雷茸糧,李 云*,林嫵媚,張 帥,青建宏,唐林峰
大矢高凸柱面的超精密車削軌跡計算方法研究
雷茸糧1,2,李 云1,2*,林嫵媚1,2,張 帥1,2,青建宏1,2,唐林峰3
1中國科學院光電技術(shù)研究所,四川 成都 610209;2中國科學院大學,北京 100049;3西南石油大學,四川 成都 610500
陣列微結(jié)構(gòu)光學元件廣泛用于各種光束勻化場合,而常規(guī)的加工方法難以滿足大矢高凸柱面陣列的精度要求。本文采用超精密車削成型法,分析了影響金剛石車削的主要因素,設計了順序搜索法和二分搜索法尋找車削軌跡,并對比了兩種方法的優(yōu)缺點,結(jié)合Matlab軟件用二分搜索法成功找到車削軌跡及數(shù)控程序,并在超精密車床上進行了車削實驗,得到了表面輪廓誤差在135 nm的大矢高陣列微結(jié)構(gòu)。證明了二分搜索法能夠準確獲得車削軌跡,并且此法可同時適用于球面輪廓和非球面輪廓,具有重要的工程應用價值。
大矢高陣列微結(jié)構(gòu);凸柱面;超精密車削;半徑補償
陣列微結(jié)構(gòu)光學元件廣泛用于激光整形,均勻照明等多種場合。它是一種基于微透鏡陣列的折射型光學元件[1-2]。與衍射光學元件相比,其光能利用率更高,不會產(chǎn)生多級衍射現(xiàn)象,因而在一些高端應用場景,常被優(yōu)先采用。在光刻機照明系統(tǒng)中,均勻照明是保證曝光線條線寬均勻一致的一項重要技術(shù)。通常,用于光刻機照明系統(tǒng)的勻光元件有積分棒、衍射光學元件和微透鏡陣列。其中微透鏡陣列出射孔徑角較大,可以實現(xiàn)大面積照明,且勻光基于折射原理,能避免高階衍射造成較大的能量損耗,并且能保持光的偏振特性[3-5]。
目前針對陣列微結(jié)構(gòu)的加工通常采用基于曝光、顯影、刻蝕等類似半導體生產(chǎn)的工藝。主要包括灰度掩模光刻、電子束刻蝕技術(shù)、光刻膠-熔融技術(shù)、離子交換技術(shù)等加工工藝[2,5-8]。國內(nèi)外許多研究機構(gòu)采用以上的加工方式都獲得了不同的研究成果,如丹麥技術(shù)大學光子工程系的Chakrabarti[9]等人使用光致抗蝕劑涂覆的模具復制方法制作出了光學微透鏡陣列,美國俄亥俄州立大學綜合系統(tǒng)工程系的Zhou[10]等人利用超精密金剛石銑削的方法加工出了微透鏡陣列的模具,并利用模壓復制方法對紅外玻璃進行模壓得到了微透鏡陣列,日本慶應義塾大學科學技術(shù)學院機械工程系Mukaida和Yan[11]兩位學者使用慢刀伺服車削的工藝方法在單晶硅表面上實現(xiàn)了微透鏡陣列的延性域去除超精密車削加工;中國科學院長春光學精密機械研究所史成勇[12]等利用軟光刻和熱形變技術(shù)在PDMS上制作出了半球形微透鏡陣列,天津大學的張雄、宋樂[13]等通過單點金剛石車削對PMMA(聚甲基丙烯酸甲酯)進行加工,獲得七子眼仿生復眼系統(tǒng),臺灣大學采用光刻掩模法及壓彎法在PDMS制作曲面復眼結(jié)構(gòu)模具及成型件[3],中國科學院光電技術(shù)研究所研究團隊采用光刻膠熱熔法及刻蝕技術(shù)制作出大F數(shù)的微透鏡陣列[2]。但在高數(shù)值孔徑的光刻機中采用的柱面微結(jié)構(gòu)陣列矢高大,精度高,僅僅通過曝光、顯影、刻蝕等常規(guī)加工手段往往難以制造[14-16]。超精密車削技術(shù)是獲得陣列微結(jié)構(gòu)的一種高效方式,具有高精度、適合制作大矢高結(jié)構(gòu)等特點,極具加工潛力[17-20]。超精密車削技術(shù)可以使工件的形狀精度達到亞微米級,表面粗糙度達到納米級。加工精度不受微結(jié)構(gòu)矢高增大而降低,適合于陣列微結(jié)構(gòu)的制作。
圖1(a)所示是一種大矢高凸柱面的陣列微結(jié)構(gòu),其具有以下幾個難點:1) 大矢高。所謂大矢高指陣列微結(jié)構(gòu)最高點到最低點的距離,如圖1(b)中所示,取值范圍一般在100 μm以上;2) 接縫小。每個柱面結(jié)構(gòu)之間采用凹縫連接,接縫距離小至幾十微米,如圖1(c)所示,通常需要五軸的超精密車床采用刨削的方式進行加工;3) 高面形精度。陣列微結(jié)構(gòu)的面形精度要求優(yōu)于200 nm,而陣列微結(jié)構(gòu)一般都采用光學曲面,由于光學曲面屬于復雜的幾何面形,要求能夠同時達到較高的表面質(zhì)量和面形精度便比較困難,采用常規(guī)方法進行加工的精度低、成本高、難度大[21]。
