• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limit behaviors of extended Kalman filter as a parameter estimator for a sinusoidal signal

    2018-07-31 03:30:18LiXIE
    Control Theory and Technology 2018年3期

    Li XIE

    State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China

    Abstract In this note,the basic limit behaviors of the solution to Riccati equation in the extended Kalman filter as a parameter estimator for a sinusoidal signal are analytically investigated by using lim sup and lim inf in advanced calculus.We show that if the covariance matrix has a limit,then it must be a zero matrix.

    Keywords:Extended Kalman filter,parameter estimator,sinusoidal signal,covariance matrix,limit behavior

    1 Introduction

    Since the standard Kalman filter for linear systems was invented in 1960 by R.E.Kalman,there have been a number of applications both in theory and practice.One of the applications was Apollo navigation system in the 1960s where the actual version of Kalman filter on board was the extended Kalman filter(EKF)adapted for nonlinear systems[1].In EKF,instead of exact state and observation matrices provided by linear models,these matrices are obtained by linearizing nonlinear models around the predicted values or filtered values of state vectors,which introduces model errors and the filter may quickly diverge[2].Hence unlike its linear counterpart,there are stability and convergence issues in EKF for the linearization.

    Concerning the convergence and stability analysis of discrete-time EKF,there are two methods related to the topic of this note.Ljung in[3]developed a differential equation method to analyze the convergence of the estimates for linear systems with unknown parameters.A simple linear system with unknown parameter as a numerical example was used to illustrate the method.Reif et al.in[2]analyzed the stochastic stability of EKF by using Lyapunov function method;see also[4]for the Lyapunov function method.Lower and upper bounds of covariance matrices were required to solve a meansquare boundedness problem.

    In this note,we considera parameterestimation problem for a sinusoidal signal,and EKF is used to estimate an unknown parameter.The measurements of the sinusoidal signal are corrupted by white noise.Since the related observation equation is nonlinear,Ljung’s method cannot be directly adapted for such an estimation problem.Meanwhile,we will see that the covariance matrix in our parameter estimation does not have a strict positive lower bound,thus the stochastic stability cannot be easily established by using Lyapunov function method.Instead of the convergence of parameter estimates and the stochastic stability of covariance matrices,we study the limit of the covariance matrix.The limit behavior of the solution to the Riccatiequation of the covariance matrix is also mainly concerned both in practice and theory.For example,an asymptotic analysis for the covariance matrix was carried out in[5]when an extended complex Kalman filter was used to estimate a sinusoidal signal.The main result is stated in Theorem 1 in Section 2.2.A numerical example is given in Section 3 to show the limit behavior of the EKF.

    2 Two-state extended Kalman filter

    Consider a sinusoidal signal with an additive noise

    We assume that the magnitude a is a known constant and the angular frequency ω as an unknown constant will be estimated.Let φ= ωt.In order to solve the parameter estimation problem of the sinusoidal signal(1)by using discrete-time EKF,we follow a procedure given in[6,Chapter 10]to establish the discrete-time state and measurement equations of(1).By calculating the derivatives of φand ω with respect to the time t,we have

    We then discretize the continuous-time state equation(2)by sampling.After a computation,we have its fundamental matrix as follows:

    in which Tsis the sampling time.We next use the nonnegative integer k to denote the discrete-time kTs.Then the discrete-time state and observation equations are obtained

    where the Gaussian white noise v has zero mean and variance R>0.In this way,we can use a real-valued EKF for the nonlinear system(3)to estimate the unknown parameter ω of the sinusoidal signal(1)with an additive noise.

