王向宇,喬學(xué)光,禹大寬
基于雙模LPFG折射率不敏感雙參量傳感器
王向宇1,喬學(xué)光2*,禹大寬1
1西北工業(yè)大學(xué)陜西省光信息技術(shù)重點實驗室,陜西 西安 710072;2西北大學(xué)物理學(xué)院,陜西 西安 710069
環(huán)境折射率和環(huán)境溫度變化是影響光纖應(yīng)變測量誤差的主要因素。本文利用雙模光纖纖芯雙模式(LP01和LP11)支持特性設(shè)計了一款環(huán)境折射率不敏感的雙模光纖(DMF)長周期光纖光柵LPFG)應(yīng)變傳感器。設(shè)計了傳感器模型結(jié)構(gòu),制作了最優(yōu)化參數(shù)的傳感器樣品。實驗測試了DMF-LPFG傳感結(jié)構(gòu)對外部環(huán)境中應(yīng)變、溫度和折射率的響應(yīng)。通過在單模光纖上用紫外激光刻寫的布拉格光柵(FBG)解決了環(huán)境溫度的交叉影響。軸向應(yīng)變實驗結(jié)果表明,該新型結(jié)構(gòu)傳感器在0 με~840 με應(yīng)變范圍內(nèi)其軸向應(yīng)變靈敏度可以達(dá)到-5.4 pm/με,該靈敏度值相比較于普通LPFG有很大提高。溫度在25 ℃~80 ℃范圍內(nèi)其靈敏度為58.86 pm/℃,表現(xiàn)出較好的線性度。同時,傳感器對環(huán)境折射率變化表現(xiàn)出不敏感特性。通過采用雙參數(shù)矩陣對少模LPFG和FBG的應(yīng)變和溫度靈敏度進(jìn)行處理,可以實現(xiàn)雙參數(shù)的同時解調(diào)。該新型復(fù)合光柵結(jié)構(gòu)具有良好的傳感性能和工程應(yīng)用前景。
雙模光纖;長周期光纖光柵;布拉格光柵;應(yīng)變傳感器;溫度補(bǔ)償
光纖光柵(Fiber grating, FG)器件作為一種新型的光無源器件,表現(xiàn)出了獨特的物理和光學(xué)性能,如體積小,波長響應(yīng)快,抗電磁干擾,以及具有全光纖網(wǎng)絡(luò)兼容性等[1-2]。長周期光纖光柵(Long period fiber grating, LPFG)的研究已有幾十年的時間,其中,采用高頻CO2激光刻寫LPFG技術(shù)的提出,對豐富LPFG的設(shè)計和制備,提高信號傳輸質(zhì)量,以及實現(xiàn)批量生產(chǎn)都具有非常重要的意義。雖然,現(xiàn)在LPFG的制備手段已經(jīng)非常豐富,如飛秒激光刻寫[3]、熱誘導(dǎo)刻寫[4]、光纖周期性拼接[5]、以及電弧放電等方法[6],但是由于高頻CO2激光刻寫技術(shù)具有效率高、成本低和制備結(jié)構(gòu)穩(wěn)定等優(yōu)點,依然是最普遍采用的一種寫制技術(shù)。目前,LPFG不僅能夠在單模光纖上實現(xiàn),并且隨著新型光纖的出現(xiàn)其應(yīng)用變得更加豐富,例如被研制出的基于新型特種光纖的有多芯光纖光柵[7]、保偏光纖光柵[8]、光子晶體光柵[9]和少模光柵[10]等。由于不同光纖具有不同的傳感特性,因此在不同類型的光纖上刻寫的LPFG也將會實現(xiàn)不同的傳感性能。
多參數(shù)測量是光纖傳感技術(shù)未來發(fā)展的必然趨勢,尤其是在工程化應(yīng)變傳感應(yīng)用中往往存在環(huán)境折射率改變干擾、溫度串?dāng)_問題,因此有效補(bǔ)償溫度帶來的測量誤差非常重要。少模LPFG的包層模式對外界折射率比較敏感,因此環(huán)境中折射率的變化會對測量帶來偏差。環(huán)境中溫度的變化會引起少模LPFG周期的變化以及多種模式有效折射率的變化。雙模光纖的纖芯僅傳輸兩種較低階模式,因此比SMF在模式控制和分析上具有更高的容量和靈活性。同時,由于LPFG全光纖結(jié)構(gòu)具有更緊湊和靈活的特點,當(dāng)滿足相位匹配條件時,兩個模式之間的轉(zhuǎn)換具有非常高的效率,并且模式轉(zhuǎn)換處的諧振波長對應(yīng)變和溫度敏感。利用這一特性,提出了基于雙模光纖的LPFG傳感器。通過對雙模LPFG結(jié)構(gòu)復(fù)合FBG,能夠解決溫度和應(yīng)變的解耦問題。