圖1 大矢高凸柱面陣列微結(jié)構(gòu)。(a) 大矢高凸柱面; (b) 柱面參數(shù); (c) 柱面接縫
圖2 搜索法原理圖
對于超精密車削加工而言,刀具切削軌跡引起的誤差很大程度上能夠影響整個加工表面的表面質(zhì)量,尤其是面形精度。因此在超精密加工中必須對刀觸點軌跡進行補償,獲得刀位點軌跡,即刀具實際加工軌跡。加工中采用的金剛石刀具的刀尖并不是一個理想的點,而是具有一定半徑的圓弧,因此超精密車削機床將刀尖圓弧圓心作為刀位點進行控制。
尋找刀位點軌跡的方法有兩種,一種是順序搜索法(如圖2所示),一種是二分搜索法(如圖3所示)。順序搜索法,首先將加工輪廓離散化為個點,作為刀觸點P(x, z)。已知刀尖圓弧半徑,刀位點Q從遠處按照一定的步進距離向曲面輪廓移動。每移動一次,計算刀位點與曲面輪廓上每一個刀觸點|PQ|的值,找到min|PQ|。若min|PQ|>,刀位點Q繼續(xù)移動后再次計算min|PQ|值;直到min|PQ|£后,將此時的刀位點Q作為切削時刀位點坐標。這種方法的優(yōu)點是只要步進距離取得足夠小,尋找的切削刀位點坐標就能非常準確;缺點是精度越高,計算量越大,耗時越長,效率低。
二分搜索法同樣先將輪廓離散為若干點,作為刀觸點P(x, z)。已知刀尖圓弧半徑,計算點刀位點Q(x, z+)和曲面輪廓上每一個刀觸點(,)的距離,找到最小距離min。若min£,則將Q作為P點切削時的刀位點;若min>,則將刀位點Q(x,)移到¢(x,z+/2)作為新的刀位點Q的坐標。重復計算Q與(,)的距離,若min£,則將此時的Q作為P點切削時的刀位點;反之,則繼續(xù)將Q(x,z+/2)移到2(x,z+/4)作為新的Q,再重復以上操作,直到若min£為止,此時的Q即為點切削刀位點。這種方法能夠快速找到較為準確的切削刀位點,大大地減小了計算量,節(jié)約了時間。
為驗證二分法尋找車削軌跡的準確性,實驗以球面輪廓為例車削大矢高柱面陣列微結(jié)構(gòu)。圖4是生成的球面輪廓,根據(jù)二分搜索法可以生成圖5中虛線所示的球面輪廓車削軌跡。在采用超精密車削時,若刀尖圓弧半徑大于輪廓的最小曲率半徑,就會發(fā)生干涉切削。為了避免發(fā)生干涉,刀尖圓弧半徑應該滿足條件[21]:
圖3 二分法尋找車削軌跡。(a) 二分法原理圖;(b) 二分法流程圖
圖4 球面輪廓圖
圖5 二分搜索法尋找球面輪廓車削輪廓
柱面微透鏡陣列為直線型排布陣列結(jié)構(gòu),車削工藝中通常需要采用精密五軸機床制作。實驗室的機床是德國LT Ultra MTC400超精密車削機床,機床外形如圖6所示,加工零件的面形精度在100 nm以內(nèi)。受實驗條件限制,本文以兩軸聯(lián)動超精密金剛石車床作為實驗設備研究大矢高凸柱面陣列的車削技術(shù),切削示意如圖7所示。選用車削參數(shù)如表1所示。
在進行切削實驗之前,先計算工件總切削深度。計算生成切削軌跡最高點和最低點之差可以求出切削深度,如圖8所示。
圖6 LT Ultra MTC400車床外觀圖
圖7 切削示意圖
表1 實驗車削參數(shù)
圖8 刀具切深
圖9 球面陣列結(jié)果分析。(a) 測量原始曲線;(b) 最小二乘法擬合曲線;(c) 球面輪廓誤差
切削后球面陣列結(jié)果分析如圖9所示,使用臺階儀對工件進行測量,表面形貌結(jié)果如圖9(a)所示。在檢測過程中,由于檢測平臺傾斜導致檢測走針軌跡與陣列微結(jié)構(gòu)不垂直,因此需先對數(shù)據(jù)進行預處理。預處理的過程是截取圖中一段數(shù)據(jù)進行線性擬合,利用斜率求出旋轉(zhuǎn)角度,這一過程稱之為“調(diào)平”。對調(diào)平后的曲線進行最小二乘法擬合,最小二乘法是常用的曲線擬合方法,在隨機誤差為正態(tài)分布時,通過最大似然法推算出的一個最優(yōu)估計值。它可使測量誤差的平方和最小,因此也被視為從一組測量值中求出一組未知量的最可信賴的方法之一。擬合后尋找曲線的半徑和圓心坐標(,),并根據(jù)圓心坐標(,)和畫出擬合曲線如圖9(b)所示。擬合后的圓心坐標為(0.689,-0.779),為0.788 mm,基本達到要求半徑。圖9(c)為調(diào)平曲線和擬合曲線差值的絕對值曲線,根據(jù)調(diào)平曲線和擬合曲線的偏差值的標準差,得出輪廓誤差為135 nm,基本上達到了該實驗室超精密車削機床的切削面形精度極限值。
