• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Queue reduction in discrete-event systems by relabeling

    2018-07-31 03:30:26YongmeiGANTingJIAOWONHAM
    Control Theory and Technology 2018年3期

    Yongmei GAN ,Ting JIAO ,W.M.WONHAM

    1.School of Electrical Engineering,Xi’an Jiaotong University,Xi’an Shaanxi 710049,China;

    2.Department of Automation,Shanxi University,Taiyuan Shanxi 030006,China;

    3.Department of Electrical and Computer Engineering,University of Toronto,Toronto,ON M5S 3G4,Canada

    Abstract The customer population of entities potentially requesting to join a queue for service often have identical structure,i.e.,the same state set and isomorphic transitions.The state size of the automaton modeling a queue will grow rapidly with increase of the size of this population.However,by relabeling the queue arrival events and service events to the same symbols respectively,the automaton model of a queue will be converted to the structure of a buffer,which is proved to be independent of the total size of the customer population,as long as the queue size is held fixed.We propose the model of a dynamic buffer to embody order and shift of a queue.The result is applied to a manufacturing facility with a dynamic buffer to manage the repair of broken down machines.

    Keywords:Queue,relabeling,identical structures,invariance property,discrete-event systems

    1 Introduction

    Queueing theory is an important branch of computer science,encompassing methods for processing data structures and interactions between strict first in,first out(FIFO)queues.FIFO is a method for manipulating a data buffer,where the first entry of the queue is processed first.Apart from the FIFO policy,queueing theory also deals with scheduling disciplines such as priority and processing speed.Thus,various queueing models and simulation methods are proposed[1].

    Reference[2]devises a method for changing the network of queues to speed up the simulation of rare events;reference[3]uses gradient estimation via smoothed perturbation to analyze the multi-class singleserver priority queue;reference[4]efficiently maps a priority queue on the hypercube architecture in a load balanced manner to achieve an optimal speed-up;reference[5]compares the performance of the FDDI token ring with the IEEE 802.6 DQDB protocols using discrete event simulation models;reference[6]constructs an analytical model based on stochastic Petrinet formalism to investigate GPRS uplink performance;reference[7]presents an approach based on queueing theory and stochastic simulation to help manage the project staffing,in order to prioritize activities and avoid conflicts;reference[8]uses queueing model and discrete event simulation to optimize staff issues at a bank;reference[9]adopts the game theory models to determine the appropriate moment to stop the stochastic queue system in order to correct its parameter;reference[10]presents an analytical approach to study the performance and availability of queueing systems with a finite queue and two service phases;and reference[11]shows that bounded fairness can be implemented by using first-input-first-output(FIFO)queues.

    In summary,by employing discrete event simulation methods,references[2]to[10]aim at improving the performance of priority queue networks,including the efficient estimation of parameters in stochastic discrete event system and optimization of the processing speed;[11]uses automata to model FIFO queues to achieve bounded fairness.However,these methods ignore the identical structure of potential customers(components potentially requesting to join the queue).In this paper,we exploit the feature of identical structure to achieve queue reduction,thereby reducing controller complexity.

    In our previous work[12–14],we used event relabeling to reduce system state size and controller complexity in discrete-event systems(DES)consisting of parallel arrays of machines and buffers[15,16].By relabeling the machines in a given group to a standard prototype machine,we obtained a small“template”supervisor which was proved to be independent of the total number of original components(machines),as long as the buffer sizes are held fixed.In this paper,we relabel the arrival events and service events as the same symbols respectively.Then we show that the automaton model of a queue is relabeled to an automaton model of a buffer.Therefore,the main contributions of this paper are as follows.

    ?We use a relabeling technique to reduce the automaton model of a queue to that of a buffer.The complexity of a queue is irrelevant to the customer population and we prove this phenomenon with a DES framework.

    ?We propose the model of a dynamic buffer to embody order and shift of a queue and apply the result to manage the repair of broken down machines.

    The rest of this paper is organized as follows.Section 2 provides background definitions.Section 3 formalizes the process of queue reduction by relabeling and proposes the model of a dynamic buffer.Section 4 applies the dynamic buffer to a manufacturing facility to manage the repair of components.Section 5 presents our conclusions.

    2 Preliminaries

    2.1 Supervisory control theory

    Supervisory control theory(SCT)deals with the control of discrete-event systems(DES)[17,18].The formal structure of a DES to be controlled is a generator,say

    Here Σ=Σc˙∪Σuis a finite alphabet of symbols,the controllable and uncontrollable event labels,Q is the state set,δ∶Q×Σ→Q is the(partial)transition function,q0is the initial state,and Qm?Q is the subset of marked states.The transition function δ can be extended to

    by induction on length of strings.The closed behavior of G is the language

    in which the notation δ(q0,s)!means that δ(q0,s)is defined.The marked behavior is

    Let E be a specification language and

    the class of controllable languages[17,Section 3.4]contained in specification E.C(E)has the supremal1i.e.,largest,in the sense of sublanguage inclusion.element

    By applying supervisor reduction[19],one can often obtain a simplified control-equivalent supervisor[17].

