• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Regional constrained control problem for a class of semilinear distributed systems

    2018-07-31 03:30:22ElHassanZERRIKNihaleELBOUKHARI
    Control Theory and Technology 2018年3期

    El Hassan ZERRIK,Nihale EL BOUKHARI

    MACS team,Faculty of Sciences,Moulay Ismail University,Meknes,Morocco

    Abstract The aim of this paper is to investigate a regional constrained optimal control problem for a class of semilinear distributed systems,which are linear in the control but nonlinear in the state.For a quadratic cost functional and a closed convex set of admissible controls,the existence of an optimal control is proven,and then this is characterized for three cases of constraints.A useful algorithm is developed,and the approach is illustrated through simulations for a heat equation.

    Keywords:Semilinear distributed systems,regional optimal control,constraints,heat equation

    1 Introduction and problem statement

    Many physical problems in fields such as engineering,economics,and life sciences may be modeled by distributed systems evolving on a spatial domain Ω.These are often linear with nonlinear perturbations,and thus take the form of semilinear distributed systems.Such systems are usually subject to constraints on the control,owing to the nature of the system or limited resources.For instance,if the system models the commercial activity of a firm,and the control u models the amount of merchandise bought,then the system might be subject to the constraint m(t)≤ u(t)≤ M(t),where the bounds m(t)and M(t)are often variable in time,depending on supply and demand,which vary following high and low seasons.In addition,if v(t)models the unitary price of that merchandise at time t,then the system might be subject to the constraintwhere M is the trade budget for the period[t1,t2].To describe another scenario,if the control u(t)models the electric current in a heating system,then the consumed power is proportional to u2(t),and hence the constraintcould represent a bound on the consumed energy over[t1,t2].

    Previous works dealing with semilinear optimal control problems primarily characterized the optimal control,which minimizes a cost functional,using the Hamilton-Jacobi equation or the generalized Pontrya-gin minimum principle.For instance,control problems with box constraints were investigated in[1]for a class of elliptic and parabolic semilinear equations,using the generalized maximum principle,while in[2],the Mayer problem of semilinear systems was studied using a value function satisfying the Hamilton-Jacobi equation.In[3],the existence of an optimal control was proven for semilinear systems with a compact semigroup,and for second order partial differential equations.Then,an infinite dimensional version of the maximum principle was established.In addition,[4]considered an optimal control problem governed by semilinear parabolic equations with distributed and boundary controls,using Pontryagin’s principle.Later,the authors of[5]proved the existence of an optimal control for a class of semilinear elliptic and parabolic equations,derived first-and second order optimality conditions,and showed that the optimal controls satisfy Pontryagin’s maximum principle.A control problem of semilinear systems was studied using the theory of set-valued mapping in[6].

    For a distributed parameter system evolving within a domain Ω,the concept of regional analysis involves approaching a desired state or optimizing the system performance only in a region ω ? Ω.In addition to generalizing the global approach,the regional one is relevant for many real-world applications in thermodynamics,fluid mechanics,and demography,where only a target zone needs to be controlled.This is because it is cheaper with respect to energy,costs,computations,and other such factors,to control the region ω than to control the whole domain Ω.The regional approach was first introduced for linear systems in[7].Then,the authors in[8]studied regional boundary controllability for linear hyperbolic systems,while[9]considered a linear parabolic system and characterized the regional optimal control using the Lagrangian approach.Subsequently,this approach was extended to bilinear systems.In[10],the authors considered a minimum energy regional control problem for bilinear systems,and characterized the optimal control by deriving a corresponding Riccati equation.A similar problem with bounded controls was investigated in[11].

    For semilinear systems,[12,13]studied regional controllability for a class of parabolic and hyperbolic semilinear systems,where the nonlinear perturbation does not depend on the control.

    This paper extends the regional approach to a wider class of semilinear systems,for which the control term is nonlinear.Optimality conditions are derived for a closed convex set of admissible controls,with an emphasis on three cases of constraints,for which the optimal control is characterized using geometric tools.

