• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Bayesian data analysis on manifold

    2018-07-31 03:30:20YangMING
    Control Theory and Technology 2018年3期

    Yang MING

    Key Lab of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100190,China

    Abstract In this paper,variational inference is studied on manifolds with certain metrics.To solve the problem,the analysis is first proposed for the variational Bayesian on Lie group,and then extended to the manifold that is approximated by Lie groups.Then the convergence of the proposed algorithm with respect to the manifold metric is proved in two iterative processes:variational Bayesian expectation(VB-E)step and variational Bayesian maximum(VB-M)step.Moreover,the effective of different metrics for Bayesian analysis is discussed.

    Keywords:Variational Bayesian,Lie group,data analysis

    1 Introduction

    Variational Bayesian(VB)methods have been studied for a huge amount of models to approximate posterior probability distribution,which have benefits of low computational cost and analytic tractability[1–4],and therefore,its has been successfully applied to many areas related to control,estimation,and signal process[5].Based on VB methods,the efficiency of online model selection has been greatly improved[6].Furthermore,VB approximation was applied to recursive noise adaptive Kalman filtering[7].In[8],the VB method was used to control the state estimation for heavy-tailed noise.Additionally,in[9],the VB idea was employed to estimate the joint distribution of states and non-Gaussian noises statistically,where the non-Gaussian noises were simulated by mixture Gaussian distributions.

    In many practical situations,data may be located in some special manifolds,not the whole spaces.Usually,the dimension of a manifold may be much less than that of the Euclidean space where the manifold is embedded referring to the well-known Whitney embedding theorem,and therefore,we can largely reduce the dimension when we know the structure of a data manifold.In fact,the geometric structure of the data indeed is very helpful in data mining or data-based decision according to the famous manifold learning hypothesis[10].Since it is very hard to study the data distribution directly in manifolds for general cases,in some specific manifolds such as Lie groups,a number of results were obtained[11].Due to the symmetric group properties and smooth differential calculus,Lie groups can easily describe data arisen from various settings from rigid body motions[12]to phase transitions[13].Most of these data involve Lie group to provide a rigorous mathematical framework and reduce those complicated computations with the help of geometric structure[14,15].However,the studies of learning or reasoning methods on general manifolds are still under development.

    Most VB-based algorithms do not get straight connection with the geometric structure.The motivation of this paper is to develop a geometric approach for VB analysis on given manifolds,particularly those that can be approximated by Lie groups.To do this,we need to fully explore the geometric structure when we derive VB-based algorithms.The contribution of the paper may be summarized as follows:

    ?We consider the VB on Lie group with help of geometric analysis,and we discuss the convergence of the proposed algorithm with the help of VB-E and VB-M steps.

    ?We consider the VB on a manifold,which can be approximated by some Lie group,and get some estimation for the error bounds.

    ?We discussed various metrics for the VB methods,with comparison between them from the data analysis viewpoint.

    The remainder of the paper is organized as follows.Section 2 presents preliminaries and problem description of this paper.Then Section 3 gives the design and analysis of approximating data manifold by distribution supported on Lie group with specific error bound,while Section 4 shows theoretical inference for variational Bayesian on Lie group.Furthermore,Section 5 discusses several metrics to show their strong or weak points in the computation for data distribution on manifolds.Finally,Section 6 provides concluding remarks.

    2 Preliminaries

    In this section,we review some basic properties of Lie groups from the computational perspective.Note that all of the groups considered here are matrix Lie groups for convenience.Then we introduce VB for its extension to manifolds.

    2.1 Lie group

    It is known that Lie group is manifold with smooth differential structure,which is compatible with its group operation.It can be studied through calculus and continuous group symmetry[16],and also represents the best developed theory of continuous symmetry of mathematical objects and structures,which makes them powerful tools for many ideal geometric distributions of real data samples.

    Consider the set of 3×3 rotation matrices

    It can be shown that the 9 independent entry elements in a 3×3 real matrix are restricted by the orthogonality condition MMT=I to the space where a 3 degree of freedom subspace remains.The condition det(M)=1,however,limits the discussion to one component of the subspace.It is common to describe the 3 degree of freedom of the rotation group using standard parametrization such as the Euler angles:

    where Mi(θ)is a counterclockwise rotation about i th coordinate axis.

    The group SO(3)is a Lie group satisfying compactness,and therefore,it has finite volume measure.When using Euler angles,the volume is computed with respect to the integration measure

    which integrated over 0≤ α,γ ≤ 2π and 0≤ β≤ 2π giving the value 1.