    2.2 Relabeling

    Relabeling maps events fulfilling the same task to new event symbols.Let R ∶Σ*→ T*be a relabeling map[14],satisfying the following conditions:

    where Σ=Σc˙∪Σu.Tcand Tuare the relabeled counterparts of Σcand Σu,respectively.

    A schematic of R is shown in Fig.1.

    Fig.1 Schematic of relabeling function.

    Let

    The result of rep(·)is a generator representing the corresponding language.

    In TCT[20],procedure RG=relabel(G)is employed to implement R such that

    What relabel(·)does is first directly relabel all transitions of G and then convert the result(a possibly nondeterministic automaton)to its deterministic counterpart by the subset construction algorithm(SCA)[21].

    The time complexity of the relabel(·)algorithm is the same as the SCA,i.e.,O(2n)in the worst case,where n denotes the state size of G.

    However,thanks to the symmetry of identical components,all events fulfilling the same task are relabeled to the same symbol.Thus,the result of this algorithm often has(many)fewer states than the original automaton.For the manufacturing facility shown in Fig.2,let events 1i1,1i2 be relabeled as 11,12 respectively.Let

    where “||”denotes synchronous product[17].

    The state numbers of MIN and RMIN are 2mand m+1 respectively[14].

    Fig.2 Schematic of manufacturing facility in Section 5.1.

    3 Queue reduction by relabeling

    In this section,we first show that a queue can be relabeled to a buffer if we treat all the arrival events and service events as the same symbols respectively.We then propose the model of a dynamic buffer and apply it to the system shown in Fig.2 after adjoining to each component the features of breakdown and repair.

    3.1 Proof that a queue is relabeled to a buffer

    In this paper,we call the set of potential customers the customer population.Let Q(2,k)represent an automaton for a queue with capacity of 2,in which k≥2 represents the size of this population.For any i∈{1,...,k},ri,si represent the arrival event and service event of component i respectively.Relabel events ri and si as r and s,respectively.Denote RQ(2,k)as the direct transition relabeling of Q(2,k).We use the SCA to convert the nondeterministic RQ(2,k)to the equivalent deterministic automaton DRQ(2,k).

    For example,let the queue size be 2.The automaton Q(2,2)shown in Fig.3 models the queue with a customer population of size 2.At the initial state,both events r1and r2are eligible to occur.After the occurrence of string r1.r2,only event s1is eligible to occur as event r1is the first arrival event.It is a similar case for the occurrence of string r2.r1.After directly relabeling events ri,si,i∈{1,2}to r,s respectively,we obtain the nondeterministic automaton RQ(2,2)asshown in Fig.3.By applying the SCA to RQ(2,2),its deterministic counterpart DRQ(2,2)is obtained.We rename DRQ(2,2)as BUF(2)(shown in Fig.3)because DRQ(2,2)can be interpreted as an automaton modeling the behavior of a buffer with 2 slots.The main difference between a queue and a buffer is that a queue preserves both the identity and order of arriving customers,but a buffer provides only their storage.

    To show that DRQ(2,k)equals to BUF(2)for any k≥2,we need to introduce the definition of isomorphic automata.

    Let

    Automaton GBis an epimorphic image[19]of automaton GAunder epimorphism θ ∶QA→ QBif

    If θ ∶QA→ QBis bijective,then GBis isomorphic to GA[19].Two isomorphic automata are identical up to renumbering of states(but with initial state held fixed at 0).In the software package TCT[20]2While the approach and results of this paper do not depend on any specific software package,it is convenient to use the notation of TCT for brevity.,if procedure Isomorph(GA,GB)returns “true”,then GBis isomorphic to GA;otherwise,they are not isomorphic.

    Theorem 1For any k≥2,DRQ(2,k)is isomorphic to BUF(2).

    ProofThe proof is by induction.

    Basis:k=2.Q(2,2),RQ(2,2)and BUF(2)are shown in Fig.3.By applying the SCA to RQ(2,2),we obtain the transition table of DRQ(2,2),as shown in Table 1.

    The result is isomorphic to BUF(2)with the state correspondences[{0},0],[{1,2},1],[{3,4},2].

    Inductive step:In the transition graph for Q(2,k)and Q(2,k+1)shown in Fig.4,the service events are omitted for clarity of display.Assume that the SCA result for RQ(2,k),i.e.,DRQ(2,k),has the state transition table shown in Table 2,in which

    Fig.3 Process of relabeling queue to buffer with capacity 2.