    2.1 Extended Kalman filter

    Let xk+1denote x(k+1).The extended Kalman filter of the nonlinear system(3)is given as follows:1)State and covariance matrix update

    2)State and covariance matrix predict

    and substituting it into the random Riccati equation(9),after a straightforward calculation,we have

    Here we use cos2to denote cos2()for convenience.By(4)and(7),we also obtain the recursive formulas for the state estimation

    Since Pkis a covariance matrix for the linearized system,it should be a positive semidefinite matrix[10,Page 275]and[9]which can also be seen from the first equality in(9).Hence Pk,11≥0,Pk,22≥0,det(Pk)=Obviously each entry of the matrix Pkis a number since the noise covariance R>0.Using(12),we can rewrite(10)and(11)as

    where bk=

    The next proposition describes the singularity of Pkby its determinant as k increases.

    Proposition 11)If there exists a finite k1≥0 such that det(Pk1)=that is,Pk1is a singular matrix,then

    2)If there exists a finite k1≥0 such thatthat is,Pk1>0,then

    ProofSuppose det(Pk1)straightforward calculation shows that this equality also holds for k+1.Substituting it into(12)–(14),we have

    Therefore,

    Then 1)follows.The statement 2)of this proposition is directly due to the matrix inversion lemma;see(21)in Section 2.4. □

    2.2 The limit of the solution to Riccati equations

    It follows from(12)that

    Hence we have the following lemma.

    Lemma 1The sequence Pk,22monotonically decreases with increasing k.The limit of Pk,22exists and is greater than or equal to zero.Also

    Assumption 1The sequence cos2does not have a limit as k approaches∞.

    Proposition 2If P0/0,12≥0,then Pk1,12≥0 for any k>0;otherwise either there is a finite k1>0 such that for any k≥k1,Pk,12≥0 or under Assumption 1,we have the limits

    ProofSince P1,12∶=P1/0,12=P0/0,12+TsP0/0,22,Pk,12≥0 follows from(14)if P0/0,12≥0.For the other case,once there existsa finite k1>0 such that Pk1,12≥0,then it is easy to see that Pk,12≥ 0,?k> k1from(14).Hence we next assume that Pk,12<0 for any finite k in order to establish(16),then again by(14)that Pk,12≤Pk+1,12<0,thus its limit exists by the monotonic property.Suppose further thatthen by using the equality(14)one more time and the convergence of Pk,22,we have the limit

    If c2≠0,then(15)implies that the limit of cos2equals zero,which contradicts the assumption that cos2does not have a limit.Hence c2=0.Finally by taking the limit of(14),we have

    which also contradicts that c1<0 and the fact that the right-hand side is great than or equal to zero.We conclude that the limits(16)hold. □

    In the sequel we always assume that Pk,12≥0.As we will see subsequently in Theorem 2,if Pkis invertible,then eventually Pk,12>0.We next make use of the inequalities of lim sup and lim inf for two sequences xkand yk,for example,if xk≤yk,then

    and for two non-negative sequences xk,yk

    See[11,Problem 2.4.17]for details.All related inequalities as above make senses provided that both sides are not of the indeterminate forms0×±∞,±∞?∞.For each sequence defined on the extended real line[?∞,∞],the limit superior and the limit inferior always exist.

    Assumption 2

    Remark 1Ifthen∞,that is,Pk,11is unbounded since

    With the help of Assumption 2,we can apply(17)to obtain the main result.

    Theorem 1Under Assumptions 1 and 2,we have

    2)If the limit of Pk,11exists as k→ ∞,we have

    ProofIt follows from(15)that

    from which three possible cases follow

    Due to

    we have

    Further it follows from(14)that Pk+1,12≥TsPk+1,22,then taking lim inf on both sides,

    We now establish the second limit of this part.Since Pk≥0,we haveTaking lim sup on both sides yields

    Hence,

    Corollary 1Under Assumptions 1 and 2,we have

    ProofIt follows from(13)and using(1)in Theorem 1 that

    One can easily see from the last inequality that eitherSince the former leads to the latter,we conclude that

    2.3 The solution to recursive equations

    In this section,we use the transition function of the recursions(13)and(14)to derive their solutions in terms of initial values of the states.