    More precisely,on a bounded domain Ω?Rnwith a regular boundary?Ω,we consider the following system:

    where A is the infinitesimal generator of a strongly continuous semigroup of linear operators(S(t))t≥0on the state space L2(Ω),endowed with its natural inner product〈·,·〉and the associated norm|·|.

    The control function is u∈Uad,where Uadis the set of admissible controls,which is assumed to be a nonempty closed and convex subset of L2(0,T).

    The inner product and associated norm of L2(0,T)are respectively denoted by 〈·,·〉and ‖·‖.

    B ∶L2(Ω)→ L2(Ω)is a nonlinear operator,such that the following hold:

    ?B is k-Lipschitz,i.e.,

    ?B is everywhere Fréchet-differentiable.For y∈L2(Ω),B′(y)denotes the Fréchet derivative of B at y.We assume that there exists a constantk≥0 such that the mapping y→B′(y)isk-Lipschitz,i.e.,

    In what follows,A*and[B′(y)]*denote the respective adjoint operators of A and B′(y).

    For a given u∈L2(0,T)and y0∈L2(Ω),we say that y is a mild solution(or solution in the sense of semigroups)to system(1)if y ∈ C([0,T];L2(Ω))and y is solution to the following integral equation:

    The existence and uniqueness of a mild solution to system(1)is proven in[14].Indeed,because B is k-Lipschitz,it follows that

    Hence,according to Theorem 2.5.in[14],equation(2)has a unique solution in C([0,T],L2(Ω)).

    Let ω?Ω be a region of positive Lebesgue measure,and let χω∶L2(Ω)→ L2(ω)be the restriction operator given by

    We consider the following quadratic cost functional:

    The regional optimal control problem consists of finding a control that steers the state close to ydwithin the subregion ω,with a reasonable amount of energy.In practice,this may be stated as a minimization of the cost functional(4).Thus,this study is concerned with solving the following problem:

    The remainder of this paper is organized as follows.In Section 2,the existence of an optimal control is proven,and necessary optimality conditions are formulated,which lead to the characterization of the optimal control for three cases of constraints.Next,a sufficient condition for the uniqueness of the optimal control is formulated,and a useful algorithm is developed.In Section 3,the theoretical results are illustrated through simulations for a heat equation.

    2 Optimal control problem

    We first prove the existence of an optimal control solving problem(5).

    Proposition 1There exists a solution u*∈ Uadto problem(5).

    To prove Proposition 1,we need the following lemma.

    Lemma 1[15,Page 250] Let Λ be a continuous linear operator,mapping a normed space X into a reflexive separable Banach space Y.A necessary and sufficient condition forΛto be compact is that the adjoint operator Λ*maps every sequence(zn)that is weakly convergent to zero in Y*to a sequence(Λ*zn)that converges to zero for the norm in X*.

    Proof of Proposition 1The set{J(u)|u∈Uad}is nonempty and nonnegative,and thus it has a nonnegative infimum.Let(un)n∈Nbe a minimizing sequence in Uad.Becauseit follows that(un)n∈Nis bounded.Then,there exists a subsequence,still denoted by(un)n∈N,that converges weakly to a limit u*.Because Uadis closed and convex,it is closed for the weak topology,which implies that u*∈ Uad.

    Let ynand y*be the unique solutions of system(1)associated to unand u*,respectively.

    Here,ynand y*can be written in the form(2),which gives

    so that

    Using Gronwall’s lemma,we obtain that

    There exist constants M ≥ 1 and ρ∈R such that‖S(t)‖≤ M eρt.Then,the above inequality yields

    Let us prove that Λtis compact for any t∈ [0,T].

    To this end,let(zm)be a sequence in L2(Ω)such that zm?0 weakly.Without loss of generality,we can assume that|zm|≤ 1,?m ∈ N.Then,

    Because zm?0 weakly,it follow that0 a.e.on[0,T].Furthermore,for every s∈[0,T]we have that

    Then,by applying the dominated convergence theorem we obtain

    Hence,by virtue of Lemma 1,the operator Λtis compact.