大矢高凸柱面陣列微結(jié)構(gòu)是光刻機照明系統(tǒng)中的重要勻光元件,它形貌復雜,特征結(jié)構(gòu)尺度小,矢高大,面形精度高,加工難度極大,采用常規(guī)曝光、顯影的方法難以達到要求。采用超精密車削方式加工,具有諸多技術(shù)優(yōu)勢。本文從研究車削軌跡出發(fā),提出采用二分搜索法計算車削軌跡,并在超精密車削機床上車削了球面柱面陣列微結(jié)構(gòu),獲得了精確的面形。該方法適用于球面、非球面等多種輪廓曲線,并且能夠快速尋找最優(yōu)車削軌跡,對進一步研究五軸超精密機床加工大矢高陣列微結(jié)構(gòu)提供了理論基礎,具有重要的工程應用價值。
[1] Fan Z B. Research on key technology in ultra-precision turning processing of microstructure on cylindrical surface[D]. Changsha: National University of Defense Technology, 2014.
范占斌. 圓柱表面微結(jié)構(gòu)超精密加工關鍵技術(shù)研究[D]. 長沙: 國防科學技術(shù)大學, 2014.
[2] Liu X, Zhang M, Shi L F,. Fabrication method for the microlens array of high-number[J]., 2017, 46(2): 0222004.
劉鑫, 張滿, 史立芳, 等. 一種大數(shù)微透鏡陣列的制備方法[J]. 光子學報, 2017, 46(2): 0222004.
[3] Xu L W. Research on ultra-precision turning technology of microlens array[D]. Harbin: Harbin Institute of Technology, 2015.
徐禮威. 微透鏡陣列超精密切削加工技術(shù)研究[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2015.
[4] Tian F, Liu X L, Zhang X D,. Influence of manufacture error on optical performance of micro lens array[J]., 2016, 36(2): 0222002.
田霏, 劉現(xiàn)磊, 張效棟, 等. 微透鏡陣列加工誤差對光學性能的影響[J]. 光學學報, 2016, 36(2): 0222002.
[5] Xiao Y F, Zhu J, Yang B X,. Design of micro-cylindrical-lens array used for illumination uniformization in lithography systems[J]., 2013, 40(2): 0216001.
肖艷芬, 朱菁, 楊寶喜, 等. 用于光刻機照明均勻化的微柱面鏡陣列設計[J]. 中國激光, 2013, 40(2): 0216001.
[6] Wang H, Dong L H, Zhu G D,. Fabrication method of quartz aspheric microlens array for turning mask[J]., 2018, 45(4): 170671.
王灝, 董連和, 朱國棟, 等. 車削掩模的石英非球面微透鏡陣列制作方法[J]. 光電工程, 2018, 45(4): 170671.