    Denote αk=R/(R+bk)and define the transition function

    Then after a straightforward calculation,we obtain the solution to(14)in terms of the initial value and the transition function

    Notice that in order to obtain(18),we use(8)to calculate P1,12and define α0=1.Introducing a new sequence

    substituting(13)into(19),and using(14),we have

    Then the solution to(13)is given by

    Proposition 3Under Assumption 1,if the initial value of Pk,11is not equal to zero,then it is forgotten in the long run.We also have

    ProofSince Ψ(k+1,0)= αkΨ(k,0),it follows from αk≤ 1 that Ψ(k+1,0)≥ 0 is monotonically decreasing and hence has a limit.We now assume0,then

    Forthe non-trivial case P0,11>0,it follows from(20)thatThanks to the left-hand side inequality of(17),we have

    The second equality is due to the equivalence

    See[12,Page 17]or[13,Page 220,Theorem 4]in which the left-hand side is referred to as a divergent infinite product.The claim of the proposition directly follows from(20)in which the transition function Ψ(k+1,0)is coefficient of P0,11. □

    2.4 The limit of the inverse matrix of Pk

    By the matrix inversion lemma,

    Denote A?T=(AT)?1.Taking the inverse of both sides of(21)gives a Lyapunov equation

    Substituting the partitioned matrixand the inverse of the matrix A

    into the Lyapunov equation(22)yields

    Further we obtain recursive formulas for all entries

    By using(24),the equality(25)can be rewritten as

    Making use of the above equalities,we obtain the following theorem.

    Theorem 2Under Assumptions 1 and 2,suppose that there exists a finite k1≥0 such that det(Pk1)=that is,Pk1>0,then

    The entry Pk,12of Pkeventually is greater than zero.We have also

    ProofBy Proposition 1,the covariance matrix Pk>0 for k>k1which ensures that its inverse exists.Then one can easily obtain its inverse matrix as follows:

    Since we assume that the limit of the sequence cos2φkdoes not exist,we haveotherwise its limit is zero.Then(23)gives

    from which we obtain

    Thanks to(24),we have

    An argument similar to the one used in(27)shows that

    Notice that since

    as k→∞due to Pk,12→0,as k→∞.Therefore we have Pk,11Pk,22→ 0 as k→ ∞,which implies the last claim in this theorem. □

    3 A numerical example

    Consider a sinusoidal signal with an additive noise.The discrete-time state and observation equations are

    where a=0.5 and the Gaussian white noise v has zero mean and variance R=1.We employ the extended Kalman filter to estimate the unknown parameter ω.The true value of ω is 1.5.In simulation we let P0/0be the identity matrix.

    Fig.1 shows a sample path of sinusoidal signal and its measurements with the sampling time Ts=0.1.Indeed,the limit of cos2does not exist.Hence we claim thatby Theorems 1 and 2.This can be seen in Fig.2.In Fig.3,the dependence of the parameter estimatesωkis found on the sampling time Tsfor the same sample path.The parameter estimate is obviously improved by decreasing the sampling time.Notice that the convergence of Pk,22to zero does not necessarily guarantee that the parameter estimates converge to the true value.In Fig.4,we also give the time average for a sample path of the parameter estimateωkand the sample average over 1000 sample paths ofωk.Obviously the EKF as a parameter estimator under consideration is biased.

    Fig.1 The sinusoidal signal and measurements.

    Fig.2 The entries and the determinant of Pk.

    Fig.3 The estimatesωk with different T s s.

    Fig.4 The time and sample averages ofωk.

    4 Conclusions

    In this note,by using lim sup and lim inf,we study the limit behaviors of the extended Kalman filter as a parameter estimator for a sinusoidal signal.The estimation problem of a sinusoidal signal often occurs in power systems.We claim that three entries of the covariance matrix and its determinant have zero limits as the time approaches infinity.Further,if the limit of the covariance matrix exists,we show that it must be a zero matrix.However we also find that it is difficult to obtain the limit behavior of the entry Pk,11of the 2×2 covariance matrix Pk,and the question concerning its existence remains open.Further research could explore the possibility whether or not the differential equation method developed by Ljung in[3]can be adapted to analyze the convergence of the EKF under consideration,and also investigate the ergodic property of the EKF by using operator methods in[14]and references therein.