本文設(shè)計和實現(xiàn)了一款DMF-LPFG級聯(lián)SMF-FBG的復(fù)合傳感結(jié)構(gòu)。理論分析了傳感器的模式耦合機(jī)理,實驗研究了該傳感器的應(yīng)變特性、溫度特性和對環(huán)境折射率的響應(yīng)特性。研究發(fā)現(xiàn),理論分析和實驗結(jié)論表現(xiàn)出了較好的一致性。其中,在0 με~840 με應(yīng)變范圍內(nèi)該少模LPFG的軸向應(yīng)變傳感靈敏度可以達(dá)到-5.4 pm/με。在25 ℃~80 ℃溫度范圍內(nèi)該傳感器的溫度靈敏度達(dá)到58.86 pm/℃。在不同氣體環(huán)境中測量的光譜移動量為0。同時,實驗分析了SMF-FBG的應(yīng)變特性、溫度特性和折射率敏感特性。結(jié)果表明,在0 με~840 με應(yīng)變范圍內(nèi)FBG的應(yīng)變傳感靈敏度達(dá)到1.2 pm/με,在25 ℃~80 ℃溫度范圍內(nèi)該傳感器的溫度靈敏度達(dá)到10.13 pm/℃,在不同氣體環(huán)境中測量的光譜移動量為0。在應(yīng)變和溫度解耦部分,通過監(jiān)測LPFG和FBG波長的變化帶入雙參數(shù)矩陣可以實現(xiàn)兩種物理量的解耦。
圖1(a)給出了新型復(fù)合傳結(jié)構(gòu)的結(jié)構(gòu)圖,其中雙模LPFG的長度為20 mm,刻寫的FBG長度為10 mm。雙模LPFG采用高頻CO2激光刻寫,衰減波長為1530 nm,周期為=800 μm,周期數(shù)為=20。本結(jié)構(gòu)中采用紫外曝光技術(shù)在LPFG右側(cè)刻寫中心波長為1550 nm的FBG。通過分析可知,DMF-LPFG結(jié)構(gòu)對應(yīng)變和溫度會有響應(yīng),同時FBG的波長也會受到環(huán)境溫度和應(yīng)變的影響,故選擇簡單的雙參數(shù)矩陣可以實現(xiàn)對于兩種物理量的解耦。
本文對SMF-FBG不再作詳細(xì)介紹,主要研究DMF-LPFG的設(shè)計原理和制備過程。DMF-LPFG的光譜是諧振波長為LP01模式和LP11模式轉(zhuǎn)換的結(jié)果,為了證明這一點,需要設(shè)計一個驗證性的實驗。美國Optilab公司生產(chǎn)的TWL-C-R型號可調(diào)諧激光器輸出窄帶激光=1536 nm,當(dāng)光經(jīng)過SMF-雙模光纖后光場模場分布圖如圖1(b)所示;通過SMF-雙模LPFG如圖1(c)所示;在雙模LPFG后面添加偏振片后被紅外CCD捕獲,此時可從紅外CCD中查看光斑圖像,如圖1(d)和1(e)所示。圖1(f)是制備的LPFG結(jié)構(gòu)圖,可以發(fā)現(xiàn)激光直接加工的表面會出現(xiàn)一定塌陷,這就形成了非對稱的LPFG結(jié)構(gòu)。
圖1 (a) 傳感器結(jié)構(gòu);(b) 激光經(jīng)過單模-少模后測量的場分布;(c) 激光經(jīng)過單模-少模-LPFG后測量的場分布;(d), (e) 激光經(jīng)過單模-少模-LPFG-偏振片后測量的場分布;(f) LPFG的顯微鏡圖像
本文采用ATLEX-FBG CO2激光器刻寫系統(tǒng)制備DMF-LPFG,可調(diào)諧輸出功率為0~30 mW,通過聚焦透鏡匯聚成寬度最小達(dá)到10 μm的光斑,如圖2所示。首先在單模光纖中間熔接一段長度為2 cm的雙模光纖,然后將光纖一端固定在微位移平移臺上,另一端懸掛一個5 g的砝碼,并且確保雙模光纖處于聚焦透鏡下。LPFG制備過程中需要時時檢測光譜的變化,因此要連接光源和光譜儀。本文采用的CHINA-FIBER寬帶光源(amplified spontaneous emission,ASE)輸出波長范圍為1250 nm~1650 nm,光源輸出光功率最大為100 mW。測量過程使用的光譜儀型號是YOKOGAWA AQ6370 (optical spectrum analyzer, OSA),縱坐標(biāo)能量最小分辨率是0.01 dB,橫坐標(biāo)波長最小分辨率是10 pm。