    It follows from the weak convergence(un? u*)? 0 that

    Therefore,by the inequality(6)we obtain

    Hence,the continuity of the operator χωyields that

    and by Fatou’s lemma we obtain

    Because norms are lower semi-continuous for the weak topology,it follows that the weak convergence of(un)nyields that

    Now,we give the necessary optimality conditions by characterizing the derivative of the cost functional(4).

    Proposition 2Let u*be an optimal control solving problem(5).Then,u*satisfies

    where J′(u*)is the Fréchet derivative of J at u*,which is given by

    Here,y is the solution of system(1)associated to u*,and p is the solution of the following adjoint equation:

    ProofAccording to[14],the mapping u■→yu,where yuis the mild solution of(1)associated to u,is Fréchet differentiable.Let Duy denote the derivative of u ■→ yuat u ∈ Uadand zh=Duy ·h,for a given h∈L2(0,T).Then,zhsatisfies the following integral equation:

    where A*generates the semigroup S*(t)=(S(t))*,?t ∈R+.Furthermore,because B is k-Lipschitz,it follows that‖(B′(y(t)))*‖≤ k,?t∈]0,T[.

    Then,for any u∈Uad,it follows using a similar proof to that of Theorem 2.5.in[14]that equation(9)has a unique mild solution in C([0,T],L2(Ω)),which is the solution of the associated integral equation,given by

    Let u,u+h∈Uad.Then,

    Using calculations similar to those given above,we obtain

    and it is easy to see that

    Then,J is Fréchet-differentiable over Uad,and its derivative at u is given by

    From the expression(11),we have that

    Applying Fubini’s theorem yields

    By equation(11),we have that

    Then,

    It is easy to check that

    and applying Fubini’s theorem leads to

    It follows that

    Therefore,the derivative of J can be written as

    By identifying J′(u)with its representative in L2(0,T),we obtain(8).

    Now,let u*be an optimal control,and w ∈Uad.The convexity of Uadimplies that

    Then,J(u*)≤J(u*+λ(w?u*)).Because J is Fréchet differentiable,we then obtain that

    Therefore,

    Hence,we obtain(7). □

    By the above optimality condition,the optimal control can be characterized for special cases of constraints,as shown by the following propositions.

    Proposition 3Let

    where m,M∈L2(0,T)satisfy m(t)<M(t)a.e.on[0,T].Then,an optimal control is given by

    Proof?If m(t)< u*(t)< M(t)over a set I?]0,T[of positive Lebesgue measure:

    For h ∈ L∞(0,T)that is sufficiently small and null outside I it holds that u*+h,u*?h ∈ Uad.

    It follows from applying the condition(7)to both u*+h and u*? h that〈J′(u*),h〉=0.

    Hence,from the density of L∞(I)in L2(I),J′(u*)=0 over I,implying that u*(t)=

    Because m(t)< u*(t)< M(t),the above equality is equivalent to(13)over I.

    ?If u*(t)=m(t)over a set I ?]0,T[of positive Lebesgue measure:

    Let h∈L∞(0,T)be null outside I such that h≥0 on I.

    If‖h‖L∞(0,T)is sufficiently small,then u*+h ∈ Uad.Hence, 〈J′(u*),h〉≥ 0,implying that J′(u*) ≥ 0 on I.

    Therefore,

    which is equivalent to(13)on I.

    ?The case that u*(t)=M(t)is similar to the above case. □

    In many real applications,such as heating systems or population dynamics,the constraints representing the available energy or maximum cost may not be possible to model by(12),and may instead need to be written as integral inequalities or bounds on norms.The following propositions provide characterizations of the optimal control for such constraints.

    Proposition 4Assume that

    where M>0.Then,the optimal control is given by

    ProofIf u*∈ int(Uad),then applying condition(7)to a neighborhood of u*within Uadimplies that J′(u*)=0,which yields(15)with ‖J′(u*)‖=0.

    If u*∈ ?(Uad),then the case J′(u*)=0 is similar to the above case.We assume that J′(u*)≠ 0.