    Acknowledgements

    The author thanks the reviewers for valuable comments that help to improve the presentation.

    国产有黄有色有爽视频| 尾随美女入室| 欧美激情 高清一区二区三区| 超碰97精品在线观看| 亚洲精品456在线播放app| 亚洲精品乱码久久久v下载方式| 大又大粗又爽又黄少妇毛片口| kizo精华| 欧美日本中文国产一区发布| 赤兔流量卡办理| 韩国av在线不卡| 最近2019中文字幕mv第一页| 秋霞在线观看毛片| 国产精品国产三级国产专区5o| 美女内射精品一级片tv| 久久久久久久精品精品| 有码 亚洲区| 国产亚洲最大av| 亚洲国产av影院在线观看| 成人手机av| 国产精品一区二区在线观看99| 乱码一卡2卡4卡精品| 18禁在线播放成人免费| 免费播放大片免费观看视频在线观看| 如日韩欧美国产精品一区二区三区 | 狂野欧美激情性bbbbbb| 亚洲精品国产av成人精品| 99热国产这里只有精品6| 人人妻人人澡人人看| 日日撸夜夜添| 亚洲伊人久久精品综合| 欧美精品一区二区免费开放| 22中文网久久字幕| 美女大奶头黄色视频| 九草在线视频观看| av不卡在线播放| 在线观看免费高清a一片| av国产精品久久久久影院| 街头女战士在线观看网站| 国产不卡av网站在线观看| 婷婷成人精品国产| 亚洲国产色片| 国产精品免费大片| 成人毛片60女人毛片免费| 2022亚洲国产成人精品| 成年人免费黄色播放视频| 久久久久久久久久人人人人人人| 亚洲精品乱码久久久v下载方式| 亚洲人与动物交配视频| 国产成人免费无遮挡视频| 这个男人来自地球电影免费观看 | 国产免费视频播放在线视频| 亚洲精品久久午夜乱码| 伦理电影免费视频| 我的女老师完整版在线观看| 久久久精品免费免费高清| 午夜91福利影院| 菩萨蛮人人尽说江南好唐韦庄| 国产成人freesex在线| 久热这里只有精品99| 欧美97在线视频| 国产成人精品在线电影| 久久久亚洲精品成人影院| 91午夜精品亚洲一区二区三区| 成人手机av| 一级毛片 在线播放| 男女国产视频网站| 美女内射精品一级片tv| 麻豆乱淫一区二区| 丝袜喷水一区| 高清视频免费观看一区二区| 成人免费观看视频高清| 欧美激情极品国产一区二区三区 | 色视频在线一区二区三区| 亚州av有码| 日韩熟女老妇一区二区性免费视频| 日韩在线高清观看一区二区三区| 蜜桃在线观看..| 秋霞伦理黄片| 国产av一区二区精品久久| 人妻 亚洲 视频| 人妻制服诱惑在线中文字幕| 满18在线观看网站| 一区在线观看完整版| 一本色道久久久久久精品综合| 18禁在线播放成人免费| 亚洲国产精品成人久久小说| 午夜免费男女啪啪视频观看| 亚洲欧美一区二区三区黑人 | 在线观看免费视频网站a站| 国产有黄有色有爽视频| 精品久久国产蜜桃| 久热久热在线精品观看| 免费高清在线观看日韩| 免费播放大片免费观看视频在线观看| 大香蕉97超碰在线| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 亚洲伊人久久精品综合| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 大香蕉久久网| 亚洲一级一片aⅴ在线观看| 一区二区三区免费毛片| 免费少妇av软件| 美女脱内裤让男人舔精品视频| av又黄又爽大尺度在线免费看| 国产精品久久久久成人av| 丝袜喷水一区| 18在线观看网站| av天堂久久9| 三级国产精品片| 国产精品99久久久久久久久| 国产精品秋霞免费鲁丝片| 18禁在线播放成人免费| 另类精品久久| 亚洲人成网站在线观看播放| 