• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Ag/ZnO composite materials in nitrogen photofixation: Constructing Schottky barrier to realized effective charge carrier separation

    2021-04-06 03:34:02XIAOYuOUYANGYuxinXINYueWANGLiangbing
    貴金屬 2021年4期
    關鍵詞:肖特基勢壘中南大學

    XIAO Yu, OUYANG Yu-xin, XIN Yue, WANG Liang-bing

    Application of Ag/ZnO composite materials in nitrogen photofixation: Constructing Schottky barrier to realized effective charge carrier separation

    XIAO Yu, OUYANG Yu-xin, XIN Yue, WANG Liang-bing*

    (State Key Laboratory for Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, China)

    The photocatalytic reduction of nitrogen (N2) to ammonia (NH3) is a sustainable energy product method. Plasmonic photocatalysts can achieve effective conversion of solar energy via surface plasmon resonance (SPR), and therefore have attracted more and more attention. However, the photo-induced hot charge-carriers tend to recombine during N2reduction process. Ag nanoparticles with plasmon resonance effect with ZnO semiconductor (Ag/ZnO) and apply them to N2photofixation were studied. Compared with pure ZnO, Ag/ZnO exhibited enhanced catalytic activity in N2photofixation, and the NH3production rate at room temperature can reach 120 μmol·gcat.-1·h-1. Mechanism studies revealed that a Schottky barrier was formed at the interface between Ag nanoparticles and ZnO, which boosted the separation of photo-induced electron-hole pairs. Ag nanoparticles generated hot charge carriers via SPR effect, and the formed Schottky barrier facilitated the transfer of electrons from Ag to ZnO. The electron-rich Zn+species in ZnO was speculated to serve as active sites to adsorb and activate N2molecules, thereby promoting N2photofixation.

    silver; surface plasmon resonance; Schottky barrier; N2photofixation; plasmonic catalysis

    Nitrogen (N2) photofixation with water to ammonia (NH3) is a sustainable approach for producing valuable energy sources under mild conditions[1-2]. A wide range of catalysts have been designed and fabricated for N2photofixation[3-10]. With the capability to efficiently harvest and convert solar energy via SPR, plasmonic photocatalysts have attracted more and more attention recently[11-14]. SPR in plasmonic metals not only extends the adsorption range of light, but also generates hot electrons with enough energy for N2reduction during decaying[14-16]. For instance, light-harvesting plasmonic Au was coupled with catalytic Ru for N2photoreduction by Xiong and co-workers, and a NH3production rate of 101.4 μmol·gcat.-1·h-1was obtained[9]. The plasmonic hot electrons along with the enhanced electric field induced by SPR effect of Au were considered to promote the dissociation of N2molecular and further the conversion of N2to NH3. Recently, we constructed porous CuFe bimetals for plasmonic N2photofixation, where Cu frameworks generated hot electrons by SPR, while surface Fe atoms functioned as the active sites to adsorb and activate N2molecules[10]. Though some progress has been made in plasmon-assisted N2photofixation, the photo-generated charge carriersSPR often suffer from severe recombination during photocatalysis, resulting in low hot electrons concentration and low N2reduction rate. Fortunately, to integrate plasmonic metals with appropriate semiconductors is a promising approach for improving the efficiency of charge carriers separation through forming Schottky barrier at the interface[17-21]. Generally, Schottky barrier is formed at the interface through the downward bending of the conduction band of the semiconductor,so that the Fermi levels in the metal and the semiconductor are aligned[18]. The Schottky barrier filters energetic electrons to pass through the interface and inhibits the recombination of plasmonic charge carriers, leading to the effective separation of electron-hole pairs for N2photo-fixation[19-20].

    Herein, we successfully synthesized Ag/ZnO photocatalyst by depositing plasmonic Ag nano-particles onto ZnO. Without adding any sacrificial agent, Ag/ZnO photocatalyst achieved a NH3production rate of 120 μmol·gcat.-1·h-1, which is about 2.1-fold higher than ZnO. NH3production rate retained more than 90% of initial activity after five successive reaction cycles, indicating the outstanding stability of Ag/ZnO. Mechanism studies demonstrated that the Schottky barrier was formed in Ag/ZnO photocatalyst, promoting the efficiency of charge separation. In situ XPS and XAS measurement revealed that Ag NPs generated hot charge carriers via SPR effect, which then moved to ZnO under the photocatalytic conditon. We further detected the electron-rich Zn+species in Ag/ZnO photocatalyst by ESR measurement, which was speculated to serve as active sites to adsorb and activate N2molecule. As a result, the Schottky barrier facilitated the transfer of electrons from Ag NPs to ZnO and the Zn+species enhanced the N2photofixation.

    1 Experiments

    1.1 Materials

    Zinc nitrate hexahydrate (Zn(NO3)2·6H2O), 2-methylimidazole, silver nitrate (AgNO3), methane sulfonic acid (CH3SO3H), methanol (CH3OH), and ethanol (C2H5OH) were purchased from Sinopharm Chemical Reagent Co., Ltd. High purity nitrogen (N2, ≥99.999%) used in this work was gained from Saizongtezhong gas Co. LTD in Changsha. All solvents and chemicals were in analytical grade. All aqueous solutions were prepared using deionized water with a resistivity of 18.2 MΩ·cm–1.