    Table 1 Transition table of DRQ(2,2).

    Fig.4 Transition graph of Q(2,k)and Q(2,k+1).

    Hence,

    Table 2 Transition table of DRQ(2,k).

    We need to show that the SCA result for RQ(2,k+1),i.e.,DRQ(2,k+1),has the state transition table shown in Table 3,in which

    Table 3 Transition table of DRQ(2,k+1).

    With one more machine added,we need to add 2k+1 states and 4k+2 transitions into Q(2,k)to obtain Q(2,k+1).The newly added states are shown in shaded circles;the details of newly added transitions are as follows(using δ to denote the transition function in Q(2,k+1)):

    where 1 ≤ i≤ k,rk′,sk′are the arrival event and service event of the newly added component k′.

    Relabeling the newly added transitions we have for 1≤i≤k,

    where δ′denotes the transition function of RQ(2,k+1).

    Denote the transition functions in DRQ(2,k)and DRQ(2,k+1)by δdand δ′drespectively.By the inductive assumption,we have

    which coincides with the transitions shown in Table 3.□

    At the initial state of Q(2,k),the occurrence of event ri,i∈{1,...,k}will cause entrance to state i.Each of these states will be followed by one of k?1 states when one of the other k?1 components joins the queue.Thus,Q(2,k)has 1+k+k(k?1)=1+k2states,while BUF(2)has only 3 states with the queue size fixed at 2.The contrast between the state size of Q(2,k)and BUF(2)becomes more obvious with the increase of k.

    Let Q(l,k)denote the automaton model for a queue with size l≥1,where k≥l is the size of the customer population.The relabeling result of Q(l,k)is denoted as DRQ(l,k).Let BUF(l)shown in Fig.5 denote the automaton model for a buffer with size l.We have a direct generalization of Theorem 3.1 as follows.

    Corollary 1 For any k≥l≥1,DRQ(l,k)is isomorphic to BUF(l).

    By the same reasoning as applied to Q(2,k),we have that the state size of Q(l,k)is

    If k<l,then the queue model can be represented by Q(k,k)as the size of the customer population is less than the queue size.Correspondingly,only states 0 to k will be reached in BUF(l).

    Fig.5 Transition graph of BUF(l).

    3.2 Dynamic buffer

    By Theorem 1,we know that the automaton model of a queue can be relabeled to an automaton model of a buffer.In this subsection,we propose a dynamic buffer DB with size l as shown in Fig.6 to embody order and shift,in which “?1”denotes event symbols to be instantiated dynamically when new components join the queue.

    In DB,for any event σ,write σ as σ(q1,q2),to represent σ exiting q1and entering q2.Let G=(Q,Σ,δ,q0,Qm)and assume that G has just executed string s∈L(G).We call state qc∈Q reached by s the currently activated state,i.e.,qc=δ(q0,s).

    Fig.6 Initial structure of dynamic buffer.

    With the occurrences of the arrival events and service events,events of DB will be instantiated accordingly by the Enqueue and Dequeue algorithms as displayed in Fig.7.

    Fig.7 Examples of enqueueing and dequeueing.

    Assume that the currently activated state is marked as a black circle.Let event r′be the new arrival event(its corresponding service event is s′)and instantiate event σ(2,3)as r′.As the first arrival event is r1,re-instantiate σ(3,2),σ(2,1)as s1,s2respectively to ensure that event s1is the first service event to be executed.As event r′is the last arrival event,it will be serviced after both s1,s2have been executed.Thus,σ(1,0)is re-instantiated as s′.The Dequeue algorithm is a reverse process.As r1is the first arrival event,the first event to be executed is its corresponding service event s1.With event s1being executed,σ(3,2),σ(2,3)are re-instantiated as ?1 and σ(1,2),σ(0,1)as r′,r2,respectively.

    As there exists only one for loop in the Enqueue and Dequeue algorithms respectively,the time complexities of both algorithms are O(n),where n is the state size of DB.

    Hence,equipped with the Enqueue and Dequeue mechanisms,the dynamic buffer manages the order of service events.Although the state size of the automaton modeling a queue will grow sharply with increase of the size of the customer population,its relabeled version will remain invariant and behave as a buffer if the queue size is fixed.

    Algorithm(Enqueue(r′,s′))

    Input:Events r′,s′represent the arrival event and service event of the new component.

    Output:Updated DB.

    1 ∶σ(qc,qc+1)=r′

    2∶If qc> 0,then

    3∶For i=qc+1 to 2

    4∶ σ(i,i?1)= σ(i?1,i?2)

    5∶End For

    6∶End If

    7∶qc=qc+1

    8 ∶σ(1,0)=s′

    Algorithm(Dequeue())

    Output:Updated DB.