街头女战士在线观看网站| 免费大片18禁| 香蕉精品网在线| 十八禁网站网址无遮挡| 五月伊人婷婷丁香| 天美传媒精品一区二区| 97在线人人人人妻| 91午夜精品亚洲一区二区三区| 国产精品秋霞免费鲁丝片| 久久青草综合色| 女的被弄到高潮叫床怎么办| 女人久久www免费人成看片| 伊人亚洲综合成人网| 人人妻人人澡人人看| 久久久亚洲精品成人影院| 蜜桃久久精品国产亚洲av| 十八禁高潮呻吟视频| 久久狼人影院| 看免费成人av毛片| av在线观看视频网站免费| 亚洲美女视频黄频| 免费高清在线观看视频在线观看| 亚洲av二区三区四区| 中文字幕亚洲精品专区| 日韩欧美一区视频在线观看| 午夜免费男女啪啪视频观看| 亚洲经典国产精华液单| 国产精品国产三级专区第一集| www.色视频.com| 免费久久久久久久精品成人欧美视频 | 十八禁高潮呻吟视频| 高清视频免费观看一区二区| 欧美三级亚洲精品| 99精国产麻豆久久婷婷| 永久网站在线| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜添av毛片| 亚洲精品国产av成人精品| 久久精品夜色国产| 国产精品一二三区在线看| 精品亚洲乱码少妇综合久久| 久久午夜综合久久蜜桃| 国产成人a∨麻豆精品| 一级黄片播放器| 欧美97在线视频| 伦精品一区二区三区| 青春草亚洲视频在线观看| 国产亚洲欧美精品永久| 免费人妻精品一区二区三区视频| 一级,二级,三级黄色视频| 一级毛片黄色毛片免费观看视频| 午夜视频国产福利| 日本91视频免费播放| 少妇熟女欧美另类| 国产视频内射| av卡一久久| 97超视频在线观看视频| 天天躁夜夜躁狠狠久久av| 性高湖久久久久久久久免费观看| 国产白丝娇喘喷水9色精品| 国产精品久久久久久久电影| 亚洲av日韩在线播放| 久久精品久久久久久噜噜老黄| 国产高清国产精品国产三级| 丝袜美足系列| 热re99久久精品国产66热6| 午夜视频国产福利| 国产精品国产三级专区第一集| 国精品久久久久久国模美| 老熟女久久久| 亚洲激情五月婷婷啪啪| av电影中文网址| 精品一区二区三卡| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 啦啦啦中文免费视频观看日本| 麻豆成人av视频| 亚洲中文av在线| 久久人妻熟女aⅴ| 一区二区av电影网| 亚洲婷婷狠狠爱综合网| 麻豆精品久久久久久蜜桃| 免费少妇av软件| 夜夜看夜夜爽夜夜摸| 久久久久精品久久久久真实原创| 久久青草综合色| 亚洲av综合色区一区| 国产成人一区二区在线| 亚洲精品亚洲一区二区| 一本色道久久久久久精品综合| videossex国产| 亚洲精品第二区| 少妇的逼水好多| 日韩人妻高清精品专区| √禁漫天堂资源中文www| 日韩亚洲欧美综合| 亚洲国产毛片av蜜桃av| .国产精品久久| 亚洲av成人精品一二三区| 亚洲高清免费不卡视频| videos熟女内射| 一级,二级,三级黄色视频| xxxhd国产人妻xxx| 自线自在国产av| 99精国产麻豆久久婷婷| 国产精品人妻久久久影院| 午夜91福利影院| 内地一区二区视频在线| 亚洲国产日韩一区二区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久久久大奶| 成人国产av品久久久| 水蜜桃什么品种好| 99国产综合亚洲精品| 国产亚洲最大av| 91成人精品电影| 日产精品乱码卡一卡2卡三| 国精品久久久久久国模美| 免费少妇av软件| 精品国产乱码久久久久久小说| 久久国内精品自在自线图片| 亚洲av成人精品一区久久| 日本-黄色视频高清免费观看| 国产视频首页在线观看| 美女中出高潮动态图| 美女主播在线视频| 韩国av在线不卡| 欧美日本中文国产一区发布| 