    1.2 Synthesis of ZnO and Ag/ZnO

    Zeolitic imidazolate framework-8 (ZIF-8) was firstly prepared for the synthesis of ZnO. 3.7 g of Zn(NO3)2·6H2O and 4.1 g of 2-methylimidazole were added into 500 mL of methanol at room temperature. After 24 h, ZIF-8 was obtained by collecting the precipitation in the suspension solution. 100 mg of ZIF-8 was then heated to 500℃ in a muffle furnace and kept it at 500℃ for 3 h, he resulted powder was ZnO. The synthesized ZnO powder was immersed in a solution containing 1.07 mg of AgNO3, 35 mL of methanol, and 35 mL of ethanol, followed by stirring them at room temperature for 6 h. The resulted mixture was then transferred to a Teflon-lined stainless-steel autoclave and kept it at 120℃ for 8 h. The Ag/ZnO composite was finally acquired via suction filtration with copious deionized water and dried at 40℃ under vacuum for 2 hours.

    1.3 Photocatalytic experiments

    Catalytic tests for N2photofixation were carried out in a 100-mL glass reactor. For a typical reaction, 10 mg of photocatalysts and 20 mL of deionized water were added into a 100-mL photo-reactor, followed by bubbling N2at a flow rate of ca. 30 mL·min?1for 30 min. Subsequently, the suspension was irradiated under vigorous stirring by a Xenon lamp (Perfectlight PLS-SXE300) under full-spectrum with an intensity of 250 mW·cm-2. The generated NH3was analyzed via an ion chromatograph method. To test the recycling of Ag/ZnO, the first measurement was conducted as described above, and the used catalysts were then washed and collected by centrifugation with deionized water for the next catalytic cycle.

    1.4 Detection of NH3

    The concentration of NH3was determined by an ion chromatograph method. 4.5 mmol·L-1of methane sulfonic acid was used as the eluent solution with a flow rate of 1 mL·min-1. The column temperature and self-regenerating suppressor current were kept as 35℃ and 75 mA, respectively. 25 μL of quantitative injection loop was injected into the column. The retention time of NH4+cations was at ~4.0 min. A standard curve of peak areasthe concentrations of standard solution was firstly plotted. To determine the generated NH3, 25 μL of reaction solution was analyzed via this method. Based on the peak areas and standard curve, the concentration of NH3was obtained. It was worth mentioning that the acid in eluent solution guaranteed the generated NH3completely transformed to NH4+which can be determined by ion chromatograph.

    1.5 In situ XPS measurements

    XPS measurements were performed at the photoemission end-station and beamline BL10B in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The beamline is connected to a bending magnet and covers photon energies from 100 to 1,000 eV with a resolving power () better than 1,000,and the photon flux was 1 ×1010photons per s. The end-station is composed of four chambers: an analysis chamber, a preparation chamber, a load-lock chamber, and a high-pressure reactor. The analysis chamber, with a base pressure of <2×10?10torr, is connected to the beamline with a VG Scienta R3000 electron energy analyser and a twin anode X-ray source. In addition, the analysis chamber is equipped with a window to allow the irradiation of light during the measurement of XPS spectra. In this work, theXPS measurements of Ag/ZnO were conducted with/without light irradiation, which were named as “Ag/ZnO” and “Ag/ZnO+light”, respectively.

    1.6 In situ Zn L-edge XAS measurements.

    Zn L-edge measurements were performed at the photoemission end-station and beamline BL10B in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The beamline and end-station are the same as those described in Section 2.5. The high-pressure reactor contains a reaction cell where the samples can be treated with different gases up to 20 bar and simultaneously heated up to 650℃. After the sample treatment, the reactor can be pumped down to < 10?8torr for sample transfer. In this work, theZn L-edge measurements of Ag/ZnO were conducted with/without light irradiation, which were named as “Ag/ZnO” and “Ag/ZnO+light”, respectively.

    1.7 Instrumentations

    TEM images were collected on a JEOL ARM-200F field-emission transmission electron microscope operating at 200 kV accelerating voltage.X-ray diffraction (XRD) patterns were recorded by using a Philips X’Pert Pro Super diffractometer with Cu-Kradiation (= 1.54178 ?), and the 2range is from 10 to80°. X-ray photoemission spectroscopy and X-ray absorption spectroscopy experiments were conducted at the Catalysis and Surface Science End-station connected to the BL10B beamline in NSRL in Hefei, China. UV-Vis tests were conducted on a TU-1901 at room temperature. ESR spectra were taken on JEOL JES-FA200 ESR spectrometer at 298 K.

    2 Results and discussions

    2.1 Characterization of materials

    The morphology and structure of the samples were characterized by TEM as shown in Fig.1.

    Fig.1 TEM images of ZnO (a) and Ag/ZnO (b)

    Fig.1(a) shows the microstructure of ZnO prepared via heating ZIF-8 to 500℃ in a muffle furnace. It can be seen from Fig.1(a) that the average particle size of ZnO was ~500 nm. Fig.1(b) illustrated the TEM image of Ag/ZnO formed through a hydrothermal process by dispersing ZnO powders into alcoholic solution of Ag ions. It is clear that Ag NPs besides ZnO.

    XRD analysis was further adopted to characterize the composition of the as-prepared powders as shown in Fig.2.

    Fig.2 XRD patterns of ZnO and Ag/ZnO

    2.2 Photocatalytic performance

    The photocatalytic performance of obtained catalysts was evaluated through N2photofixation reaction. Each reaction cycle was conducted in 20 mL of deionized water purged with pure N2after adding 10 mg of catalysts at room temperature. The generated NH3was measured through an ion chromatography method. No NH3was detected for blank experiments.