實驗中刻寫的周期為800 μm的LPFG的光譜圖如圖3中紅色曲線所示,在1536 nm的波長處出現(xiàn)了一個明顯的諧振波長。實際傳感中為了提高檢測速度要求使用的光源范圍越窄越好,而LPFG的衰減谷位于1520 nm~1570 nm區(qū)間內(nèi)且光譜穩(wěn)定性好,因此后面直接討論該區(qū)間的光譜情況。
圖2 DMF-LPFG寫制的實驗裝置
圖3 DMF-LPFG的透射光譜
本文采用折射率階躍型的雙模式少模光纖,即僅只允許LP01和LP11模式傳輸,這樣排除了SMF-DMF-SMF結(jié)構(gòu)產(chǎn)生模間干涉現(xiàn)象的可能。入射光從SMF的一端入射,由于SMF中只存在唯一的模式LP01且模式本身具有的正交特性,因此光從SMF傳輸?shù)紻MF中時,LP01不會耦合成為非對稱的LP11。當(dāng)光在DMF中遇到非對稱的LPFG結(jié)構(gòu)時,將發(fā)生LP01到LP11模式的轉(zhuǎn)換現(xiàn)象。在DMF和輸出SMF的熔接點處,已經(jīng)存在的LP11模式并不能耦合成LP01模式而進(jìn)入到輸出SMF中,也就不能通過FBG被光譜儀接收。本文提出的DMF-LPFG結(jié)構(gòu)能夠有效實現(xiàn)模式轉(zhuǎn)換,在光譜中得到透過損耗波谷。該新型結(jié)構(gòu)傳感器模式耦合發(fā)生在光纖纖芯當(dāng)中,因此DMF-LPFG結(jié)構(gòu)對環(huán)境折射率變化不敏感,適合在不同折射率環(huán)境中對溫度和軸向應(yīng)變進(jìn)行測量。其結(jié)構(gòu)中用到的非對稱雙模LPFG僅僅涉及到LP01和LP11模式之間的相互耦合,因此雙模LPFG的相位匹配條件則表示為
雙模LPFG周圍溫度發(fā)生變化時,光纖的熱光效應(yīng)和熱膨脹將會起作用。因此,當(dāng)溫度發(fā)生改變時,LPFG的纖芯折射率和包層折射率會隨之改變,光柵周期由于熱脹冷縮也將發(fā)生改變,這會導(dǎo)致LPFG的諧振波長發(fā)生漂移。DMF-LPFG的溫度靈敏度公式可以表示為
當(dāng)雙模LPFG受到軸向應(yīng)變時,其光柵性質(zhì)的改變與普通LPFG相似。因此,在假設(shè)其他條件不變時,通過監(jiān)測DMF-LPFG波長的漂移量可以實現(xiàn)對外界軸向應(yīng)變的測量。DMF-LPFG的軸向應(yīng)變靈敏度為
通過以上分析可知,彈光效應(yīng)主要決定該新型DMF-LPFG結(jié)構(gòu)的軸向應(yīng)力應(yīng)變靈敏度。
當(dāng)溫度和應(yīng)變等參量發(fā)生改變時,會引起B(yǎng)的線性變化。根據(jù)耦合模式理論,B滿足:
其中:B是FBG波長,eff為所使用的光纖纖芯的有效折射率,是對應(yīng)的光柵周期。
FBG的溫度靈敏度可以表示為
其中:為刻寫光纖的熱膨脹系數(shù),為刻寫光纖的熱光系數(shù)。
FBG的應(yīng)變靈敏度可以表示為
為了實現(xiàn)環(huán)境溫度與應(yīng)變的雙參數(shù)解耦,將刻寫有LPFG的雙模少模光纖與SMF熔接,熔接之后用紫外激光在SMF上刻寫FBG。在測量過程中,當(dāng)環(huán)境溫度改變了Δ,應(yīng)變改變了Δ,ΔL和ΔB分別代表監(jiān)測的少模LPFG和FBG的波長所對應(yīng)的波長變化量??梢缘玫皆摻Y(jié)構(gòu)的雙參數(shù)矩陣為
從上式中可以發(fā)現(xiàn),當(dāng)?shù)玫缴倌PFG和FBG溫度響應(yīng)靈敏度及應(yīng)變響應(yīng)靈敏度,同時從OSA得到該結(jié)構(gòu)反射譜波長變化量,結(jié)合式(7)可以計算出外界環(huán)境中溫度的變化量和施加應(yīng)變的變化量,最終實現(xiàn)環(huán)境溫度和應(yīng)變的雙物理量的解耦。