    Then,the optimality condition(7)can be written as

    By the strict convexity of the space L2(0,T),we obtain

    Replacing J′(u*)by its expression leads to

    which yields(15). □

    Proposition 5Let v∈L2(0,T){0},m<M,and

    Then,the optimal control is given by

    where

    Proof?If m < 〈v,u*〉< M,then u*∈ int(Uad),and hence J′(u*)=0.Expression(8)implies that(17)with δ=0.

    ?If〈v,u*〉=M:Let w ∈ (R v)⊥(i.e.,the orthogonal space of R v).Then,u*?w,u*+w ∈ Uad,and hence the condition(7)yields that〈J′(u*),w〉=0.

    Therefore,J′(u*)∈ R v.

    which implies(17)with δ=1.

    ?Similarly to the previous case,if〈v,u*〉=m,then(16)holds with δ = ?1. □

    The next proposition provides a sufficient condition for the uniqueness of the optimal control,solving problem(5).

    Proposition 6We assume that Uadis bounded.

    There exists a constant η≥0,depending on the parameters of system(1),such that if

    holds,then the optimal control,solving problem(5),is unique.

    ProofLet u and v be two optimal controls.Then,by the condition(7),we have that

    which yields

    We know that

    Then,the above equality yields

    where

    Then,by the inequality(19),there exists a constant η> 0 that does not depend on the parameters α,β,and ε such that

    Remark 1The above proof also shows that if(18)holds,then there exists a unique control that satisfies the necessary optimality condition(7).Hence,(7)also becomes a sufficient condition of optimality.

    To search for a control that satisfies the optimality condition(7),we introduce the following algorithm,based on the steepest descent method.

    Algorithm

    Step 1Choose an initial control u0∈Uad,a threshold accuracy κ,a region ω,and a step length λ.Initialize with n=0.

    Step 2Compute ynsolving(1)and pnsolving(9)using the finite difference method.Compute J′(un)by(8).

    Step 3Compute un+1by

    where PUaddenotes the projection operator on the closed convex set Uadin L2(0,T).

    Step 4n=n+1,go to Step 2 and repeat until‖un+1?un‖≤ κ.

    The above algorithm converges if the step length λ is appropriately chosen.We refer to chapter XV of[15]for further details on the choice of λ.

    Remark 2Let w∈L2(0,T).If Uadis given by(12),then PUad(w)is written as

    If Uadis given by(14),then PUad(w)is written as

    If Uadis given by(16),then PUad(w)is written as

    where δ=max[m,min[M,〈v,w〉]].

    3 Simulations

    On a bounded domainΩwith a regular boundary?Ω,we consider the following heat equation with Neumann boundary conditions:

    where c > 0.Denote y(t)=z(·,t)and A=cΔ,with

    Then,equation(20)takes the form of system(1),and A generates a strongly continuous semigroup(S(t))t≥0.

    The operator B ∶L2(Ω)→ L2(Ω)is nonlinear,and k-Lipschitz and everywhere Fréchet-differentiable.

    The purpose of this application is to steer the state y as close as possible to yd=0 at time T,within a target region ω ? Ω.Then,we consider the optimal control problem(5)with the following cost functional:

    over the following set of admissible controls

    Two cases are considered below:a one-dimensional case,where Ω=]0,1[,and a two-dimensional case with Ω =]0,1[×]0,1[.

    3.1 One-dimensional case

    We first consider equation(20)on Ω=]0,1[.The semigroup(S(t))t≥0is written as

    where φ0=1 and φn(x)Furthermore,B ∶L2(Ω)→ L2(Ω)is 1-Lipschitz,and is given by

    where D?Ω is the actuator zone,and has a positive Lebesgue measure.

    For y ∈ L2(Ω),B′(y)is self-adjoint,and is given by

    Simulations are performed using the above algorithm with the following parameters:

    ?For ω =]0,0.4[:

    The evolution of the optimal control is illustrated in Fig.1,while the associated states at times t=0 and t=T=1 are presented in Fig.2.The final state is significantly close to yd=0 within the region ω,where the error is ‖χωy(T)‖L2(ω)=8.16 × 10?4.