    As shown in Fig.3(a), the NH3production rates over ZnO were 57 and 6 μmol·gcat.-1·h-1under full-spectrum light irradiation (320~780 nm, 250 mW/cm2) and visible light (400~780 nm, 200 mW/cm2), respectively. After depositing Ag NPs with SPR on ZnO, the NH3production rate was up to 120 μmol·gcat.-1·h-1under the same full-spectrum range. Meanwhile, Ag/ZnO showed higher photocatalytic activity under visible light with 81 μmol·gcat.-1·h-1of NH3production rate as shown in Fig.3(a). To further corroborate the superior property of Ag/ZnO in photocatalytic reduction of N2, Ag/ZnO was recycled to test its stability as shown in Fig.3(b). More than 90% of initial activity was retained in N2photofixation after five cycles, indicating the remarkable catalytic stability of Ag/ZnO. As a result, Ag/ZnO exhibited remarkable activity and endurance towards the photocatalytic reduction of N2.

    Fig.3 (a). The NH3 production rates catalyzed by ZnO and Ag/ZnO under full-spectrum and filtered light irradiation of Xenon lamp; (b). NH3 production rate of Ag/ZnO catalystsat five successive reaction cycles

    2.3 Photocatalytic mechanisms

    To explore the origin of the excellent catalytic performance of Ag/ZnO in N2photofixation, the catalytic mechanism was investigated in details as shown in Fig.4.

    Fig.4 (a). Diffuse reflectance UV-Vis spectra of the obtained samples of ZnO and Ag/ZnO;(b). Transformed K-M function for ZnO; (c). Valence band spectrum; (d). Secondary electron cutoff of ZnO

    Fig.4(a) displayed the diffuse reflectance ultraviolet-visible (UV-Vis) spectra of ZnO and Ag/ZnO. The absorption spectrum of Ag/ZnO was similar to that of ZnO with a steep absorption increase at 350~400 nm. However, the adsorption of Ag/ZnO was obviously enhanced in visible region owing to the SPR of metallic Ag. As shown in Fig.4(b), the calculated band gap of ZnO was 3.2 eV via a trans-formed Kubelka-Munk (K-M) plot. In addition, synchrotron radiation photoemission spectroscopy (SRPES) was conducted with a photon energy of 169.4 eV. Fig.4(c) displayed the valence band (VB) spectra of ZnO. It can be seen from Fig.4(c) that the maximum VB of ZnO was 2.4 eV which is below the Fermi level (E) secondary electron cutoff was performed to confirm the position ofEversus vacuum level (E), where the value of work function (Φ) for ZnO was 5.1 eV (Fig.4(d)). Thus, the calculated value of maximum VB for ZnO was 7.5 eVE. As normal hydrogen electrode (NHE) was 4.5 eVE[22], the values of maximum VB andEfor ZnO were determined to be 3.0 and 0.6 eVNHE, respectively. Furthermore, considering the 3.2 eV of band gap for ZnO, the calculated conduction band (CB) of ZnO was -0.2 eVNHE. TheE versusNHE was generally 1.0 eV for metal Ag.

    Based on above analysis, the corresponding electronic band structureNHE of Ag/ZnO was depicted in Fig.5.

    Fig.5 Schematic illustration of the band structure of Ag/ZnO

    The contact between metallic Ag and ZnO semiconductor equalized theEvalues of the two materials, creating Schottky barrier at the interface between Ag nanoparticle and ZnO. Ag NPs generated hot electrons by SPR effect under illumination, while the formed Schottky barrier facilitated the transfer of electrons from Ag NPs to the CB of ZnO, directly boosting the separation of electron-hole pairs for further N2reduction process (Fig.5).

    A series ofexperiments were further conducted to reveal the electronic dynamics of Ag/ZnO during N2photofixation, as shown in Fig.6.

    Fig.6 In situ XPS spectra of Ag 3d (a) and Zn 2p (b) for Ag/ZnO measured with/without light irradiation

    In order to confirm the electronic properties,Zn L-edge X-ray absorption spectroscopy (XAS) was also analyzed, as shown in Fig.7. The lower peak intensity of the spectrum of Zn L-edge XAS under illumination was attributed to the decrease of the valence state of Zn species, which further demonstrated electrons accumulation in Zn species under light irradiation(Fig.7)[29]. As a result, the formation of Schottky barrier promoted the separation of photo-excited electron-hole pairs, lending to the electron transfer from Ag NPs to ZnO.

    Fig.7 In situ Zn L-edge XAS spectra for Ag/ZnO under dark and light

    Electron spin resonance (ESR) spectroscopy was conducted (Fig.8) for further characterization. As depicted in Fig.8, an ESR signal with=1.999 assigned to the oxygen vacancy was observed for ZnO[6]. More importantly, an obvious ESR signal with=1.960ascribedto Zn+cations (3d104s1) appeared for both ZnO and Ag/ZnO, suggesting that Zn+species was presented on the ZnO and Ag/ZnO[30]. Thus, the electrons were speculated to prefer to be trapped by Zn+rather than delocalize over the lattice, which favored the efficient electron separation and transfer. The electron-rich Zn+was considered as active sites to chemisorb and activate N2molecules for the further transformation to NH3.

    Fig.8 ESR signal of ZnO and Ag/ZnO

    3 Conclusions

    In conclusion, we successfully deposited Ag NPs on ZnO containing Zn+and formed Schottly barrier. Ag/ZnO was witnessed to exhibit excellent activity and stability towards N2photofixation. The investigation of band structure for Ag/ZnO revealed the Schottky barrier generated at the interface between Ag and ZnO, which facilitated electrons transfer from Ag NPs to ZnO. Furthermore, the electron-rich Zn+species was considered as the active sites to chemisorb and activate N2molecules. This work not only promotes the separation efficiency of plasmonic charge carriers by constructing Schottky barrier, but also highlights a promising approach to prepare Zn+containing Ag/ZnO catalysts for long-term N2photoreduction.