久久人人爽人人爽人人片va| 欧美日韩亚洲高清精品| 亚洲精品久久久久久婷婷小说| 精品国产国语对白av| 国产精品国产av在线观看| 国产一区二区在线观看日韩| 国产黄片视频在线免费观看| 国产精品蜜桃在线观看| 亚洲久久久国产精品| 国产女主播在线喷水免费视频网站| 这个男人来自地球电影免费观看 | 精品久久久久久电影网| 久久久久久久久大av| 国产黄片视频在线免费观看| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 菩萨蛮人人尽说江南好唐韦庄| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 国产男人的电影天堂91| 久久久久久久国产电影| 2022亚洲国产成人精品| 黄色视频在线播放观看不卡| 久久99一区二区三区| 成人漫画全彩无遮挡| 欧美精品高潮呻吟av久久| 欧美日韩精品成人综合77777| 午夜激情av网站| 日韩欧美一区视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产片特级美女逼逼视频| 精品视频人人做人人爽| 最近的中文字幕免费完整| 国产视频首页在线观看| 老司机亚洲免费影院| 麻豆乱淫一区二区| 亚洲第一av免费看| 99国产精品免费福利视频| 一区在线观看完整版| 亚洲精品av麻豆狂野| 九九爱精品视频在线观看| 韩国av在线不卡| 蜜桃国产av成人99| 久久久精品免费免费高清| 中文字幕人妻丝袜制服| 永久免费av网站大全| 午夜福利网站1000一区二区三区| 黑人高潮一二区| 狂野欧美激情性bbbbbb| 乱人伦中国视频| 飞空精品影院首页| 精品亚洲成国产av| 一级毛片aaaaaa免费看小| 国产在线视频一区二区| 99国产综合亚洲精品| 日日摸夜夜添夜夜添av毛片| 亚洲无线观看免费| 人人妻人人爽人人添夜夜欢视频| h视频一区二区三区| 亚洲国产精品999| 国产av码专区亚洲av| 草草在线视频免费看| 97超视频在线观看视频| 亚洲国产最新在线播放| 久久精品国产鲁丝片午夜精品| 国产男女超爽视频在线观看| xxx大片免费视频| 少妇 在线观看| 新久久久久国产一级毛片| 国产一区二区三区综合在线观看 | 男女国产视频网站| 如何舔出高潮| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| av黄色大香蕉| 亚洲精品自拍成人| 一级a做视频免费观看| 另类精品久久| 女性生殖器流出的白浆| 亚洲国产精品专区欧美| 国模一区二区三区四区视频| 男人添女人高潮全过程视频| 国产精品无大码| 夜夜骑夜夜射夜夜干| 国产精品人妻久久久久久| 中文欧美无线码| 五月天丁香电影| 国产av一区二区精品久久| 日本av免费视频播放| 婷婷色综合www| 欧美变态另类bdsm刘玥| 日韩中字成人| 大片免费播放器 马上看| 自线自在国产av| 日本免费在线观看一区| 国产男人的电影天堂91| 水蜜桃什么品种好| 在线精品无人区一区二区三| 日韩不卡一区二区三区视频在线| 国产精品嫩草影院av在线观看| 日韩成人伦理影院| 九九久久精品国产亚洲av麻豆| 精品国产国语对白av| 国产亚洲精品第一综合不卡 | 免费看光身美女| 男人操女人黄网站| 国产免费视频播放在线视频| 又黄又爽又刺激的免费视频.