    1∶For i=1 to qc?1

    2∶ σ(i?1,i)= σ(i,i+1)

    3∶End For

    4∶σ(qc?1,qc)= ?1

    5∶σ(qc,qc?1)= ?1

    6∶qc=qc?1

    4 Application of the dynamic buffer

    Next,we show that the concurrent operation of relabeling and dynamic buffer reduces controller complexity.Let the components shown in Fig.2 incorporate the actions of breakdown(arrival event)and repair(service event).The updated components MINiand MOUTjare shown in Fig.8,where the physical meaning of events is listed in Table 4.The specifications are as follows:

    1)Avoid underflow and overflow of BUF.

    2)Repair the broken down machines in the order of breakdown.

    Fig.8 Machines with breakdown and repair.

    Let events 1i1,1i2,1i3,1i4,1i5,2 j1,2 j2,2 j3,2 j4,2 j5 be relabeled as11,12,13,14,15,21,22,23,24,25 respectively.Let the size of BUF be 2.

    Table 4 Physical meaning of events in components shown in Fig.8.

    By TCT computation,we have

    MACH(m,n)=sync3DES=sync(DES1,DES2,...,DES k)is the(reachable)synchronous product of DES1,DES2,...,DES k[17].(MIN1,...,MIN m,MOUT1,...,MOUT n),

    RMACH(m,n)=relabel(MACH(m,n)),

    RBUF=relabel(BUF),

    SUP(m,n)=supcon4DES3=supcon(DES1,DES2)is a generator for the supremal controllable sublanguage of the specification generated by DES2 w.r.t.the plant DES1[17].(MACH(m,n),BUF),

    XRSUP(m,n)=supcon(RMACH(m,n),RBUF),

    XRSUP(m,n).dat=condat5DAT2=condat(DES1,DES2)returns control data DAT2 for the supervisor DES2 of the controlled system DES1[17].(RMACH(m,n),XRSUP(m,n)),

    XRSIM(m,n)=supreduce6DES3=supreduce(DES1,DES2,DAT2)is a reduced control-equivalent counterpart of DES2[17].(RMACH(m,n),XRSUP(m,n),XRSUP(m,n).dat).

    In[12],we showed that for arbitrary m and n,the reduced supervisor XRSIM(m,n)shown in Fig.9 remains unchanged(i.e.,invariant).For the specification to avoid overflow of the buffer,events 1i1 are enabled if the number of workpieces in the buffer plus the number of working input machines MINiis less than the buffer size.This condition is independent of the number of components,as long as the buffer size is held fixed;thus,the invariance property of the reduced supervisor holds.From Fig.9 we see that the occurrence of events 1i3,1i5,2 j3,2 j5 is irrelevant to the specification to avoid the overflow of the buffer.Every time a machine breaks down,the currently activated state xijin XRSIM(m,n)will be updated to xi,j?1,0 ≤ i< 2,0 < j≤ 2 by the occurrence of event 14.Namely,the occurrence of a breakdown event 1i4 will erase one 11 from the evolution history of XRSIM(m,n).

    Fig.9 Reduced supervisor XRSIM(m,n).(Events 13,15,22,23,24,25 are self looped at each state).

    Next,we discuss the concurrent operation of the dynamic buffer and the reduced relabeled-level supervisor XRSIM(m,n).Let the repair queue size be l=2.If qc=l,since no additional slot is available for a requested broken down machine,qcremains constant until a slot becomes available.If machine MINior MOUTjbreaks down,the dynamic buffer will be updated by the Enqueue(1i5,1i3)or Enqueue(2 j5,2 j3)respectively.If machine MINior MOUTjis repaired,the dynamic buffer will be updated by the Dequeue algorithm.

    The concurrent operation of the repair queue and XRSIM(m,n)reduces complexity in two aspects:

    1)The automaton model for the repair queue updates with the details of the customer population.Without the dynamic buffer model,we need to update the repair queue model frequently.Moreover,the state size of the repair queue increases with the size of the customer population,while the state size of the dynamic buffer only depends on the queue capacity.

    2)The state size of the monolithic supervisor is not only dependent on the size of the customer population,but is also larger than the state size of the dynamic buffer and XRSIM(m,n).

    For example,let m=2,n=1.The transition table for repair queue Q(2,3)is shown in Table 5,where symbol“×”denotes that a transition is not defined and state 0 is both the initial and marked state.

    Table 5 Transition table of Q(2,3).

    By TCT computation,we have

    SPEC=sync(BUF,Q(2,3)),

    SUP=supcon(MACH(2,1),SPEC)(162,481),

    SUP.dat=condat(MACH(2,1),SUP),

    SIM=supreduce(MACH(2,1),SUP,SUP.dat)(19,162).