    [1] WANG S, ICHIHARA F, PANG H, et al. Nitrogen fixation reaction derived from nanostructured catalytic materials[J]. Advanced Functional Materials, 2018, 28(50): 1803309.

    [2] YANG J, GUO Y, LU W, et al. Emerging applications of plasmons in driving CO2reduction and N2fixation [J]. Advanced Materials, 2018, 30(48): 1802227.

    [3] HOU T, PENG H, XIN Y, et al. Fe single-atom catalyst for visible-light-driven photofixation of nitrogen sensitized by triphenylphosphine and sodium iodide [J]. ACS catalysis, 2020, 10(10): 5502-5510.

    [4] ZHAO Y, ZHAO Y, SUI R, et al. Tuning oxygen vacancies in ultrathin TiO2nanosheets to boost photocatalytic nitrogen fixation up to 700 nm [J]. Advanced Materials, 2019, 31(16): 1806482.

    [5] ZHANG N, JALIL A, WU D, et al. Refining defect states in W18O49by Mo doping: A strategy for tuning N2activation towards solar-driven nitrogen fixation [J]. Journal of the American Chemical Society, 2018, 140(30): 9434-9443.

    [6] HOU T, LI Q, ZHANG Y, et al. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2hybrid structures with superior activity and stability [J]. Applied Catalysis B: Environmental, 2020, 273: 119072.

    [7] WANG W, ZHANG H, ZHANG S, et al. Potassium ion assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible light driven photocatalytic nitrogen reduction [J]. Angewandte Chemie-International Edition, 2019, 58(46): 16644-16650.

    [8] HOU T, XIAO Y, CUI P, et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation [J]. Advanced Energy Materials, 2019, 9(43): 1902319.

    [9] HU C, CHEN X, JIN J, et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions [J]. Journal of the American Chemical Society, 2019, 141(19): 7807-7814.

    [10] HOU T, CHEN L, XIN Y, et al. Porous CuFe for plasmon-assisted N2photofixation [J]. ACS Energy Letters, 2020, 5(7): 2444-2451.

    [11] ASLAM U, RAO V, CHAVEZ S, et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures [J]. Nature Catalysis, 2018, 1(9): 656-665.

    [12] ZHAN C, MOSKOVITS M, TIAN Z. Recent progress and prospects in plasmon-mediated chemical reaction [J]. Matter, 2020, 3(1): 42-56.

    [13] LI S, MIAO P, ZHANG Y, et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis[J]. Advanced Materials, 2020, 33(6): 200086.

    [14] GELLé A, JIN T, GARZA L, et al. Applications of plasmon-enhanced nanocatalysis to organic transform-ations[J]. Chemical Reviews, 2020, 120(2): 986-1041.

    [15] ZHANG Y, HE S, GAO W, et al. Surface-plasmon-driven hot electron photochemistry [J]. Chemical Reviews, 2017, 118(6): 2927-2954.

    [16] LINIC S, ASLAM U, BOERIGTER C, et al.Photo-chemical transformations on plasmonic metal nano-particles [J]. Nature Materials, 2015, 14(6): 567-576.

    [17] LINIC S, CHRISTOPHER P, INGRAM D. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials, 2011, 10(12): 911-921.

    [18] YU K, JIANG P, YUAN H, et al. Cu-based nanocrystals on ZnO for uranium photoreduction: Plasmon-assisted activity and entropy-driven stability [J]. Applied Catalysis B: Environmental, 2021, 288: 119978.

    [19] YANG J, GUO Y, JIANG R, et al. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets [J]. Journal of the American Chemical Society, 2018, 140(27): 8497-8508.

    [20] XU X, LUO F, TANG W, et al. Enriching hot electrons via NIR-photon-excited plasmon in WS2@Cu hybrids for full-spectrum solar hydrogen evolution [J]. Advanced Functional Materials, 2018, 28(43): 1804055.

    [21] YANG Y, LUO M, ZHANG W, et al. Metal surface and interface energy electrocatalysis: Fundamentals, performance engineering, and opportunities [J]. Chem, 2018, 4(9): 2054-2083.

    [22] WANG L, HOU T, XIN Y, et al. Large-scale synthesis of porous Bi2O3with oxygen vacancies for efficient photo-degradation of methylene blue [J]. Chinese Journal of Chemical Physics, 2020, 33(4): 500-506.

    [23] MUTHUCHAMY N, GOPALAN A, LEE K. A new facile strategy for higher loading of silver nanoparticles onto silica for efficient catalytic reduction of 4-nitrophenol [J]. RSC Advances. 2015, 5(93): 76170-76181.

    [24] GAO J, WEI C, DONG M, et al. Evolution of Zn species on Zn/HZSM-5 catalyst under H2pretreated and its effect on ethylene aromatization [J]. ChemCatChem, 2019, 11(16): 3892-3902.

    [25] ZHANG C, KWAKA G, LEE Y, et al. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability [J]. Microporous and Mesoporous Materials, 2019, 284: 316-326.

    [26] DING Y, DU X, ZHANG X. Controlled synthesis and high performance of Zn-Ni-Co-M (M = O, S, P and Se) nanoneedle arrays as an advanced electrode for overall water splitting [J]. Applied Surface Science, 2021, 543: 148818.