[7] Zhang W G, Dong X C, Du C L. Microlens array imaging-based photolithography technique[J]., 2010, 39(3): 469–472.
張為國, 董小春, 杜春雷. 微透鏡列陣成像光刻技術(shù)[J]. 紅外與激光工程, 2010, 39(3): 469–472.
[8] Shi L F, Ye Y T, Deng Q L,. Method to fabricate artificial compound eye[J]., 2013, 42(9): 2462–2466.
史立芳, 葉玉堂, 鄧啟凌, 等. 制備人工復眼結(jié)構(gòu)的方法[J]. 紅外與激光工程, 2013, 42(9): 2462–2466.
[9] Chakrabarti M, Dam-Hansen C, Stubager J,. Replication of optical microlens array using photoresist coated molds[J]., 2016, 24(9): 9528–9540.
[10] Zhou W C, Zhang L, Yi A Y. Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays[J]., 2018, 171: 294–303.
[11] Mukaida M, Yan J W. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo[J]., 2017, 115: 2–4.
[12] Shi C Y. Research on the design and image process of bioinspired spherical compound eve imaging system[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2017.
史成勇. 仿生曲面復眼系統(tǒng)設計及其圖像處理研究[D]. 長春: 中國科學院大學(中國科學院長春光學精密機械與物理研究所), 2017.
[13] Zhang X, Song L, Zhang S S,. The method for the calibration and measurement of bionic compound-eye system[J]., 2014, 41(3): 35–42.
張雄, 宋樂, 張姍姍, 等. 仿生復眼系統(tǒng)標定及測量方法研究[J]. 光電工程, 2014, 41(3): 35–42.
[14] Li R B, Du X, Zhang Z H,. Ultra-precision machining of optical microstructures[J]., 2003, 1(1): 57–61.
李榮彬, 杜雪, 張志輝, 等. 光學微結(jié)構(gòu)的超精密加工技術(shù)[J]. 納米技術(shù)與精密工程, 2003, 1(1): 57–61.
[15] Zhu D C. Technology study and accuracy analysis of optical microstructures manufactured by fast tool servo[D]. Changsha: National University of Defense Technology, 2010.
朱登超. 光學微結(jié)構(gòu)快速車削工藝研究與精度分析[D]. 長沙: 國防科學技術(shù)大學, 2010.
[16] Zhang X D, Wang Z C, Zeng Z,. Optimized design of sine-transition cutting path for microlens array in ultra-precision cutting[J]., 2017, 15(4): 239–245.
張效棟, 王志誠, 曾臻, 等. 微透鏡陣列超精密切削正弦過渡路徑優(yōu)化設計[J]. 納米技術(shù)與精密工程, 2017, 15(4): 239–245.
[17] Huang K T, Fang F Z, Gong H. Effect of surface microscopic topology generated by ultra-precision turning on optical characteristics[J]., 2013, 21(1): 101–107.
黃昆濤, 房豐洲, 宮虎. 超精密車削表面微觀形貌對光學特性的影響[J]. 光學精密工程, 2013, 21(1): 101–107.
[18] He C K, Zhang P, Li D,. Research on influencing factors and development trend of surface quality in ultra precision turning[J]., 2017(11): 12–15.
何成奎, 張平, 李東, 等. 超精密車削表面質(zhì)量影響因素及發(fā)展趨勢研究[J]. 裝備制造技術(shù), 2017(11): 12–15.
[19] Zhang X D, Fang F Z, Cheng Y. Optimized design of cutting path for freeform surface in ultra-precision turning[J]., 2009, 42(3): 278–282.
張效棟, 房豐洲, 程穎. 自由曲面超精密車削加工路徑優(yōu)化設計[J]. 天津大學學報, 2009, 42(3): 278–282.
[20] Wang Y, Yu J C. Compensation for error of diamond tool's cutting edge in single diamond turning[J]., 2011, 38(1): 98–102.
王毅, 余景池. 超精密車削金剛石刀具刃口誤差的高精度補償[J]. 光電工程, 2011, 38(1): 98–102.
[21] Yu H J. Theoretical and technological research on optical freeform surface of single point diamond ultra-precision turning[D]. Changchun: Jilin University, 2015.
于慧娟. 光學自由曲面單點金剛石超精密車削理論與技術(shù)研究[D]. 長春: 吉林大學, 2015.