    The Lie algebra so(3)consists of real skew-symmetric matrices of the following form:

    In general,Lie algebra and Lie group are connected by exponential mapping.For Lie groups discussed here,the exponential mapping is the exponential function for matrix.In this specific case,

    Moreover,it is well known that

    Although this low-dimensional example of Lie group is presented to make the discussion concrete,a great number of different kinds of Lie groups exit.For example,the same construction used to define SO(3)relative to R3×3can be used to define SO(n)from Rn×n.The result isdimensional Lie group and has a natural volume element d M.In general,the real matrix Lie algebra of dimension n is defined through a basis which consists of real matrices{Xi}for i=1,...,n satisfying the following commutator operation:

    is always admissible in some neighborhood about the identity of the corresponding Lie group.As a matter of fact,this parametrization is smoothly differentiable with respect to X(i)over group SO(n)except for a measure zero set.The logarithm mapping ln g(x)=X is defined as the inverse of the exponential function as well.It will be useful in the practical computation to identify a vector x∈Rnas

    Here{ei}represents the standard basis for Rn.

    In terms of the definitions that have been mentioned in the previous examples,the adjoint operation Ad and ad are the following matrix functions:

    The dimension of these matrices is the same as the dimension of Lie group,which may be different from the general matrix elements.The function Δ(g)=detAd(g)is called the modular function of G.For a unimodular Lie group,Δ(g)=1.

    2.2 Metrics and variational Bayesian inference

    Suppose pr,p?are two distribution on the manifold M,and here are the well-known metrics:

    ?The KL divergence

    Note that the KL divergence is anti-symmetric and is infinite when there are points such that p?(x)=0 and pr(x)>0.

    ?The total variation metric

    here Ω represents all the Borel sets of M.

    ?The Wasserstein metric

    here Π(pr,p?)represents all the joint distribution ξ(x,y)whose marginals are prand p?respectively.Geometrically,ξ(x,y)denotes the amount of weight transported from x to y by transforming the distribution prto distribution p?.

    In the context of Bayesian inference,the posterior probability distribution comes from prior distribution and likelihood function,which arisen from the observable data for some statistical model[17].Bayesian inference studies the posterior probability distribution based on Bayes’theorem:

    where Φ denotes the general model parameter whose probability may be affected by the observable data D.

    By variational Bayesian methods,the joint posterior distribution p(x,Φ|Y)can be approximated by free form distributions q(x,Φ).Here Y represents hidden variables and other hypothesis.

    where q(x)and q(Φi)are Gaussian or Wishart distributions respectively.The purpose of VB approximation is to minimize the distance between posterior distribution p(x,Φ|Y)and variational distribution q(x,Φ)under KL divergence:

    where c represents a constant independent of the variational distribution q(x,Φ).The evidence of the lower bound is

    Therefore,the problem becomes

    The variational Bayesian methods iterate between each variational distribution q(Φi)(VB-E step)and updating global distribution q(x)(VB-Mstep)while keeping other distribution fixed,which can be summarized as

    In this paper,we will consider how to develop VB on manifolds that can be approximated by some Lie groups.At first,we study the VB on Lie groups,and then we give error analysis of the manifolds that can be approximated by Lie groups.Then we discuss several metrics to show their strong or weak points in the computation on manifolds.

    3 Approximating data manifold

    In order to learn a probability distribution supported on the general manifold,our strategy is through variational Bayesian methods which mainly define a set of parametric densities{p?}?∈Φand searching for the parameter that maximized the likelihood function on the manifold[18],that is,for real data samplesour goal is to find the following solution:

    Asymptotically this is equivalent to minimizing the KL divergence KL(pr‖p?)on the data manifold through its nearby Lie group structure.Thus we have to modify the probability density p?to exist over the manifold.This is not the common situation where we are working with density distribution supported by more complex manifold[10].This data manifold usually is not unimodular Lie group and does not even admitsymmetric structures.The standard construction is to add some noise term to approximate the real distribution,which is a natural consequence of the high-dimensional space structure.

    Theorem 1Let ? be a independent random variable with density p?.If the manifold M admits distribution pMsupported on the Lie group G,then pM+?is absolutely continuous and

    ProofLet N be a Borel subset with measure 0.Since ? and pMare independent,according to Fubini theorem

    Here we used the fact from real analysis that if N has measure 0,then so does N?x.Therefore,p?(N?x)=0,which shows that pM+?is absolutely continuous.