應(yīng)變傳感實驗裝置如圖4所示。首先將傳感結(jié)構(gòu)放置在微位移平臺上并連接好應(yīng)變測量系統(tǒng),實驗中受軸向應(yīng)變的部分長度=14.3 cm。通過調(diào)節(jié)三維位移平臺,使得新型復(fù)合光柵結(jié)構(gòu)在軸向受到拉伸,即復(fù)合結(jié)構(gòu)受到軸向上應(yīng)變作用,在軸向上每次使復(fù)合結(jié)構(gòu)拉伸的軸向形變量為0.02 mm,則每次提供的應(yīng)變量為0.02 mm/14.3 cm=140 με。圖5(a)展示了LPFG結(jié)構(gòu)的應(yīng)變響應(yīng)。由圖可得,隨著應(yīng)變增大,雙模LPFG的諧振波長發(fā)生紅移,諧振波長處的透過率單調(diào)減小。圖5(b)展示了LPFG結(jié)構(gòu)的諧振波長與應(yīng)變的關(guān)系曲線。圖中紅色數(shù)據(jù)點為LPFG在不同軸向應(yīng)變下的波長值,黃色數(shù)據(jù)表示強(qiáng)度衰減變化。從圖中可以發(fā)現(xiàn),該新型結(jié)構(gòu)傳感器在0 με~840 με軸向應(yīng)變范圍內(nèi),其靈敏度達(dá)到-5.4 pm/με,相比在SMF上用CO2激光刻寫的LPFG,其軸向應(yīng)變靈敏度具有較大的提高。
圖4 應(yīng)變測量裝置
在軸向應(yīng)變測量時一般伴隨著溫度串?dāng)_,因此對該結(jié)構(gòu)進(jìn)行了溫度測試。將傳感器分裝好拉直并固定在溫箱中,溫箱的溫度從室溫開始上升,25 ℃逐步到80 ℃,其響應(yīng)的溫度分辨率為0.1 ℃。在不同的溫度步長下記錄傳感器透射光譜的波長變化,其對應(yīng)的實驗光譜如圖6(a)所示。當(dāng)溫度升高時,雙模LPFG的諧振光譜紅移。將不同溫度值下的對應(yīng)波長進(jìn)行線性擬合,可以得到少模LPFG的溫度靈敏度達(dá)到58.86 pm/℃。在溫度測量過程中對FBG的響應(yīng)也進(jìn)行的測試,實驗結(jié)果表明,F(xiàn)BG的應(yīng)變靈敏度為1.2 pm/με,溫度靈敏度是10.13 pm/℃。將LPFG與FBG諧振波長的變化情況代入式(7)中,即可計算出外界環(huán)境中溫度與應(yīng)變的變化值,從而達(dá)到同時測量溫度和應(yīng)變的目的,如式(8)所示:
本文提出的非對稱LPFG-FBG復(fù)合結(jié)構(gòu)中的FBG對環(huán)境折射率不敏感,是由于其刻寫在纖芯區(qū),但是LPFG的柵格在包層區(qū)也存在,這是分析LPFG環(huán)境折射率敏感特性的必要性。首先,原理上是由LP01模式和LP11模式之間的相互耦合產(chǎn)生的1536 nm處的損耗谷,因此根據(jù)雙模LPFG的耦合模公式,可以得到設(shè)計的非對稱DMF-LPFG結(jié)構(gòu)對外界環(huán)境折射率的靈敏度公式為
本文提出了新型DMF-LPFG與SMF-FBG級聯(lián)結(jié)構(gòu)光纖傳感器,實現(xiàn)了對溫度與應(yīng)變的同時測量。詳細(xì)介紹了DMF-LPFG的制備過程、傳感機(jī)理和實驗結(jié)果。實驗結(jié)果表明,在0 με~840 με應(yīng)變范圍內(nèi)該LPFG的應(yīng)變傳感靈敏度達(dá)到-5.4 pm/με,在25 ℃~80 ℃溫度范圍內(nèi)該傳感器的溫度靈敏度達(dá)到58.86 pm/℃,在不同氣體環(huán)境中測量的光譜移動量為0,并且給出了FBG-LPFG的雙參數(shù)解調(diào)矩陣。通過理論和實驗證明了復(fù)合結(jié)構(gòu)的環(huán)境折射率不敏感特性,這對于抵抗環(huán)境干擾具有重要意義。本文提出的復(fù)合光柵結(jié)構(gòu)具有良好的傳感性能和工程應(yīng)用前景。
圖6 溫度測量實驗數(shù)據(jù)。(a) 光譜隨溫度漂移;(b) 溫度靈敏度擬合
圖7 折射率測量實驗數(shù)據(jù)
[1] Vengsarkar A M, Lemaire P J, Judkins J B,. Long-period fiber gratings as band-rejection filters[J]., 1996, 14(1): 58–65.