    Fig.1 Optimal control for ω=]0,0.4[.

    Fig.2 State for ω=]0,0.4[.

    ?For ω = Ω:

    The optimal control and the associated states at times t=0 and t=T=1 are presented in Figs.3 and 4,respectively.The final state is close to yd=0,but the regional case exhibits a better performance.The error is‖χωy(T)‖L2(ω)=5.89 × 10?3.

    Fig.3 Optimal control for ω=]0,1[.

    Fig.4 State for ω=]0,1[.

    The following table shows the evolution of the error ‖χωy(T)‖L2(ω)and the cost J(u*)with respect to the region ω:

    ω]0,0.4[ ]0,0.6[ ]0,0.8[ ]0,1[‖χωy(T)‖× 10?3 0.81 2.18 4.78 5.89 J(u*)× 10?3 0.18 0.38 1.29 1.90

    3.2 Two-dimensional case

    Now,we consider equation(20)on Ω =]0,1[×]0,1[.The semigroup(S(t))t≥0is written as

    where φn,m(x)=en(x1)em(x2),such that

    where D?Ω is the actuator zone,and has positive Lebesgue measure.

    For y ∈ L2(Ω),B′(y)is self-adjoint,and is given by

    Simulations are performed using the above algorithm,with the following parameters:c=0.2,D=]0.6,1[×]0.6,1[,T=1,M=2,y0(x)=0.05+x1x2(1 ?x1)(1?x2).

    ?For ω =]0,0.4[×]0,0.4[:

    The evolution of the optimal control is illustrated in Fig.5,while the final state y(T)is depicted in Fig.6.The final state is close to yd=0 within the region ω,with an error equal to ‖χωy(T)‖L2(ω)=4.13 × 10?4.

    Fig.5 Optimal control for ω =]0,0.4[×]0,0.4[.

    Fig.6 State for ω =]0,0.4[×]0,0.4[.

    ?For ω = Ω:

    The optimal control and final state are illustrated in Figs.7 and 8,respectively.Similarly to the one dimensional case,the final state is close to yd=0,where the error is ‖χωy(T)‖L2(ω)=4.10 × 10?3,but the regional case provides a better precision.

    The table below shows the evolution of the error‖χωy(T)‖L2(ω)and the cost J(u*)with respect to the region ω:

    ‖χωy(T)‖× 10?3 0.41 0.99 2.10 4.10 J(u*)× 10?4 0.54 0.80 1.25 2.64

    As shown by the above simulations,the regional approach provides an improvement in the performance of the system in the target region ω,even when the actuator zone D and ω are disjoint.The smaller the area of the region ω is,the smaller the error‖χωy(T)? yd‖L2(ω)and the cost J(u*)are,which means that it is cheaper to steer the system to the desired state on a region than on the whole domain.This is crucial to many real-world applications where only a region within the spatial domain has to be controlled,particularly by a distant actuator.

    Fig.7 Optimal control for ω =]0,1[×]0,1[.

    Fig.8 State for ω =]0,1[×]0,1[.

    4 Conclusions

    In this paper,we studied a regional quadratic control problem for a class of semilinear distributed systems.We formulated optimality conditions in the generalcase.Next,we derived characterizations of the optimal control for special cases of constraints.Simulations illustrated the obtained results,and demonstrated the relevance of the regional approach.Many issues remain unresolved,such as regional optimal control problems with bound-ary subregions.These issues will be the focus of a future research paper.