    Moreover,we compute the density of pM+?using the independence of ? and pM.For the Borel set K ∈ M we have

    Corollary 1?For ?~ N(0,σ2I),

    Hence,this theorem has shown that the density pM+?(x)is proportional to the inverse distance for points on pMsupported in G.Also,their weights are exactly the probability of these points.When the support of pMis a Lie group,we will choose the average weighted distance to the points according to the group operation.In the above corollary,we can see the impact of various random errors with different types of decays by altering the covariance matrix.

    The phenomenon described above is quite intriguing because these distribution models are highly accurate on the Lie group data set.Thus we can first define a simple synthetic geometric model to investigate some examples.For the Lie group SO(3),the corresponding geometric model is 3 dimensional sphere:

    which is not a real Lie group.However there is a canonical double cover homeomorphism χ between them:

    Thus all the learning distribution processes about SO(3)can be pulled back to S3.

    Therefore,the data distribution on this 3 dimensional sphere is generated by a random x∈R4where the norm ‖x‖2is assigned with equal probability.Studying a synthetic sphere data set has many advantages since the probability density of data pr(x)is well defined and is uniform over all x in its support.We can also sample uniformly from pr(x)by z~N(0,I)and then setting x=z/‖z‖2or x=Rz/‖z‖2.Thus,we can control the difficulty of the learning problem by vary R.

    4 Variational inference on Lie group

    Lie Groups are defined by the fact that their integration measures are invariant under shifts and inversions.In any parametrization,this measure or the corresponding volume element can be expressed as in the above example by first computing a left or right Jacobian matrix and then setting d g=|J(q)|d q1d q2...d qn,where n is the Lie group dimension.In the special case when q=x is the exponential coordinates,

    where x=X∨and d x=d x1d x2...d xn.In the above expression it make sense to write the division of one matrix by another because the involved matrices commute.The symbol G is used to denote the Lie algebra corresponding to G.In practice,the integral is performed over a subset of G,which is equivalent to defining f(eX)to be zero over some portion of G.

    Suppose that f(g)is a probability density function on a Lie group G.Then

    It can be shown that unimodularity implies the following equalities for arbitrary h∈G[19]:

    Then the variational approximation is to minimize KL divergence between posterior probability pG(X,Θ)and variational distribution qG(X,Θ),where X are data points supported on G,Θ is the set of unknown parameters and Y represents hidden variables:

    Moreover,let us consider a basic Bayesian model of a set of data points from a Gaussian distribution on the Lie group G,with unknown mean μ and variance τ?1.For mathematical convenience,we compute in terms of the precision τ,i.e.,the reciprocal of the variance.Here we use conjugate prior probability on the inference.In other words,

    where μ0,λ0,a0,b0are fixed hyperparameters.Given N data points X={x1,...,xN}supported on this Lie group G,our purpose is to infer on the posterior probability distribution

    of the parameters μ and τ.

    Thus,the joint probability distribution can be written as

    where

    Assume we have

    that is,the posterior probability distribution can be divided into independent factors of μ and τ.Then

    Using the identity for quadratics sum,we can get the following result.

    Lemma 1For any real number A,B,x,y,z(A+B≠0),we have the following identity:

    Then we can reduce the expansion for ln(μ),

    Note that in the above equations,c1,c2,c3and c4refer to values that are constant with respect to μ.

    As a result,

    where c5is constant with respect to τ.

    Therefore,

    In all those cases,the parameters for the distribution over one of the variables depend on the computation of expectation to the other variable.We can expand the expectations,in light of the standard formulas for the expectations of the Gaussian and gamma distributions:

    Applying these formulas to the above equations,it is straightforward to check

    and working out the last term:

    Note that μN(yùn),λN,bNare circular dependencies,and therefore,the computation can be done as follows:

    ?Set initial value for λN.

    ?VB-E step:use the current value ofλNand the known values of the other parameters to compute bN.

    ?VB-M step:use the current value of bNand the known values of the other parameters to compute λN.

    ?Iterate the last two steps until neither of them have changed more than some small amount,as the criterion for convergence.

    5 Analysis for different metrics

    It is known that the existing VB method basically relies on the KL divergence.However,this divergence or metric may not be so efficient when VB is considered on manifolds.In this section,we investigate different ways to measure the topology induced by the geometric distribution and the real distribution on the data manifold.Once we find a suitable metric,we may easily rewrite VB with the new metric.Therefore,here we only discuss some comparison between several well-known metrics or divergences.

    As is mentioned in Section 4,generally the distribution pron a real data manifold is more intractable than a Lie group case[13].If there exists a proper metric or divergence ρ(pr,p?),then the intractable distribution can be well approximated.