    For a customer population of size 3,the monolithic supervisor SUP has 162 states;its reduced control equivalent counterpart SIM still has 19 states.However,the dynamic buffer and XRSIM(m,n)have only 3 and 6 states respectively(independent of the values of m and n).The contrast of state sizes between them will become more obvious with increase of the size of the customer population.

    5 Conclusions

    We have shown that the automaton model of a queue can be reduced to the structure of a buffer,which is independent of the individuals of the customer population,as long as the queue size is fixed.To incorporate the features of order and shift into the buffer structure,we propose the model of a dynamic buffer with Enqueue and Dequeue mechanisms.Then we apply dynamic buffer to a DES with broken down components.The computation results show that the concurrent operation of dynamic buffer and reduced supervisors reduces the controller complexity.

    欧美精品人与动牲交sv欧美| 日韩av不卡免费在线播放| 欧美精品人与动牲交sv欧美| 精品久久蜜臀av无| 卡戴珊不雅视频在线播放| 免费日韩欧美在线观看| 建设人人有责人人尽责人人享有的| 亚洲av在线观看美女高潮| 亚洲精品一二三| 天天操日日干夜夜撸| 亚洲美女视频黄频| 精品久久国产蜜桃| a级毛片黄视频| av线在线观看网站| www.av在线官网国产| 在线观看免费日韩欧美大片| 亚洲情色 制服丝袜| 少妇 在线观看| av黄色大香蕉| 狠狠婷婷综合久久久久久88av| 日本wwww免费看| 精品少妇久久久久久888优播| 韩国av在线不卡| 精品人妻在线不人妻| 亚洲国产精品一区二区三区在线| 99久久中文字幕三级久久日本| 国产av国产精品国产| 另类精品久久| 国产在线免费精品| 美女主播在线视频| 好男人视频免费观看在线| 蜜桃国产av成人99| 亚洲经典国产精华液单| 精品国产乱码久久久久久小说| 观看美女的网站| 亚洲精品第二区| 午夜视频国产福利| 成人手机av| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 伊人亚洲综合成人网| 777米奇影视久久| 99九九在线精品视频| 久久久久久久国产电影| 国产成人精品在线电影| 亚洲精品乱久久久久久| 国产精品99久久99久久久不卡 | 老司机亚洲免费影院| 女人被躁到高潮嗷嗷叫费观| 人人妻人人爽人人添夜夜欢视频| 国产免费福利视频在线观看| 久久久国产一区二区| 久久久久网色| 久热这里只有精品99| 天天操日日干夜夜撸| 九色成人免费人妻av| 一区二区三区乱码不卡18| 久久人人97超碰香蕉20202| 免费看光身美女| av在线观看视频网站免费| 日本猛色少妇xxxxx猛交久久| a级毛片黄视频| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 成人18禁高潮啪啪吃奶动态图| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 久久99蜜桃精品久久| 青春草亚洲视频在线观看| 人妻系列 视频| 欧美老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 啦啦啦视频在线资源免费观看| 18禁动态无遮挡网站| 在线天堂中文资源库| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 久久精品国产鲁丝片午夜精品| 最近中文字幕2019免费版| 一级毛片 在线播放| 亚洲综合精品二区| 十八禁高潮呻吟视频| 亚洲成人av在线免费| 女人精品久久久久毛片| 97精品久久久久久久久久精品| 国产av一区二区精品久久| 日韩av不卡免费在线播放| 国产激情久久老熟女| 我要看黄色一级片免费的| 久久精品国产a三级三级三级| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 一二三四中文在线观看免费高清| 狠狠精品人妻久久久久久综合| 亚洲精品美女久久久久99蜜臀 | 内地一区二区视频在线| 国产在线免费精品| 久久久久精品久久久久真实原创| av国产精品久久久久影院| 亚洲精品中文字幕在线视频| 