    国产亚洲精品久久久com| 国产午夜福利久久久久久| 日韩精品青青久久久久久| 久久精品国产亚洲av香蕉五月| 综合色av麻豆| 国产淫片久久久久久久久| 成年女人毛片免费观看观看9| 国内精品美女久久久久久| 亚洲国产精品sss在线观看| 十八禁网站免费在线| 丝袜美腿在线中文| 男人狂女人下面高潮的视频| 国产亚洲精品综合一区在线观看| 我的老师免费观看完整版| 少妇人妻一区二区三区视频| 国产精品精品国产色婷婷| 高清毛片免费观看视频网站| 在线播放国产精品三级| 不卡视频在线观看欧美| 久久人人精品亚洲av| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看| 尤物成人国产欧美一区二区三区| 网址你懂的国产日韩在线| 日日啪夜夜撸| 欧美性猛交黑人性爽| 97热精品久久久久久| 久久精品国产99精品国产亚洲性色| 人妻丰满熟妇av一区二区三区| 伦理电影大哥的女人| 嫩草影视91久久| 亚洲av免费在线观看| 丝袜美腿在线中文| 欧美极品一区二区三区四区| av在线亚洲专区| 国产免费一级a男人的天堂| 婷婷六月久久综合丁香| 天天躁日日操中文字幕| 蜜桃亚洲精品一区二区三区| 搞女人的毛片| 神马国产精品三级电影在线观看| 麻豆国产97在线/欧美| a在线观看视频网站| 婷婷丁香在线五月| 日本熟妇午夜| 一级a爱片免费观看的视频| 琪琪午夜伦伦电影理论片6080| 欧美黑人巨大hd| 亚洲av不卡在线观看| 国产精品亚洲美女久久久| 久久久久久九九精品二区国产| 高清日韩中文字幕在线| 俺也久久电影网| 亚洲不卡免费看| 国产毛片a区久久久久| 无遮挡黄片免费观看| 露出奶头的视频| 成人av在线播放网站| 99热这里只有是精品50| 熟女电影av网| av在线观看视频网站免费| 亚洲成人久久性| 久久久久九九精品影院| 嫩草影院入口| 嫁个100分男人电影在线观看| 国内精品宾馆在线| 国产精华一区二区三区| 国产精品一区www在线观看 | 久久久色成人| 最近视频中文字幕2019在线8| 黄片wwwwww| 亚洲电影在线观看av| 真人做人爱边吃奶动态| 老司机福利观看| 一本久久中文字幕| 能在线免费观看的黄片| 精品欧美国产一区二区三| 女人被狂操c到高潮| 麻豆一二三区av精品| ponron亚洲| 长腿黑丝高跟| aaaaa片日本免费| 国产伦精品一区二区三区四那| 国产一区二区三区视频了| 美女高潮喷水抽搐中文字幕| 美女cb高潮喷水在线观看| 国产综合懂色| 精品人妻偷拍中文字幕| 日韩欧美免费精品| 亚洲不卡免费看| 欧美最新免费一区二区三区| 99久久精品热视频| 亚洲最大成人手机在线| 亚洲av成人精品一区久久| 欧美日韩黄片免| 亚洲av美国av| 一进一出抽搐动态| 中文资源天堂在线| 日本色播在线视频| 欧美成人a在线观看| 亚洲不卡免费看| 国产精品98久久久久久宅男小说| 亚洲美女视频黄频| 精品久久久久久久末码| 国产综合懂色| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 成年免费大片在线观看| 亚洲av五月六月丁香网| 在线免费观看的www视频| a在线观看视频网站| 99久久成人亚洲精品观看| 亚洲经典国产精华液单| 国产精品免费一区二区三区在线| 久久九九热精品免费| 国产 一区 欧美 日韩| 婷婷精品国产亚洲av| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 91精品国产九色| 少妇熟女aⅴ在线视频| 日本色播在线视频| 毛片一级片免费看久久久久 | 91久久精品电影网| 黄色视频,在线免费观看| 国内精品久久久久久久电影| 免费看光身美女| 午夜福利欧美成人| 国产成人影院久久av| 乱码一卡2卡4卡精品| 国产亚洲精品久久久com| 十八禁国产超污无遮挡网站| 色哟哟哟哟哟哟| 日本精品一区二区三区蜜桃| 麻豆国产av国片精品| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 免费人成视频x8x8入口观看| 欧美国产日韩亚洲一区| 久久精品91蜜桃| 国产男人的电影天堂91| 国产中年淑女户外野战色| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 国产一区二区激情短视频| 一进一出抽搐动态| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 久久久久九九精品影院| 18+在线观看网站| 