    Here is an example shown that some simple sequences of probability distributions on manifold converge under Wasserstein metric but do not converge under the others.

    Suppose ξ ~ Δ[0,1]is the uniform distribution on the real line interval.Let p0be the density of(0,ξ)∈ R2,uniformly on the straight line through(0,0).Then let p?(?,ξ)=(?,ξ)with ? being the one parameter.It is easy to check that in this situation,

    As we can see the basic difference between such metrics is their effect on the convergence of probability distribution sequences.When ?n→ 0,the sequence{p?n}n∈Nconverges to p0under the Wasserstein metric,but not in other cases.Geometrically,when the metric ρ makes it easier for a sequence of distributions to converge,it induces a weaker topology on the manifold.This example presents us a geometric setting that we can infer a probability distribution over the lower dimensional data manifold by doing variational approximation from the Wasserstein metric.Although this simple example has density function with disjoint components supported on two orthogonal lines,the same conclusion holds for lower dimensional manifolds intersecting in general position as long as their supports have a nonempty component.

    Because the Wasserstein metric induces a weaker topology than the KL divergence,it is natural to decide whether W(pr,p?)is a properly continuous approximation function on parameter ?.In fact,we have the following result.

    Theorem 2If pris a given distribution over data manifold M,ξ is an absolutely continuous random variable over parameter space Ξ and h∶Rd×Ξ → M is a density function,denoted by h?(ξ),then W(pr,p?)is continuous with respect to the Wasserstein metric and almost differentiable everywhere when h is locally Lipschitz in ?.

    Proof Suppose that ? and ?′are two vector parameters in Rd.Then,with the joint distribution λ of(h?(ξ),h?′(ξ)),we show λ ∈ Π(p?,p?′).By definition,we have

    If h is locally Lipschitz in ?,then h?(ξ) → h?′(ξ)as ? → ?′,so ‖h?→ h?′‖→ 0 pointwise as the function for ξ.Since the manifold M is connected,there is a uniform bound denoted by L for any two points.Therefore,

    According to the control convergence theorem,we have

    Finally,

    which implies the continuity of W(pr,p?).

    For any coupling(?,ξ),there exists a constant K(?,ξ)such that(?,ξ) ∈ U for an open set U.In this open neighborhood(?′,ξ′)∈ U,we have

    Take expectations on both sides and set ξ = ξ′,we get

    as long as(?′,ξ) ∈ U.Thus we may define U?={?′|(?′,ξ) ∈ U}.It is routine to check that U?is open as well since U is open.We can also define C(?)=Eξ[K(?,ξ)]and derive for all ?′∈ U?,which shows that W(pr,p?)is locally Lipschitz.Thus,W(pr,p?)is continuous.By Radamacher’s theorem,it is also almost differentiable everywhere. □

    From this theorem,we can see that,if two distributions prand p?are supported on manifold M which is compactly connected,then the error terms may force the modified distribution pr+?to overlap with p?+?almost everywhere.The following lemma shows that,for the Wasserstein metric,the modified distribution pr+?change smoothly around the compact component when the error terms have bounded decrease.

    Lemma 2Let ? be a random variable with zero mean.Then

    where L=E[‖?‖22]is the variance of ?.

    ProofSuppose that η ~ pMand ξ = η + ? with ? independent from η.If λ is the joint distribution for(η,ξ),then it clearly has marginals pMand pM+?.Hence,

    where the last step is by Jensen’s inequality. □

    Because the distance of actual sample points on the data manifold is closely related to those error modification and continuity,ultimately we want a strategy to investigate this approximation no matter whether those metrics are continuous or not.The next theorem shows the advantage of the Wasserstein metric in this perspective.

    Theorem 3Suppose that pr,p?are two distributions on manifold M and ? is a random variable with zero mean and variance L.If pr+?,p?+?are supported on a ball of diameter D in M,then

    ProofBy Lemma 1,we compute the middle terms as a function of L.

    Moreover,we use the fact that total variation satisfies W(pr,p?)≤ δW(pr,p?).Finally,we work with Pinsker’s inequality to reduce each KL divergence term,which is one of the non-negative component for JSD metric. □

    This theorem presents an intriguing phenomenon that the two unrelated terms in this inequality can be bounded.Since L can be decreased by reducing the error and JSD(pr+?‖p?+?)can be minimized by optimizing the KL divergence between those two distributions.This can be seen as an extension to the Wasserstein metric in terms of manifold approximation.

