略探究[J].小學(xué)教學(xué)參考,2013
[2]張向林.問題解決基本策略的探索與實踐[J].小學(xué)教學(xué)參考,2015
[3]李良興.小學(xué)數(shù)學(xué)課堂教學(xué)中探究性學(xué)習(xí)活動的實踐與思考[J].數(shù)碼設(shè)計(下),2019
[4]薛婷蕓.幫助學(xué)生搭建解決問題的腳手架——“連乘解決問題”教學(xué)實踐與思考[J].課程教育研究,2012