少妇高潮的动态图| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 97在线人人人人妻| 亚洲经典国产精华液单| 99热网站在线观看| 一本久久精品| 免费看不卡的av| 久久99蜜桃精品久久| av在线播放精品| 欧美3d第一页| 欧美老熟妇乱子伦牲交| 日韩中字成人| 大香蕉97超碰在线| 国产精品不卡视频一区二区| 国产国语露脸激情在线看| av国产久精品久网站免费入址| 老女人水多毛片| 边亲边吃奶的免费视频| av在线播放精品| 国产乱人偷精品视频| 狠狠婷婷综合久久久久久88av| 日韩av免费高清视频| 侵犯人妻中文字幕一二三四区| 午夜福利,免费看| 99香蕉大伊视频| 久久精品国产综合久久久 | 中国国产av一级| 香蕉精品网在线| 日韩熟女老妇一区二区性免费视频| 亚洲伊人久久精品综合| 少妇 在线观看| 久久久久精品人妻al黑| 亚洲国产精品专区欧美| 亚洲精品第二区| 十八禁网站网址无遮挡| 久久久久视频综合| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区 | 人妻 亚洲 视频| 亚洲精品,欧美精品| av国产精品久久久久影院| 极品少妇高潮喷水抽搐| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 久久精品aⅴ一区二区三区四区 | 九色成人免费人妻av| a级毛色黄片| 大香蕉久久网| 国国产精品蜜臀av免费| 欧美成人午夜免费资源| 午夜日本视频在线| 国产免费一区二区三区四区乱码| 美女中出高潮动态图| 欧美亚洲 丝袜 人妻 在线| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 久久99一区二区三区| 久久影院123| 18禁观看日本| 日韩人妻精品一区2区三区| 综合色丁香网| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到 | 欧美精品人与动牲交sv欧美| 黄色毛片三级朝国网站| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 国产成人aa在线观看| 亚洲,欧美精品.| 国产欧美日韩综合在线一区二区| 国产 精品1| 久久久久精品人妻al黑| 九色成人免费人妻av| 国产69精品久久久久777片| 90打野战视频偷拍视频| 九色成人免费人妻av| 97精品久久久久久久久久精品| 成年女人在线观看亚洲视频| 国产av码专区亚洲av| 美女中出高潮动态图| 欧美精品国产亚洲| 青春草亚洲视频在线观看| 多毛熟女@视频| 黄色视频在线播放观看不卡| 97精品久久久久久久久久精品| 亚洲伊人色综图| 成年av动漫网址| www.av在线官网国产| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 26uuu在线亚洲综合色| 美女福利国产在线| 高清在线视频一区二区三区| 久久久久精品人妻al黑| 亚洲熟女精品中文字幕| 久久久久人妻精品一区果冻| 青青草视频在线视频观看| 99热全是精品| 男女无遮挡免费网站观看| 插逼视频在线观看| 精品国产一区二区久久| 高清不卡的av网站| 国产精品久久久久久精品古装| 久久亚洲国产成人精品v| 边亲边吃奶的免费视频| 中国三级夫妇交换| 久久精品国产综合久久久 | 久久久亚洲精品成人影院| 中文精品一卡2卡3卡4更新| 夜夜骑夜夜射夜夜干| 精品人妻一区二区三区麻豆| 亚洲成色77777| 精品国产一区二区久久| 一二三四中文在线观看免费高清| 999精品在线视频| 精品少妇黑人巨大在线播放| 国产精品一国产av| www.熟女人妻精品国产 | 国产免费福利视频在线观看| 亚洲综合色网址| 国产精品免费大片| 亚洲欧洲日产国产| 99久国产av精品国产电影| 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 国产免费福利视频在线观看| 中国三级夫妇交换| 国产在视频线精品| 老女人水多毛片| 欧美日韩综合久久久久久| 搡女人真爽免费视频火全软件| 天堂8中文在线网| 人妻系列 视频| 免费在线观看完整版高清| 久久99精品国语久久久| 国产精品欧美亚洲77777| www日本在线高清视频| 一区二区日韩欧美中文字幕 | 亚洲国产欧美在线一区| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 日韩av免费高清视频| 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 一边摸一边做爽爽视频免费| 久久精品aⅴ一区二区三区四区 | 国产日韩一区二区三区精品不卡| 亚洲国产精品成人久久小说| 国产亚洲精品第一综合不卡 | 亚洲精品久久午夜乱码| 中文字幕免费在线视频6| 久久久久久久久久久免费av| 男人操女人黄网站| 在线观看国产h片| 国产日韩欧美视频二区| 少妇的逼水好多| 如日韩欧美国产精品一区二区三区| 18禁在线无遮挡免费观看视频| 午夜福利视频在线观看免费| 边亲边吃奶的免费视频| 欧美性感艳星| 国产深夜福利视频在线观看| 美女脱内裤让男人舔精品视频| 黑人高潮一二区| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀 | 女性被躁到高潮视频| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 