    [27] CHEN G, ZHAO Y, SHANG L, et al. Recent advances in the synthesis, characterization and application of Zn+-containing heterogeneous catalysts [J]. Advanced Science, 2016, 3(7): 1500424.

    [28] GUO W, SHIM K, KIM Y. Ag layer deposited on Zn by physical vapor deposition with enhanced CO selectivity for electrochemical CO2reduction [J]. Applied Surface Science, 2020, 526: 146651.

    [29] WANG M, REN F, ZHOU J, et al. N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure [J]. Scientific Reports, 2015, 5: 12925.

    [30] JIANG W, LOW J, MAO K, et al. Pd-modified ZnO-Au enabling alkoxy intermediates formation and dehydro-genation for photocatalytic conversion of methane to ethylene [J]. Journal of the American Chemical Society, 2021, 143(1): 269-278.

    Ag/ZnO復合材料在氮氣光固定中的應用:構(gòu)造肖特基勢壘以實現(xiàn)有效的電荷載流子分離

    肖 宇,歐陽宇欣,辛 月,王梁炳*

    (中南大學 材料科學與工程學院 粉末冶金國家重點實驗室,長沙 410083)

    將氮氣(N2)光催化還原為氨(NH3)是一種可持續(xù)的能源生產(chǎn)方法。等離激元共振光催化劑能夠通過表面等離激元共振效應實現(xiàn)太陽能的有效轉(zhuǎn)化,也因此受到越來越廣泛的關注。然而,熱載流子往往會在催化固氮的過程中發(fā)生重新結(jié)合。本研究將具有等離激元共振效應的Ag納米粒子與ZnO半導體復合(Ag/ZnO)并應用于氮氣光固定。與ZnO相比,Ag/ZnO在氮氣光固定的催化活性得到了提高,室溫下氨生成速率達到120 μmol·gcat.-1·h-1。進一步的機理研究表明在Ag納米顆粒與ZnO的界面處形成了肖特基勢壘,這大幅度促進了光生電子-空穴對的分離。Ag納米粒子通過表面等離激元共振效應生成熱載流子,所形成的肖特基勢壘則促進了電子從Ag向ZnO轉(zhuǎn)移。此外,ZnO中的富電子Zn+可能作為活性位點以吸附和活化氮氣分子,從而促進氮氣光固定的進行。

    銀;表面等離激元共振;肖特基勢壘;氮氣光固定;等離激元共振催化

    2021-03-04

    國家自然科學基金(51801235, 51674303);中南大學創(chuàng)新驅(qū)動項目(2018CX004);中南大學啟動資金項目(502045005)