| 国产女主播在线喷水免费视频网站| 在线观看国产h片| videos熟女内射| 满18在线观看网站| 美女cb高潮喷水在线观看| 国产在线免费精品| 日韩av免费高清视频| 建设人人有责人人尽责人人享有的| 天天影视国产精品| 两个人的视频大全免费| 国产精品三级大全| 精品人妻熟女av久视频| 亚洲精品一二三| 欧美bdsm另类| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 国产精品国产三级国产av玫瑰| 女性被躁到高潮视频| 一个人看视频在线观看www免费| 国产极品粉嫩免费观看在线 | 精品亚洲成国产av| 国产精品久久久久久久电影| 男女国产视频网站| 成人二区视频| 国产欧美亚洲国产| 国产精品一区二区在线观看99| 视频中文字幕在线观看| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 亚洲综合色网址| 99热全是精品| 人体艺术视频欧美日本| 美女xxoo啪啪120秒动态图| av黄色大香蕉| 亚洲精品,欧美精品| 一级毛片我不卡| h视频一区二区三区| 在线观看免费日韩欧美大片 | 男人添女人高潮全过程视频| 最黄视频免费看| 一本一本综合久久| 国产精品不卡视频一区二区| 色哟哟·www| 国产在线一区二区三区精| 欧美bdsm另类| 如何舔出高潮| 卡戴珊不雅视频在线播放| 在线观看一区二区三区激情| 十分钟在线观看高清视频www| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 午夜激情av网站| 看免费成人av毛片| 日韩精品有码人妻一区| 日韩中字成人| 好男人视频免费观看在线| 嘟嘟电影网在线观看| 十八禁网站网址无遮挡| 国产一区亚洲一区在线观看| 最近的中文字幕免费完整| 精品酒店卫生间| 有码 亚洲区| 女的被弄到高潮叫床怎么办| 满18在线观看网站| av在线播放精品| 男人添女人高潮全过程视频| 街头女战士在线观看网站| 精品一区二区三区视频在线| 午夜福利网站1000一区二区三区| 美女国产高潮福利片在线看| 国产熟女欧美一区二区| 高清欧美精品videossex| 欧美三级亚洲精品| 成人无遮挡网站| 欧美+日韩+精品| 久久人人爽av亚洲精品天堂| 亚洲久久久国产精品| 国产视频首页在线观看| 18+在线观看网站| 在线观看国产h片| 国产精品99久久久久久久久| 免费大片18禁| 国产成人精品福利久久| 亚洲婷婷狠狠爱综合网| 黑丝袜美女国产一区| 国产精品久久久久成人av| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| av在线观看视频网站免费| 一边摸一边做爽爽视频免费| 欧美亚洲 丝袜 人妻 在线| 成人二区视频| 极品人妻少妇av视频| 久久国产精品男人的天堂亚洲 | 亚洲第一青青草原| 国产在线免费精品| svipshipincom国产片| 9热在线视频观看99| 在线永久观看黄色视频| 亚洲国产av影院在线观看| 建设人人有责人人尽责人人享有的| 69av精品久久久久久 | 国产xxxxx性猛交| 国产麻豆69| 亚洲精品在线观看二区| 女人精品久久久久毛片| 啦啦啦免费观看视频1| 精品午夜福利视频在线观看一区 | 一区二区av电影网| 国产又爽黄色视频| 777米奇影视久久| 国产精品香港三级国产av潘金莲| 国产亚洲午夜精品一区二区久久| 国产日韩欧美在线精品| 国产精品久久电影中文字幕 | 19禁男女啪啪无遮挡网站| netflix在线观看网站| 俄罗斯特黄特色一大片| 亚洲一区中文字幕在线| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 欧美人与性动交α欧美精品济南到| 纯流量卡能插随身wifi吗| 国产成人免费观看mmmm| 精品人妻在线不人妻| 国产人伦9x9x在线观看| 亚洲精品国产精品久久久不卡| 成人永久免费在线观看视频 | 动漫黄色视频在线观看| 亚洲人成电影免费在线| 欧美av亚洲av综合av国产av| 久久国产精品人妻蜜桃| 成在线人永久免费视频| 老司机在亚洲福利影院| 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 18禁美女被吸乳视频| 777久久人妻少妇嫩草av网站| 香蕉国产在线看| videos熟女内射| 久久久久精品国产欧美久久久| 欧美日本中文国产一区发布| 99国产精品一区二区三区| 黄片大片在线免费观看| 亚洲精品在线观看二区| www.