Research on the calculation method of the ultra-precision turning trajectory of large-vector high-convex cylinders
Lei Rongliang1,2, Li Yun1,2*, Lin Wumei1,2, Zhang Shuai1,2, Qing Jianhong1,2, Tang Linfeng3
1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2University of Chinese Academy of Sciences, Beijing 100049, China;3Southwest Petroleum University, Chengdu, Sichuan 610500, China
Schematic diagram of dichotomy
Overview:Array microstructured optical elements are widely used in various beam homogenization occasions, with complex structures and extremely high surface shape accuracy requirements. The microstructures of large-sag high-convex cylindrical arrays have the characteristics of high sagittal height, large diameter, small seam, and high surface shape accuracy. It is often difficult for conventional processing methods to meet the accuracy requirements. As a ultra-precision turning forming method, the diamond tip has a micron-level structure, and the processing accuracy is not limited by the height of the microstructure, which is a very potential method for processing the microstructure of the large array of high convex cylindrical arrays.
How to ensure the machining accuracy is an important problem that needs to be solved in ultra-precision turning. This paper analyzes the main factors that affect diamond turning-turning trajectories. Increasing the turning trajectory accuracy can improve the turning surface accuracy and obtain a good machining surface shape. This article analyzes and compares two methods, namely sequential search method and binary search method, to find the best turning trajectory, and each method has its own advantages and disadvantages. The sequential search method can obtain a high-precision turning trajectory, but the calculation amount will gradually increase as the stepping distance decreases, which leads to lower efficiency. The binary search method can quickly obtain the turning trajectory, and the calculation amount is relatively small. So the calculation time is short, which greatly improves the turning efficiency. Combined with actual production applications, improving efficiency is one of the important issues that need to be considered. Therefore, this paper chooses the binary search method to find the turning contour trajectory.
The binary search method can be used to find the turning trajectories of both spherical and aspherical contours. Combined with laboratory conditions, the experiment took the spherical contour as an example, and the spherical turning trajectory was successfully generated through numerical control programs. Furthermore, turning experiments on ultra-precision turning machine tools were carried out, with the turning results being analyzed using the least square method. The original curve is compared with the fitted curve, and the difference curve is obtained. It is found that the contour error of the workpiece after processing is 135 nm, and the expected surface shape and good surface contour error are basically obtained. This article provides a theoretical basis for how to find the turning trajectory of the large-vector convex cylindrical array microstructure, and has important practical application value.
Lei R L, Li Y, Lin W M,Research on the calculation method of the ultra-precision turning trajectory of large-vector high-convex cylinders[J]., 2021, 48(3): 200192; DOI:10.12086/oee.2021.200192
Research on the calculation method of the ultra-precision turning trajectory of large-vector high-convex cylinders
Lei Rongliang1,2, Li Yun1,2*, Lin Wumei1,2, Zhang Shuai1,2, Qing Jianhong1,2, Tang Linfeng3
1Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2University of Chinese Academy of Sciences, Beijing 100049, China;3Southwest Petroleum University, Chengdu, Sichuan 610500, China
Array microstructure optical elements are widely used in various beam homogenization occasions, but conventional processing methods cannot meet the accuracy requirements of large-sagittal convex cylindrical arrays. In this paper, the ultra-precision turning forming method is used to analyze the main factors affecting diamond turning, the sequential search method and the binary search method are designed to find the turning track, and the advantages and disadvantages of the two methods are compared. Furthermore, the binary search method is successfully found by combining the Matlab software turning trajectory and the numerical control program. As proof-of-concept demonstrations, turning experiments are carried on an ultra-precision lathe, and a large-vector high-array microstructure with a surface profile error of 135 nm is obtained. It proves that the force binary search method can accurately obtain the turning trajectory, and this method can be applied to both spherical and aspherical contours, showing important engineering application value.Keywords: large-vector high-array microstructure; convex cylindrical surface; ultra-precision turning; radius compensation
10.12086/oee.2021.200192
O439
A
2020-05-28;
2020-09-24作者簡介:雷茸糧(1995-),女,碩士研究生,主要從事儀器儀表工程的研究。E-mail:1414601822@qq.com
李云(1986-),男,博士,副研究員,主要從事精密制造的研究。E-mail:liyun@ioe.ac.cn
* E-mail: liyun@ioe.ac.cn
版權(quán)所有?2021中國科學院光電技術(shù)研究所
雷茸糧,李云,林嫵媚,等. 大矢高凸柱面的超精密車削軌跡計算方法研究[J]. 光電工程,2021,48(3): 200192
Lei R L, Li Y, Lin W M, et al. Research on the calculation method of the ultra-precision turning trajectory of large-vector high-convex cylinders[J]. Opto-Electron Eng, 2021, 48(3): 200192