    肖 宇,男,碩士研究生,研究方向:金屬氧化物的光催化性能。E-mail: Xiaoyu2018@csu.edu.cn

    通訊作者:王梁炳,男,教授,研究方向:有色金屬催化、小分子的高效活化轉(zhuǎn)化。E-mail: wanglb@csu.edu.cn

    O643.36; O644

    A

    1004-0676(2021)04-0047-08

    猜你喜歡
    肖特基勢壘中南大學
    中南大學建筑與藝術(shù)學院作品選登
    中南大學教授、博士生導師
    安全(2021年4期)2021-05-19 07:56:52
    中南大學校慶文創(chuàng)產(chǎn)品設計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進展
    電子制作(2018年12期)2018-08-01 00:47:46
    溝道MOS 勢壘肖特基(TMBS)和超級勢壘整流器
    電子制作(2017年19期)2017-02-02 07:08:45
    艾米莉·狄金森的自然:生態(tài)批評的解讀
    勢壘邊界對共振透射的影響
    熔合勢壘形狀的唯像研究
    威廉·肖特基的機器人夢助硅谷崛起
    世界科學(2014年8期)2014-02-28 14:58:28
    英飛凌推出第五代1200 V thinQ!TM碳化硅肖特基二極管
    韩国av一区二区三区四区| 久久精品国产清高在天天线| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美一区二区综合| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 国产精品一区二区精品视频观看| 在线永久观看黄色视频| 国产成人影院久久av| 精品久久久久久成人av| 一本综合久久免费| 国产成人系列免费观看| 满18在线观看网站| √禁漫天堂资源中文www| 国产亚洲精品av在线| 久久久久久九九精品二区国产 | 国产成年人精品一区二区| 免费观看人在逋| 免费在线观看亚洲国产| 国产精品亚洲美女久久久| 韩国精品一区二区三区| 亚洲精品国产精品久久久不卡| 国产精华一区二区三区| 久久午夜综合久久蜜桃| 亚洲精品在线美女| 波多野结衣高清作品| 日韩大码丰满熟妇| 淫妇啪啪啪对白视频| 在线观看免费视频日本深夜| 亚洲久久久国产精品| 18禁裸乳无遮挡免费网站照片 | 村上凉子中文字幕在线| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 国产伦在线观看视频一区| 此物有八面人人有两片| 亚洲七黄色美女视频| 在线av久久热| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看| 亚洲色图 男人天堂 中文字幕| 久久热在线av| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 十分钟在线观看高清视频www| 在线国产一区二区在线| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 可以在线观看的亚洲视频| 日日夜夜操网爽| 丝袜在线中文字幕| 国产精品爽爽va在线观看网站 | 亚洲精品在线美女| 亚洲熟妇熟女久久| x7x7x7水蜜桃| 又黄又爽又免费观看的视频| 精品国产美女av久久久久小说| 色播亚洲综合网| 午夜福利成人在线免费观看| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影 | 天天躁夜夜躁狠狠躁躁| 日韩欧美免费精品| 国产精品 欧美亚洲| 国产乱人伦免费视频| 国内揄拍国产精品人妻在线 | 国产伦一二天堂av在线观看| av欧美777| 免费搜索国产男女视频| 正在播放国产对白刺激| 不卡一级毛片| 国产精品自产拍在线观看55亚洲| 成人亚洲精品av一区二区| 老熟妇乱子伦视频在线观看| 国产91精品成人一区二区三区| 日韩高清综合在线| 啦啦啦观看免费观看视频高清| 999精品在线视频| 亚洲精品美女久久av网站| 好男人在线观看高清免费视频 | 搡老妇女老女人老熟妇| 成人18禁在线播放| 久久婷婷成人综合色麻豆| 老汉色av国产亚洲站长工具| 国产视频内射| 欧美不卡视频在线免费观看 | 俺也久久电影网| 九色国产91popny在线| 一边摸一边做爽爽视频免费| 女生性感内裤真人,穿戴方法视频| 免费在线观看黄色视频的| 一区二区三区国产精品乱码| 一级a爱片免费观看的视频| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 夜夜爽天天搞| 亚洲欧美日韩高清在线视频| av天堂在线播放| 欧美激情高清一区二区三区| 欧美国产日韩亚洲一区| 999精品在线视频| 国产精品日韩av在线免费观看| 精品熟女少妇八av免费久了| 国产伦在线观看视频一区| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产在线观看| 999久久久精品免费观看国产| 黄色视频不卡| aaaaa片日本免费| 欧美乱色亚洲激情| 国产私拍福利视频在线观看| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影| 丰满的人妻完整版| 日本一区二区免费在线视频| 欧美绝顶高潮抽搐喷水| 1024香蕉在线观看| 国产欧美日韩一区二区精品| 亚洲专区字幕在线| 午夜免费观看网址| 最近在线观看免费完整版| 悠悠久久av| 亚洲中文av在线| 国内精品久久久久久久电影| 欧美性长视频在线观看| 99精品欧美一区二区三区四区| 国产真实乱freesex| 可以在线观看毛片的网站| 免费看a级黄色片| 亚洲七黄色美女视频| 伦理电影免费视频| 久久精品人妻少妇| 色播亚洲综合网| 精品第一国产精品| 神马国产精品三级电影在线观看 | 中出人妻视频一区二区| 黄网站色视频无遮挡免费观看| 亚洲精品国产精品久久久不卡| 国产97色在线日韩免费| 久久香蕉精品热| 哪里可以看免费的av片| 精品欧美一区二区三区在线| 悠悠久久av| 久久中文字幕一级| 91大片在线观看| 国产高清视频在线播放一区| 啪啪无遮挡十八禁网站| 成人精品一区二区免费| 一进一出好大好爽视频| 成年免费大片在线观看| 亚洲熟女毛片儿| 国产午夜精品久久久久久| 两人在一起打扑克的视频| 老熟妇乱子伦视频在线观看| 久久久国产精品麻豆| 欧美一级毛片孕妇| 免费在线观看影片大全网站| 最近最新中文字幕大全免费视频| 窝窝影院91人妻| 午夜影院日韩av| 久久精品91无色码中文字幕| 一级毛片女人18水好多| 亚洲国产看品久久| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 国产免费av片在线观看野外av| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| tocl精华| 