    6 Conclusions

    In this paper,we have analysed the approximation of data manifold by distribution supported on Lie group with specific error bound and given a basic variational inference example for Gaussian distribution on certain Lie group.Variational Bayessian have been studied on general manifolds with certain metrics.Since the embedding low dimensional data manifold may have empty support intersection,we have compared different metrics for suitable cases,where the posterior probability distribution of error terms and variance are bounded by an noise modification.

    日本午夜av视频| 国产视频首页在线观看| 麻豆成人午夜福利视频| 又黄又爽又刺激的免费视频.| 久久鲁丝午夜福利片| 2021天堂中文幕一二区在线观| 黑人高潮一二区| 欧美激情在线99| 久久精品久久久久久久性| 久久这里有精品视频免费| 肉色欧美久久久久久久蜜桃 | 国产精品一区www在线观看| 别揉我奶头 嗯啊视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲人成网站高清观看| 高清午夜精品一区二区三区| 亚洲av免费在线观看| 欧美xxxx黑人xx丫x性爽| 女的被弄到高潮叫床怎么办| 亚洲精品一二三| 男的添女的下面高潮视频| 免费电影在线观看免费观看| 婷婷色综合www| 亚洲av在线观看美女高潮| 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 大片免费播放器 马上看| 如何舔出高潮| 亚洲av二区三区四区| 看非洲黑人一级黄片| 观看美女的网站| 美女高潮的动态| 看黄色毛片网站| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 国产欧美日韩精品一区二区| 神马国产精品三级电影在线观看| 欧美日韩视频高清一区二区三区二| 亚洲精品第二区| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 新久久久久国产一级毛片| 欧美最新免费一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 中文天堂在线官网| 国产高清国产精品国产三级 | kizo精华| 亚洲天堂av无毛| 超碰av人人做人人爽久久| 三级国产精品片| 另类亚洲欧美激情| 国产真实伦视频高清在线观看| 欧美性猛交╳xxx乱大交人| 久久人人爽人人片av| 少妇的逼水好多| 亚洲激情五月婷婷啪啪| 亚洲精品国产成人久久av| 国产美女午夜福利| 国产毛片在线视频| 99热国产这里只有精品6| 欧美zozozo另类| 午夜精品国产一区二区电影 | 超碰av人人做人人爽久久| 性色av一级| av在线亚洲专区| 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 天堂俺去俺来也www色官网| 尾随美女入室| 在线观看一区二区三区| 免费观看的影片在线观看| 99热这里只有是精品50| 午夜福利网站1000一区二区三区| 久久久久久久午夜电影| 久久人人爽人人片av| 日韩成人伦理影院| 日韩精品有码人妻一区| 国产亚洲av嫩草精品影院| 男女那种视频在线观看| 午夜日本视频在线| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 国内精品美女久久久久久| 久久人人爽人人爽人人片va| 国产淫片久久久久久久久| av专区在线播放| 久久久午夜欧美精品| 超碰av人人做人人爽久久| 香蕉精品网在线| 少妇高潮的动态图| 各种免费的搞黄视频| 热99国产精品久久久久久7| 夜夜爽夜夜爽视频| 久久99蜜桃精品久久| 午夜亚洲福利在线播放| 久久精品国产a三级三级三级| 国产熟女欧美一区二区| av一本久久久久| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 亚洲综合色惰| 亚洲精品第二区| 伦精品一区二区三区| av国产免费在线观看| 亚洲婷婷狠狠爱综合网| 久久精品熟女亚洲av麻豆精品| 22中文网久久字幕| 青春草亚洲视频在线观看| 免费看av在线观看网站| 国产高清不卡午夜福利| 久久ye,这里只有精品| 99久国产av精品国产电影| 蜜桃亚洲精品一区二区三区| 欧美+日韩+精品| 你懂的网址亚洲精品在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲av嫩草精品影院| 