[2] James S W, Tatam R P. Optical fibre long-period grating sensors: characteristics and application[J]., 2003, 14(5): R49–R61.
[3] Liao C R, Wang Y, Wang D N,. Femtosecond laser inscribed long-period gratings in all-solid photonic bandgap fibers[J]., 2010, 22(6): 425–427.
[4] Martinez-Rios A, Monzon-Hernandez D, Torres-Gomez I. Highly sensitive cladding-etched arc-induced long-period fiber gratings for refractive index sensing[J]., 2010, 283(6): 958–962.
[5] Bai Z Y, Zhang W G, Gao S C,. Compact long period fiber grating based on periodic micro-core-offset[J]., 2013, 25(21): 2111–2114.
[6] Rego G, Okhotnikov O, Dianov E,. High-temperature stability of long-period fiber gratings produced using an electric arc[J]., 2001, 19(10): 1574–1579.
[7] Jiang Y H, Fu H W, Zhang J L,. Simultaneous measurement of transverse pressure and temperature based on multi-core fiber cascaded with fiber Bragg grating[J]., 2017, 46(1): 0106002. 蔣友華, 傅海威, 張靜樂, 等. 基于多芯光纖級聯(lián)布喇格光纖光柵的橫向壓力與溫度同時測量[J]. 光子學(xué)報, 2017, 46(1): 0106002.
[8] Chu J L, Shen C Y, Feng Q,. Simultaneous measurement of strain and temperature based on a long-period grating with a polarization maintaining fiber in a loop mirror[J]., 2014, 20(1): 44–47.
[9] Yang M W, Wang D N, Wang Y,. Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber[J]., 2010, 18(3): 2183–2189.
[10] Liu Q, Bi W H, Fu X H,. Refractive index sensing characteristic of superimposed long period gratings on few mode fiber[J]., 2018, 47(1): 0106001.
劉強(qiáng), 畢衛(wèi)紅, 付興虎, 等. 基于少模光纖長周期光柵疊柵的折射率傳感特性[J]. 光子學(xué)報, 2018, 47(1): 0106001.
Refractive index insensitive two parameter sensor based on dual mode LPEG
Wang Xiangyu1, Qiao Xueguang2*, Yu Dakuan1
1Northwestern Polytechnical University, the School of Science, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, Shaanxi 710072, China;2Northwest University, Department of Physics, Xi’an, Shaanxi 710069, China
(a) The structure of proposed sensor; (b) The measured field distribution emitted from DMF without LPFG; (c) The measured field distribution emitted from DMF-LPFG; (d), (e) The measured field distribution after passing through the LPFG-polarizer; (f) Microscopic image of LPFG
Overview:Fiber Bragg gratings (FGs) and long period fiber gratings (LPFGs) are novel passive optical devices, which have been investigated for decades due to their unique physical and optical properties. The proposal of high-frequency CO2laser writing LPFG technology is of great significance to enrich the design and preparation of the LPFG, improve the quality of signal transmission, and realize mass production. Multi-parameter measurement is an inevitable trend in the future development of optical fiber sensing technology. Especially, there are some problems such as the interference of environmental refractive index changes and temperature crosstalk for the application of engineering strain sensing. It is very important to effectively compensate the measurement error caused by temperature changes. The cladding mode of less-mode LPFGs is sensitive to the external refractive index, so the change in ambient refractive index will lead to the measurement deviation. The change in ambient temperature will cause the change of the LPFG period and the effective refractive index of various modes. The core of dual-mode fibers only transmits two low-order modes, so it has higher capacity and flexibility in mode control and analysis than that of single-mode fiber (SMFs). At the same time, compared with the SMF, the all fiber structure of the LPFG is more compact and flexible. Their conversion efficiency between the two modes is very high and the resonant wavelength at the mode conversion is sensitive to the strain and temperature when the phase matching condition is satisfied. Based on this characteristic, a LPFG sensor based on dual-mode fiber is proposed. The variation of ambient refractive index and ambient temperature is the main factor