熟女人妻精品国产| 女人久久www免费人成看片| 色婷婷久久久亚洲欧美| 久久性视频一级片| 国产日韩欧美亚洲二区| 久久久久精品国产欧美久久久| 国产亚洲欧美在线一区二区| 9热在线视频观看99| 午夜精品久久久久久毛片777| 丁香欧美五月| 9色porny在线观看| 黄色视频,在线免费观看| 亚洲色图av天堂| 香蕉国产在线看| 丝袜喷水一区| 国产精品一区二区免费欧美| 国产av精品麻豆| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 免费少妇av软件| 成人三级做爰电影| 国产不卡一卡二| 久久中文看片网| av网站在线播放免费| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 久久性视频一级片| 丝袜在线中文字幕| 国产精品美女特级片免费视频播放器 | 欧美人与性动交α欧美软件| 国产精品偷伦视频观看了| 久久久国产欧美日韩av| 丰满迷人的少妇在线观看| 欧美激情高清一区二区三区| 999久久久精品免费观看国产| 国产成人欧美在线观看 | 中文字幕人妻熟女乱码| 精品一品国产午夜福利视频| 真人做人爱边吃奶动态| 最近最新免费中文字幕在线| 人人妻,人人澡人人爽秒播| 男女高潮啪啪啪动态图| 亚洲性夜色夜夜综合| 亚洲成人免费电影在线观看| 欧美黄色淫秽网站| 十八禁网站免费在线| 成年人午夜在线观看视频| 日韩有码中文字幕| 老汉色av国产亚洲站长工具| 色婷婷久久久亚洲欧美| 国产精品美女特级片免费视频播放器 | 老司机深夜福利视频在线观看| 欧美午夜高清在线| 大片电影免费在线观看免费| 国产免费av片在线观看野外av| 精品第一国产精品| 十八禁网站免费在线| 最近最新中文字幕大全电影3 | 久久精品熟女亚洲av麻豆精品| 久久这里只有精品19| 亚洲专区中文字幕在线| 亚洲精华国产精华精| 欧美国产精品va在线观看不卡| 51午夜福利影视在线观看| 在线观看舔阴道视频| 久久久国产精品麻豆| 久久 成人 亚洲| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| www.999成人在线观看| 我的亚洲天堂| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 亚洲视频免费观看视频| 亚洲精品国产一区二区精华液| 日韩视频在线欧美| 美女扒开内裤让男人捅视频| 男女无遮挡免费网站观看| 大码成人一级视频| 午夜福利欧美成人| 老司机午夜福利在线观看视频 | 18禁国产床啪视频网站| 正在播放国产对白刺激| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 女警被强在线播放| 国产高清视频在线播放一区| 男人操女人黄网站| 国产成人欧美| 欧美日韩一级在线毛片| 美女视频免费永久观看网站| 久久性视频一级片| 少妇粗大呻吟视频| 欧美人与性动交α欧美精品济南到| 美女视频免费永久观看网站| 日韩有码中文字幕| 黄色 视频免费看| 热99re8久久精品国产| 午夜视频精品福利| 久久久国产成人免费| 日本黄色视频三级网站网址 | 露出奶头的视频| 夜夜骑夜夜射夜夜干| 日韩欧美免费精品| 又黄又粗又硬又大视频| 69av精品久久久久久 | 老司机影院毛片| 热re99久久国产66热| 亚洲人成77777在线视频| 美女福利国产在线|