成人欧美大片| 国产精品国产三级专区第一集| 精品少妇久久久久久888优播| 国产爽快片一区二区三区| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久电影网| 国产美女午夜福利| 日韩国内少妇激情av| 亚洲欧洲国产日韩| 黄色视频在线播放观看不卡| 看免费成人av毛片| 国产伦精品一区二区三区视频9| 午夜福利视频1000在线观看| 国产伦理片在线播放av一区| 国产精品久久久久久精品电影| 老司机影院成人| 免费看不卡的av| 精品人妻视频免费看| 王馨瑶露胸无遮挡在线观看| 另类亚洲欧美激情| 少妇人妻久久综合中文| 国产黄色视频一区二区在线观看| 亚洲在久久综合| 久久久成人免费电影| 五月天丁香电影| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频 | 三级男女做爰猛烈吃奶摸视频| 欧美精品国产亚洲| 18禁动态无遮挡网站| 全区人妻精品视频| 听说在线观看完整版免费高清| 国产美女午夜福利| 丝袜脚勾引网站| 国产av国产精品国产| 好男人在线观看高清免费视频| 成人鲁丝片一二三区免费| 久久久久久久亚洲中文字幕| 久久久欧美国产精品| 成人亚洲精品一区在线观看 | 亚洲精品一二三| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 国语对白做爰xxxⅹ性视频网站| 欧美极品一区二区三区四区| 91狼人影院| 婷婷色麻豆天堂久久| 国产精品人妻久久久影院| videossex国产| 久久精品国产亚洲av天美| 国产成人freesex在线| 91aial.com中文字幕在线观看| 激情 狠狠 欧美| 亚洲最大成人手机在线| 久久精品久久久久久久性| 欧美97在线视频| 成年版毛片免费区| 97人妻精品一区二区三区麻豆| 狂野欧美激情性xxxx在线观看| 久久久久精品性色| 国产色爽女视频免费观看| 免费av不卡在线播放| 日韩不卡一区二区三区视频在线| 亚洲,一卡二卡三卡| 嘟嘟电影网在线观看| av在线亚洲专区| 久久久久久久午夜电影| av在线app专区| 国产高潮美女av| 综合色丁香网| 国产高清三级在线| 少妇丰满av| 亚洲精品日本国产第一区| 搞女人的毛片| 亚洲精品乱久久久久久| 午夜精品国产一区二区电影 | 亚洲aⅴ乱码一区二区在线播放| 午夜精品一区二区三区免费看| 2021天堂中文幕一二区在线观| 成人无遮挡网站| 成人一区二区视频在线观看| 少妇人妻久久综合中文| 嘟嘟电影网在线观看| 国产成人精品久久久久久| 欧美性猛交╳xxx乱大交人| av在线app专区| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 日本熟妇午夜| av一本久久久久| 亚洲精品一区蜜桃| 深夜a级毛片| 毛片女人毛片| 欧美最新免费一区二区三区| 日韩成人av中文字幕在线观看| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 99热6这里只有精品| 人人妻人人澡人人爽人人夜夜| 97在线视频观看| 久久精品国产鲁丝片午夜精品| 中文字幕av成人在线电影| 六月丁香七月| 高清视频免费观看一区二区| 色哟哟·www| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线观看播放| 大码成人一级视频| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 一本久久精品| 伦理电影大哥的女人| 精品久久久久久久久av| 久久人人爽人人片av| 国产伦理片在线播放av一区| 熟女电影av网| 亚洲精品,欧美精品| 国产黄a三级三级三级人| 性插视频无遮挡在线免费观看| 一级av片app| 伦精品一区二区三区| 美女主播在线视频| 女人十人毛片免费观看3o分钟| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 亚洲伊人久久精品综合| 好男人在线观看高清免费视频| 可以在线观看毛片的网站| 亚洲av欧美aⅴ国产| 国产精品三级大全| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 精华霜和精华液先用哪个| 国产在视频线精品| 波野结衣二区三区在线| 久久综合国产亚洲精品| 人人妻人人看人人澡| 一本色道久久久久久精品综合| 又爽又黄无遮挡网站| 人妻夜夜爽99麻豆av| 毛片一级片免费看久久久久| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 成年版毛片免费区| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看 | 久久久午夜欧美精品| 亚洲最大成人手机在线| 九九在线视频观看精品| 欧美zozozo另类| 亚洲精华国产精华液的使用体验| 国国产精品蜜臀av免费| 亚洲av成人精品一区久久| 美女主播在线视频| 国产一级毛片在线| 最近中文字幕2019免费版| 91久久精品国产一区二区三区| 日本黄色片子视频| h日本视频在线播放| 中文欧美无线码| 97在线视频观看| 精品一区二区三区视频在线| 精品视频人人做人人爽| av.