在线观看美女被高潮喷水网站| 女人被躁到高潮嗷嗷叫费观| 欧美xxⅹ黑人| 丰满乱子伦码专区| 国产黄色视频一区二区在线观看| 亚洲三级黄色毛片| 伊人亚洲综合成人网| 国产成人av激情在线播放| 男人舔女人的私密视频| 国产男女超爽视频在线观看| 免费在线观看黄色视频的| 一级片'在线观看视频| 热99国产精品久久久久久7| 午夜福利视频在线观看免费| 九九在线视频观看精品| 亚洲精品色激情综合| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 欧美日韩成人在线一区二区| 精品少妇久久久久久888优播| 久久久久久久国产电影| 精品国产一区二区三区久久久樱花| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说| 欧美激情国产日韩精品一区| 人人妻人人澡人人看| 99久国产av精品国产电影| 在线观看免费视频网站a站| 男女边摸边吃奶| 久久热在线av| 久久久久久久国产电影| 高清欧美精品videossex| tube8黄色片| 午夜av观看不卡| a 毛片基地| 熟女电影av网| 王馨瑶露胸无遮挡在线观看| 国产探花极品一区二区| 青青草视频在线视频观看| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 九九爱精品视频在线观看| 只有这里有精品99| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 国产av精品麻豆| 啦啦啦中文免费视频观看日本| 亚洲,欧美精品.| 有码 亚洲区| 精品亚洲成a人片在线观看| 国产精品一国产av| 妹子高潮喷水视频| 波多野结衣一区麻豆| 一级黄片播放器| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 交换朋友夫妻互换小说| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 亚洲在久久综合| 中国国产av一级| 日韩欧美一区视频在线观看| 一边亲一边摸免费视频| 日韩欧美一区视频在线观看| 丰满乱子伦码专区| 18禁国产床啪视频网站| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 国产精品一区二区在线不卡| 国产毛片在线视频| 校园人妻丝袜中文字幕| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 十八禁网站网址无遮挡| 日本爱情动作片www.在线观看| 日韩成人伦理影院| 久久人人爽av亚洲精品天堂| 尾随美女入室| 丰满迷人的少妇在线观看| 日韩在线高清观看一区二区三区| 搡老乐熟女国产| 热99久久久久精品小说推荐| 免费av中文字幕在线| 国产淫语在线视频| 国产亚洲午夜精品一区二区久久| 久热这里只有精品99| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 丰满乱子伦码专区| 免费在线观看完整版高清| 亚洲av电影在线观看一区二区三区| 午夜免费男女啪啪视频观看| 中国国产av一级| 欧美老熟妇乱子伦牲交| 午夜免费鲁丝| 黄色配什么色好看| 好男人视频免费观看在线| 久久女婷五月综合色啪小说| 成人无遮挡网站| 夫妻性生交免费视频一级片| av在线播放精品| 国产探花极品一区二区| 久久久久久久精品精品| 高清视频免费观看一区二区| 亚洲色图综合在线观看| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| 狠狠婷婷综合久久久久久88av| 大香蕉97超碰在线| 精品福利永久在线观看| 在线免费观看不下载黄p国产| 亚洲av国产av综合av卡| 性色av一级| 国产一区二区三区av在线| 天堂俺去俺来也www色官网| 只有这里有精品99| 久久久久久久大尺度免费视频| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 日本午夜av视频| 中文字幕亚洲精品专区| 精品久久久久久电影网| 一级爰片在线观看| √禁漫天堂资源中文www| av视频免费观看在线观看| 伦理电影免费视频| 久久久久精品人妻al黑| 精品国产国语对白av| 国产熟女欧美一区二区| 老司机亚洲免费影院| 伊人亚洲综合成人网| 亚洲精品成人av观看孕妇| 在线观看免费日韩欧美大片| 狠狠精品人妻久久久久久综合| 国产欧美日韩综合在线一区二区| videos熟女内射| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 国产精品三级大全| 亚洲精华国产精华液的使用体验| av天堂久久9| 蜜桃在线观看..