国产亚洲精品av在线| 欧美黑人精品巨大| 亚洲欧美激情综合另类| 亚洲三区欧美一区| 国产黄色小视频在线观看| 伦理电影免费视频| 成人三级黄色视频| 久久香蕉激情| 女性被躁到高潮视频| 欧美黄色片欧美黄色片| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区视频在线观看免费| 18禁美女被吸乳视频| 制服人妻中文乱码| av天堂在线播放| 精品久久久久久久末码| 在线观看舔阴道视频| 草草在线视频免费看| 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av| 国产精品日韩av在线免费观看| 成人三级做爰电影| 男人舔奶头视频| 69av精品久久久久久| 午夜免费鲁丝| 国产在线观看jvid| 日韩有码中文字幕| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 天堂影院成人在线观看| 亚洲国产精品sss在线观看| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 日韩三级视频一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲成人久久性| 51午夜福利影视在线观看| 淫妇啪啪啪对白视频| 搡老岳熟女国产| 午夜精品在线福利| 99国产精品一区二区三区| 天堂动漫精品| 亚洲国产精品久久男人天堂| 亚洲美女黄片视频| 99精品久久久久人妻精品| 成人国产综合亚洲| 久久中文字幕人妻熟女| 日日爽夜夜爽网站| 久久99热这里只有精品18| 非洲黑人性xxxx精品又粗又长| 欧美精品亚洲一区二区| 91成年电影在线观看| 亚洲真实伦在线观看| 一边摸一边抽搐一进一小说| 国产熟女xx| 免费电影在线观看免费观看| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| 人人妻人人澡人人看| 在线观看免费视频日本深夜| 欧美在线一区亚洲| 国产亚洲精品一区二区www| 欧美激情 高清一区二区三区| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 精品国产乱码久久久久久男人| 最近最新中文字幕大全电影3 | 中文字幕精品亚洲无线码一区 | 成人午夜高清在线视频 | 69av精品久久久久久| 看片在线看免费视频| 国产av一区二区精品久久| 老司机午夜十八禁免费视频| 在线观看www视频免费| 两个人视频免费观看高清| 窝窝影院91人妻| 少妇被粗大的猛进出69影院| 中出人妻视频一区二区| 91字幕亚洲| 免费搜索国产男女视频| 日本熟妇午夜| 叶爱在线成人免费视频播放| 国产激情偷乱视频一区二区| 亚洲男人天堂网一区| 国产单亲对白刺激| 午夜免费成人在线视频| 操出白浆在线播放| 国产亚洲av高清不卡| 性色av乱码一区二区三区2| 久久 成人 亚洲| 国产精品,欧美在线| 狂野欧美激情性xxxx| 老熟妇仑乱视频hdxx| 中亚洲国语对白在线视频| 亚洲国产日韩欧美精品在线观看 | av电影中文网址| 久久精品影院6| www.熟女人妻精品国产| 国产精品香港三级国产av潘金莲| 狂野欧美激情性xxxx| 自线自在国产av| 国产成人影院久久av| 757午夜福利合集在线观看| 久久久久久大精品| x7x7x7水蜜桃| 精品电影一区二区在线| 一本久久中文字幕| 国产视频一区二区在线看| 成人午夜高清在线视频 | 中国美女看黄片| 中文资源天堂在线| 琪琪午夜伦伦电影理论片6080| 国产人伦9x9x在线观看| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 久久精品国产亚洲av香蕉五月| 在线看三级毛片| 99久久久亚洲精品蜜臀av| 十八禁人妻一区二区| 婷婷亚洲欧美| 最近最新中文字幕大全免费视频| 欧美性长视频在线观看| 免费女性裸体啪啪无遮挡网站| 精品高清国产在线一区| 亚洲熟妇中文字幕五十中出| 久久热在线av| 免费在线观看完整版高清| 国产v大片淫在线免费观看| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 女同久久另类99精品国产91| 免费看十八禁软件| 侵犯人妻中文字幕一二三四区| 午夜亚洲福利在线播放| 好看av亚洲va欧美ⅴa在| 国产精品九九99| 最近最新中文字幕大全电影3 | 免费看日本二区| 波多野结衣高清无吗| 1024手机看黄色片| 国产一区二区三区视频了| www.www免费av| 亚洲色图av天堂| 欧美性猛交╳xxx乱大交人| 日日夜夜操网爽| 亚洲国产欧洲综合997久久, | 亚洲狠狠婷婷综合久久图片| 精品高清国产在线一区| 国产精品爽爽va在线观看网站 | 在线免费观看的www视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆 | 久久国产精品人妻蜜桃| 99热只有精品国产| 国产成人av激情在线播放| 精品国产美女av久久久久小说| 亚洲精品国产一区二区精华液| 亚洲av成人不卡在线观看播放网| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 欧美人与性动交α欧美精品济南到| 在线观看www视频免费| 又大又爽又粗| 久久香蕉精品热| 免费看十八禁软件| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 欧美三级亚洲精品| 黄片大片在线免费观看| 成人特级黄色片久久久久久久| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| 身体一侧抽搐| 99在线视频只有这里精品首页| 国产一级毛片七仙女欲春2 | 女人高潮潮喷娇喘18禁视频| 欧美丝袜亚洲另类 | 妹子高潮喷水视频| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 欧美乱妇无乱码| 日韩中文字幕欧美一区二区| 后天国语完整版免费观看| 久久香蕉精品热| 俺也久久电影网| 夜夜看夜夜爽夜夜摸| 丝袜人妻中文字幕| 麻豆成人av在线观看| 亚洲国产欧美一区二区综合| 欧美成人午夜精品| 后天国语完整版免费观看| 老汉色∧v一级毛片| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 中文字幕精品亚洲无线码一区 | 精品欧美国产一区二区三| 动漫黄色视频在线观看| 精品欧美国产一区二区三| 老汉色∧v一级毛片| 真人一进一出gif抽搐免费| 色哟哟哟哟哟哟| 亚洲色图 男人天堂 中文字幕| 亚洲精品中文字幕在线视频| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| av片东京热男人的天堂| 在线视频色国产色| 午夜福利成人在线免费观看| 丰满的人妻完整版| 夜夜躁狠狠躁天天躁| 深夜精品福利| 窝窝影院91人妻| 亚洲av日韩精品久久久久久密| 男男h啪啪无遮挡| 