在线天堂| 亚洲国产欧美人成| 国内精品宾馆在线| 免费av毛片视频| 国产亚洲精品久久久com| 高清视频免费观看一区二区| 九九久久精品国产亚洲av麻豆| 国产美女午夜福利| 成人高潮视频无遮挡免费网站| 大码成人一级视频| 蜜桃亚洲精品一区二区三区| 亚洲精品aⅴ在线观看| 色播亚洲综合网| 联通29元200g的流量卡| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 欧美一区二区亚洲| videos熟女内射| 日产精品乱码卡一卡2卡三| 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 亚洲欧美精品自产自拍| 亚洲最大成人av| 伊人久久国产一区二区| 精品人妻偷拍中文字幕| 免费大片18禁| 亚洲不卡免费看| 国产免费一级a男人的天堂| 久久久久久久精品精品| videos熟女内射| 亚洲精品亚洲一区二区| 91精品伊人久久大香线蕉| 精品一区二区三卡| 国产真实伦视频高清在线观看| 最后的刺客免费高清国语| 人人妻人人看人人澡| 亚洲av成人精品一二三区| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 日本av手机在线免费观看| 午夜视频国产福利| 一级毛片电影观看| 18+在线观看网站| 日韩av免费高清视频| 国产日韩欧美在线精品| 国产精品人妻久久久影院| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻 视频| 欧美日韩亚洲高清精品| 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 国产一区二区在线观看日韩| 成人亚洲精品av一区二区| 蜜臀久久99精品久久宅男| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 国产精品国产三级专区第一集| 狂野欧美白嫩少妇大欣赏| 中文天堂在线官网| 久久精品夜色国产| av在线观看视频网站免费| 亚洲欧美日韩另类电影网站 | 欧美xxⅹ黑人| 亚洲国产色片| 男的添女的下面高潮视频| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 亚洲精品自拍成人| 天堂俺去俺来也www色官网| 亚洲精品久久久久久婷婷小说| 日韩 亚洲 欧美在线| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 街头女战士在线观看网站| 成年免费大片在线观看| 国产真实伦视频高清在线观看| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 成年免费大片在线观看| 免费观看a级毛片全部| 嘟嘟电影网在线观看| 精华霜和精华液先用哪个| 久久久久久久大尺度免费视频| 亚洲精品成人久久久久久| 国产精品伦人一区二区| 97人妻精品一区二区三区麻豆| 香蕉精品网在线| 97人妻精品一区二区三区麻豆| 国产精品久久久久久久久免| 搡女人真爽免费视频火全软件| 成年av动漫网址| 国产伦精品一区二区三区视频9| av线在线观看网站| 日韩三级伦理在线观看| 99热6这里只有精品| 国产永久视频网站| 国产精品国产三级国产专区5o| 午夜福利在线在线| 女人被狂操c到高潮| 哪个播放器可以免费观看大片| 国产一级毛片在线| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 爱豆传媒免费全集在线观看| 成人欧美大片| 一级二级三级毛片免费看| 色5月婷婷丁香| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| av国产久精品久网站免费入址| 白带黄色成豆腐渣| 18禁裸乳无遮挡免费网站照片| 一级毛片黄色毛片免费观看视频| 91精品伊人久久大香线蕉| 18+在线观看网站| 国产视频首页在线观看| 中文资源天堂在线| 一级a做视频免费观看| 高清在线视频一区二区三区| 欧美精品国产亚洲| 在线播放无遮挡| 日韩成人av中文字幕在线观看| 人妻 亚洲 视频| 成人特级av手机在线观看| 日韩成人伦理影院| 欧美zozozo另类| av福利片在线观看| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 美女视频免费永久观看网站| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 国产男人的电影天堂91| 午夜免费观看性视频| 搡老乐熟女国产| 在线精品无人区一区二区三 | 中文字幕免费在线视频6| 亚洲伊人久久精品综合| 日韩电影二区| 舔av片在线| 伊人久久精品亚洲午夜| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| av女优亚洲男人天堂| 午夜福利在线在线| 国产91av在线免费观看| 国产成年人精品一区二区| 久久这里有精品视频免费| av在线天堂中文字幕| 黄色一级大片看看| 