| 久久综合国产亚洲精品| 欧美激情极品国产一区二区三区 | 欧美xxⅹ黑人| 少妇人妻精品综合一区二区| 亚洲欧美精品自产自拍| 亚洲精品久久午夜乱码| 免费少妇av软件| 久久这里只有精品19| 国产一级毛片在线| 捣出白浆h1v1| 18+在线观看网站| 香蕉国产在线看| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| 国产欧美日韩综合在线一区二区| 久久人人爽人人片av| videosex国产| 校园人妻丝袜中文字幕| 国产淫语在线视频| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 久久久久视频综合| 国产色爽女视频免费观看| 国产国语露脸激情在线看| 九九爱精品视频在线观看| 亚洲欧美中文字幕日韩二区| 熟女av电影| 亚洲精品色激情综合| 久久精品国产鲁丝片午夜精品| 一区二区av电影网| 三上悠亚av全集在线观看| 在线观看免费日韩欧美大片| 三级国产精品片| 亚洲精品自拍成人| 色婷婷久久久亚洲欧美| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 考比视频在线观看| 大片电影免费在线观看免费| 成人综合一区亚洲| 一级片'在线观看视频| 亚洲国产看品久久| 少妇的逼好多水| 91精品三级在线观看| 多毛熟女@视频| 午夜免费男女啪啪视频观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产毛片av蜜桃av| 最近最新中文字幕免费大全7| 狠狠精品人妻久久久久久综合| 国产精品国产三级专区第一集| 男人爽女人下面视频在线观看| 亚洲一码二码三码区别大吗| av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版| 亚洲精品国产av成人精品| 亚洲国产日韩一区二区| 亚洲国产精品一区三区| 国产午夜精品一二区理论片| 777米奇影视久久| videos熟女内射| 久久这里只有精品19| 性色av一级| 国产极品天堂在线| 久久久久网色| 国产精品久久久久久久电影| 国产精品久久久久久av不卡| 九草在线视频观看| 欧美日韩视频高清一区二区三区二| 日韩精品免费视频一区二区三区 | 免费日韩欧美在线观看| 99精国产麻豆久久婷婷| 丝袜美足系列| 国产白丝娇喘喷水9色精品| 丰满迷人的少妇在线观看| 少妇的逼水好多| 少妇的逼好多水| 国产又爽黄色视频| 女人精品久久久久毛片| 高清在线视频一区二区三区| 精品一区二区免费观看| 青春草视频在线免费观看| 久久综合国产亚洲精品| 亚洲成人av在线免费| 欧美精品亚洲一区二区| 男人操女人黄网站| 免费黄频网站在线观看国产| 国产亚洲最大av| 大香蕉久久网| 在线 av 中文字幕| 国产精品一国产av| 午夜福利视频在线观看免费| 国产亚洲最大av| 90打野战视频偷拍视频| 国产 精品1| 最黄视频免费看| 国产一区有黄有色的免费视频| 亚洲av电影在线观看一区二区三区| 亚洲成色77777| 熟女人妻精品中文字幕| 欧美bdsm另类| 亚洲三级黄色毛片| xxxhd国产人妻xxx| 精品酒店卫生间| 大片免费播放器 马上看| 免费av不卡在线播放| 国产在视频线精品| 九草在线视频观看| 18在线观看网站| 搡老乐熟女国产| 亚洲欧美成人精品一区二区| 精品第一国产精品| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 夜夜爽夜夜爽视频| 亚洲内射少妇av| av视频免费观看在线观看| 久久这里只有精品19| 国产精品久久久久成人av| 亚洲精品456在线播放app| 国产极品天堂在线| 三级国产精品片| 久久99精品国语久久久| 在线观看www视频免费| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放| 日韩中字成人| 亚洲伊人色综图| 国产麻豆69| 高清在线视频一区二区三区| 亚洲国产精品专区欧美| 熟妇人妻不卡中文字幕| 精品一区二区三区四区五区乱码 | 97精品久久久久久久久久精品| 亚洲精品日韩在线中文字幕| 久久99热6这里只有精品| 欧美日韩视频精品一区| 国产精品蜜桃在线观看| 精品一区二区三区四区五区乱码 | 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 国产成人精品一,二区| 少妇的逼好多水| 国产不卡av网站在线观看| 在线观看美女被高潮喷水网站| 九草在线视频观看| 成人无遮挡网站| 国产极品天堂在线| 久久久国产欧美日韩av| 午夜免费鲁丝| 成人毛片60女人毛片免费| 男人舔女人的私密视频| 精品一区在线观看国产| 国产熟女欧美一区二区| 欧美亚洲日本最大视频资源| 在线观看三级黄色| 欧美日本中文国产一区发布| 水蜜桃什么品种好| 精品国产一区二区久久| 久久亚洲国产成人精品v| 大香蕉97超碰在线| 看非洲黑人一级黄片| 午夜视频国产福利| 亚洲国产最新在线播放| 香蕉国产在线看| 精品国产一区二区三区四区第35| 卡戴珊不雅视频在线播放| 91午夜精品亚洲一区二区三区| av在线app专区| 在线观看美女被高潮喷水网站| 永久免费av网站大全| 久久久久久久国产电影| 久久ye,这里只有精品| 国产男女超爽视频在线观看| 久久99热6这里只有精品| 中文精品一卡2卡3卡4更新| 女性生殖器流出的白浆| 国产精品国产三级国产专区5o| 精品久久蜜臀av无| 女性生殖器流出的白浆| 黄网站色视频无遮挡免费观看| 国产男人的电影天堂91| 人人妻人人澡人人爽人人夜夜| 韩国高清视频一区二区三区| 中文精品一卡2卡3卡4更新| 国产成人精品在线电影| 妹子高潮喷水视频| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区久久久樱花| 国产一级毛片在线| 免费av中文字幕在线| 肉色欧美久久久久久久蜜桃| 久久久久久人人人人人| 丰满乱子伦码专区| 日本-黄色视频高清免费观看| 丝袜在线中文字幕| 欧美精品av麻豆av| 国产免费福利视频在线观看|