affecting the error of optical fiber strain measurement. In this paper, a strain sensor based on the dual-mode fiber (DMF) LPFG is designed. The sensor model structure was designed, and the sensor samples with optimized parameters were produced. The experiment tested the response of the DMF-LPFG sensing structure to the strain, temperature and refractive index in the external environment. Through the Bragg grating (fiber Bragg grating, FBG) written on the single-mode fiber with a UV laser, the cross effect of the ambient temperature is solved. The results of the axial strain experiment show that the axial strain sensitivity of the new structure sensor can reach -5.4 pm/με in the strain range of 0~840 με, which is greatly improved compared to the ordinary LPFG. The sensitivity is 58.86 pm/℃ in the temperature range of 25 ℃~80 ℃, showing good linearity. At the same time, the sensor is insensitive to changes in ambient refractive index. The dual-parameter matrix is used to process the strain and temperature sensitivity of the few-mode LPFG and FBG to achieve dual-parameter simultaneous demodulation. The new composite grating structure has good sensing performance and engineering application prospects.
Wang X Y, Qiao X G, Yu D KRefractive index insensitive two parameter sensor based on dual mode LPEG[J]., 2021, 48(3): 200247; DOI:10.12086/oee.2021.200247
版權(quán)所有?2021中國科學(xué)院光電技術(shù)研究所
Refractive index insensitive two parameter sensor based on dual mode LPEG
Wang Xiangyu1, Qiao Xueguang2*, Yu Dakuan1
1Northwestern Polytechnical University, the School of Science, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, Shaanxi 710072, China;2Northwest University, Department of Physics, Xi’an, Shaanxi 710069, China
The variation of ambient refractive index and ambient temperature is the main factor affecting the error of optical fiber strain measurement. In this paper, a strain sensor based on the dual-mode fiber (DMF) long period fiber grating (LPFG) is designed. The sensor model structure was designed, and the sensor samples with optimized parameters were produced. The experiment tested the response of the DMF-LPFG sensing structure to the strain, temperature and refractive index in the external environment. Through the Bragg grating (fiber Bragg grating, FBG) written on the single-mode fiber with a UV laser, the cross effect of the ambient temperature is solved. The results of the axial strain experiment show that the axial strain sensitivity of the new structure sensor can reach -5.4 pm/με in the strain range of 0 με~840 με, which is greatly improved compared to the ordinary LPFG. The sensitivity is 58.86 pm/℃ in the temperature range of 25 ℃~80 ℃, showing good linearity. At the same time, the sensor is insensitive to changes in ambient refractive index. The dual-parameter matrix is used to process the strain and temperature sensitivity of the few-mode LPFG and FBG to achieve dual-parameter simultaneous demodulation. The new composite grating structure has good sensing performance and engineering application prospects.
dual mode fiber; LPFG; FBG; strain sensor; temperature compensation
National Programs for Science and Technology Development (61327012), National Natural Sciene Foundation of China (61735014), National Key Scientific Instrument and Equipment Development Project (61927812), and National Key Research and Development Plan (2017YFB0405502)
10.12086/oee.2021.200247
TN253
A
* E-mail: xgqiao@nwu.edu.cn
王向宇,喬學(xué)光,禹大寬. 基于雙模LPFG折射率不敏感雙參量傳感器[J]. 光電工程,2021,48(3): 200247
Wang X Y, Qiao X G, Yu D KRefractive index insensitive two parameter sensor based on dual mode LPEG[J]., 2021, 48(3): 200247
2020-07-04;
2020-10-19
國家科技攻關(guān)資助項目(61327012);國家自然科學(xué)基金資助項目(61735014);國家重大科研儀器研制資助項目(61927812);國家重點研究發(fā)展計劃(2017YFB0405502)
王向宇(1977-),男,博士研究生,講師,主要從事光纖傳感與應(yīng)用的研究。E-mail:wxy@xsyu.edu.cn
喬學(xué)光(1955-),男,博導(dǎo),教授,主要從事光纖傳感與應(yīng)用的研究。E-mail:xgqiao@nwu.edu.cn