春色校园在线视频观看| 男人舔奶头视频| 欧美3d第一页| 精品久久久久久电影网| 国产色婷婷99| 我要看日韩黄色一级片| 五月开心婷婷网| 最后的刺客免费高清国语| 国产精品蜜桃在线观看| 深夜a级毛片| 日本三级黄在线观看| 大码成人一级视频| av在线亚洲专区| 国产成人a∨麻豆精品| 熟女电影av网| 亚洲精品第二区| 精华霜和精华液先用哪个| 高清在线视频一区二区三区| 色哟哟·www| 在线精品无人区一区二区三 | 极品少妇高潮喷水抽搐| 久久人人爽人人爽人人片va| 欧美人与善性xxx| 性插视频无遮挡在线免费观看| 亚洲欧美一区二区三区黑人 | 大香蕉97超碰在线| 婷婷色麻豆天堂久久| 亚洲av不卡在线观看| av免费在线看不卡| 80岁老熟妇乱子伦牲交| 嫩草影院新地址| 美女脱内裤让男人舔精品视频| 中文乱码字字幕精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| 亚洲av福利一区| 日韩在线高清观看一区二区三区| 在线观看免费高清a一片| 在线看a的网站| 久久精品国产亚洲网站| 草草在线视频免费看| 国产色婷婷99| 校园人妻丝袜中文字幕| 亚洲电影在线观看av| 亚洲欧美一区二区三区国产| 精华霜和精华液先用哪个| 观看免费一级毛片| 99九九线精品视频在线观看视频| 少妇高潮的动态图| av女优亚洲男人天堂| 亚洲天堂av无毛| 国产高清三级在线| 偷拍熟女少妇极品色| 夫妻性生交免费视频一级片| 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 国产一区有黄有色的免费视频| 久久ye,这里只有精品| 看十八女毛片水多多多| 人妻少妇偷人精品九色| 日韩伦理黄色片| 亚洲人成网站高清观看| 我要看日韩黄色一级片| 精品国产一区二区三区久久久樱花 | 九九久久精品国产亚洲av麻豆| 久久精品熟女亚洲av麻豆精品| 久久久久久久精品精品| 国产免费福利视频在线观看| 男人狂女人下面高潮的视频| 一本色道久久久久久精品综合| 午夜免费男女啪啪视频观看| 少妇猛男粗大的猛烈进出视频 | 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 欧美高清成人免费视频www| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 久久久久久久国产电影| 男女边吃奶边做爰视频| 网址你懂的国产日韩在线| 精品一区二区三区视频在线| 黄片wwwwww| 久久精品熟女亚洲av麻豆精品| 一区二区三区四区激情视频| 国产免费一级a男人的天堂| 国产精品久久久久久久久免| 国产成人精品婷婷| 岛国毛片在线播放| 国产人妻一区二区三区在| 欧美日韩精品成人综合77777| 成人综合一区亚洲| 女人十人毛片免费观看3o分钟| 午夜福利网站1000一区二区三区| 欧美 日韩 精品 国产| 午夜激情久久久久久久| 国产毛片a区久久久久| 简卡轻食公司| 国产精品av视频在线免费观看| 人妻 亚洲 视频| 美女内射精品一级片tv| 亚洲精品乱码久久久久久按摩| 久久精品国产a三级三级三级| 亚洲精品国产色婷婷电影| 亚洲成人av在线免费| 国产乱来视频区| 我的女老师完整版在线观看| 欧美+日韩+精品| 男人和女人高潮做爰伦理| 亚洲熟女精品中文字幕| 日韩电影二区| 欧美成人a在线观看| 亚洲一区二区三区欧美精品 | 夫妻午夜视频| 成人免费观看视频高清| 少妇 在线观看| 高清日韩中文字幕在线| 国产精品99久久久久久久久| 中文乱码字字幕精品一区二区三区| 久久精品国产自在天天线| 国产伦精品一区二区三区四那| 女人十人毛片免费观看3o分钟| 久久久久久九九精品二区国产| 丝瓜视频免费看黄片| 搡老乐熟女国产| 亚洲电影在线观看av| 香蕉精品网在线| 国产男女内射视频| 免费av不卡在线播放| 97精品久久久久久久久久精品| 日韩制服骚丝袜av| 麻豆成人av视频| 精品一区二区三区视频在线| 国产精品av视频在线免费观看| 亚洲精华国产精华液的使用体验| 高清欧美精品videossex| 精华霜和精华液先用哪个| a级一级毛片免费在线观看| 成人无遮挡网站| 日韩欧美精品v在线| 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜爱| 午夜日本视频在线| 国产高清三级在线| 欧美zozozo另类| 久久久午夜欧美精品| 亚洲人成网站高清观看| 国产成人免费无遮挡视频| 亚洲一区二区三区欧美精品 | 欧美性感艳星| 亚洲欧美一区二区三区黑人 | 啦啦啦啦在线视频资源| 国产亚洲91精品色在线| 久久久久久久久久久免费av| 一级黄片播放器| 大码成人一级视频| 国产黄片美女视频| 热re99久久精品国产66热6| 久久人人爽人人爽人人片va| .国产精品久久| 亚洲成人一二三区av| 亚洲国产欧美人成| 夜夜看夜夜爽夜夜摸| 亚洲国产成人一精品久久久| 日韩强制内射视频| 亚洲欧美一区二区三区黑人 | 一级av片app| 国产亚洲午夜精品一区二区久久 | 狂野欧美白嫩少妇大欣赏| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产男人的电影天堂91|