视频区欧美日本亚洲| 色综合婷婷激情| 黄色视频,在线免费观看| 香蕉久久夜色| 色播亚洲综合网| 变态另类成人亚洲欧美熟女| 久久午夜亚洲精品久久| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线观看二区| 欧美一级毛片孕妇| 一进一出好大好爽视频| 一级毛片女人18水好多| or卡值多少钱| 757午夜福利合集在线观看| 亚洲国产精品成人综合色| 一级a爱视频在线免费观看| 午夜福利在线观看吧| 亚洲熟女毛片儿| 好男人在线观看高清免费视频 | 成熟少妇高潮喷水视频| 日本 av在线| 色综合欧美亚洲国产小说| 一区二区三区高清视频在线| 女性生殖器流出的白浆| 日本撒尿小便嘘嘘汇集6| 美国免费a级毛片| 欧美一区二区精品小视频在线| 51午夜福利影视在线观看| 黄色毛片三级朝国网站| 丰满的人妻完整版| 最新在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲精品中文字幕一二三四区| 日日爽夜夜爽网站| 少妇被粗大的猛进出69影院| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 免费高清视频大片| 国产av一区在线观看免费| 97人妻精品一区二区三区麻豆 | 在线观看舔阴道视频| 哪里可以看免费的av片| 亚洲天堂国产精品一区在线| 亚洲第一av免费看| 18禁黄网站禁片午夜丰满| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 99久久久亚洲精品蜜臀av| 99热6这里只有精品| 成人三级黄色视频| 国产人伦9x9x在线观看| 国产三级黄色录像| 国产伦一二天堂av在线观看| 国产精品 国内视频| 精品一区二区三区视频在线观看免费| 午夜老司机福利片| 丁香欧美五月| 91大片在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站在线播放欧美日韩| 亚洲精品美女久久av网站| 黑人操中国人逼视频| 国产伦人伦偷精品视频| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| ponron亚洲| 美女 人体艺术 gogo| 久久人人精品亚洲av| 校园春色视频在线观看| 亚洲久久久国产精品| 色播在线永久视频| 国产精品久久久久久人妻精品电影| 国产精品亚洲一级av第二区| 黄色片一级片一级黄色片| 丁香欧美五月| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 曰老女人黄片| 久久午夜亚洲精品久久| 91成人精品电影| 国产精品 欧美亚洲| 免费高清视频大片| 国产免费男女视频| 久久久久国内视频| 男人舔奶头视频| 欧美日韩亚洲国产一区二区在线观看| 男女床上黄色一级片免费看| 久久久久免费精品人妻一区二区 | 成人永久免费在线观看视频| 亚洲精品久久国产高清桃花| 久久精品人妻少妇| 亚洲avbb在线观看| 亚洲国产欧洲综合997久久, | 日韩高清综合在线| 亚洲全国av大片| 成年女人毛片免费观看观看9| 91麻豆精品激情在线观看国产| 亚洲 欧美一区二区三区| 少妇裸体淫交视频免费看高清 | 91字幕亚洲| 人妻久久中文字幕网| 国产成年人精品一区二区| 亚洲国产日韩欧美精品在线观看 | 男人舔女人的私密视频| 亚洲成a人片在线一区二区| 婷婷六月久久综合丁香| 国产精品野战在线观看| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2 | 免费在线观看完整版高清| 色播在线永久视频| 18美女黄网站色大片免费观看| 丝袜在线中文字幕| 亚洲欧美精品综合久久99| 88av欧美| 熟妇人妻久久中文字幕3abv| 成人手机av| 99国产极品粉嫩在线观看| 国产成人啪精品午夜网站| 99在线人妻在线中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月婷婷丁香| 久久久国产欧美日韩av| 国产精品一区二区免费欧美| 欧美激情高清一区二区三区| 精品国产超薄肉色丝袜足j| 国产亚洲欧美98| 国产私拍福利视频在线观看| 在线观看舔阴道视频| 在线观看午夜福利视频| 亚洲精品在线观看二区| 午夜久久久久精精品| 欧美性猛交黑人性爽| 精品福利观看| 国产麻豆成人av免费视频| 久久亚洲精品不卡| 热re99久久国产66热| 免费搜索国产男女视频| 成人国产一区最新在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久久久大精品| 精品不卡国产一区二区三区| 免费在线观看亚洲国产| 国产91精品成人一区二区三区| 欧美日本视频| 午夜福利视频1000在线观看| 亚洲国产毛片av蜜桃av| 欧美久久黑人一区二区| 一夜夜www| 国产午夜福利久久久久久| www国产在线视频色| www.999成人在线观看| 一本大道久久a久久精品| 桃红色精品国产亚洲av| 亚洲国产毛片av蜜桃av| 脱女人内裤的视频| 夜夜爽天天搞| 午夜福利在线在线| 久久人妻av系列| 免费女性裸体啪啪无遮挡网站| 亚洲精品国产区一区二| 成人三级做爰电影| 久久久久久久午夜电影| 国产精品98久久久久久宅男小说| 午夜激情福利司机影院| 免费电影在线观看免费观看| 国产免费男女视频| 久久香蕉激情| 久久婷婷人人爽人人干人人爱| 亚洲中文日韩欧美视频| 99riav亚洲国产免费| 精品久久久久久,| 国内精品久久久久精免费| 欧美zozozo另类| 伊人久久大香线蕉亚洲五| 正在播放国产对白刺激| 国产亚洲精品久久久久5区| 免费在线观看影片大全网站| www.精华液| videosex国产| 熟女电影av网| 精品欧美一区二区三区在线| 在线天堂中文资源库| 亚洲欧美精品综合一区二区三区| 久久久精品国产亚洲av高清涩受| 国产精品,欧美在线| 欧美性长视频在线观看| 日韩有码中文字幕| 久久天堂一区二区三区四区| 搞女人的毛片| 免费在线观看黄色视频的| 精品国产美女av久久久久小说| 国产精品亚洲美女久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久热这里只有精品99| 搡老熟女国产l中国老女人| tocl精华| 久热这里只有精品99| 香蕉久久夜色| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| 久久国产亚洲av麻豆专区| 十八禁人妻一区二区| 亚洲第一av免费看| 中文字幕高清在线视频| 国产成人影院久久av| www日本黄色视频网| 久久 成人 亚洲| 黄片大片在线免费观看| 99re在线观看精品视频| 看片在线看免费视频| 桃红色精品国产亚洲av| 亚洲国产看品久久| 亚洲国产欧美网| 久久久久国内视频| www日本黄色视频网| 午夜日韩欧美国产| 大香蕉久久成人网| 欧美在线黄色| 91在线观看av| 制服诱惑二区| 国产免费av片在线观看野外av| 欧美 亚洲 国产 日韩一|