自拍偷自拍亚洲精品老妇| 嫩草影院精品99| 两人在一起打扑克的视频| 国产午夜精品论理片| 3wmmmm亚洲av在线观看| 99久久无色码亚洲精品果冻| 老师上课跳d突然被开到最大视频| 国产一级毛片七仙女欲春2| 国产精品三级大全| 久久精品国产99精品国产亚洲性色| 亚洲最大成人中文| 国产91精品成人一区二区三区| 亚洲最大成人手机在线| 91狼人影院| 一级a爱片免费观看的视频| 日本 欧美在线| 九色国产91popny在线| 人妻夜夜爽99麻豆av| 亚洲精品粉嫩美女一区| 91麻豆av在线| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 精品久久久久久久久av| 99久国产av精品| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频| 中文字幕久久专区| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| av在线老鸭窝| 国产精品无大码| 日韩欧美精品免费久久| 成人精品一区二区免费| 国产不卡一卡二| 在现免费观看毛片| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| 91精品国产九色| 国产极品精品免费视频能看的| 舔av片在线| 天堂影院成人在线观看| 精品人妻视频免费看| 美女cb高潮喷水在线观看| 欧美日本视频| 亚洲自偷自拍三级| 亚洲avbb在线观看| 最好的美女福利视频网| 国内精品宾馆在线| 久久精品国产亚洲av涩爱 | 精品国产三级普通话版| 国内精品久久久久久久电影| 国产一级毛片七仙女欲春2| 校园人妻丝袜中文字幕| 日韩大尺度精品在线看网址| 亚洲美女视频黄频| 国产中年淑女户外野战色| 免费av不卡在线播放| 国产一区二区亚洲精品在线观看| 亚洲久久久久久中文字幕| 日本免费一区二区三区高清不卡| 国模一区二区三区四区视频| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 亚洲精品乱码久久久v下载方式| 久久久久久九九精品二区国产| 色播亚洲综合网| 免费人成在线观看视频色| 欧美bdsm另类| 免费看av在线观看网站| 大型黄色视频在线免费观看| 日韩高清综合在线| 日韩精品中文字幕看吧| 听说在线观看完整版免费高清| 中文在线观看免费www的网站| 亚洲精品在线观看二区| 嫁个100分男人电影在线观看| 久久久久久久久中文| 久久久久久伊人网av| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 欧美性猛交黑人性爽| 亚洲av不卡在线观看| 日本熟妇午夜| 久久久久久久久大av| 国产主播在线观看一区二区| 乱系列少妇在线播放| 亚洲在线观看片| 亚洲成人中文字幕在线播放| 欧美激情在线99| 日本三级黄在线观看| 变态另类成人亚洲欧美熟女| 嫩草影院新地址| 色尼玛亚洲综合影院| 欧美区成人在线视频| 丰满人妻一区二区三区视频av| 久久草成人影院| 免费无遮挡裸体视频| 我的女老师完整版在线观看| 能在线免费观看的黄片| 国产视频一区二区在线看| 亚洲av.av天堂| 高清毛片免费观看视频网站| 麻豆一二三区av精品| 国产91精品成人一区二区三区| 午夜精品在线福利| 热99re8久久精品国产| 赤兔流量卡办理| 91av网一区二区| av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 在线a可以看的网站| 久久久久久久午夜电影| 亚洲人成伊人成综合网2020| 国产精品乱码一区二三区的特点| 男人舔女人下体高潮全视频| 极品教师在线视频| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 熟女人妻精品中文字幕| 不卡一级毛片| 两个人视频免费观看高清| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在 | 99热这里只有是精品在线观看| .国产精品久久| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区视频9| 成人鲁丝片一二三区免费| 国内少妇人妻偷人精品xxx网站| 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 国产精品福利在线免费观看| 久久久国产成人免费| 尾随美女入室| 99久久精品热视频| 欧美极品一区二区三区四区| 三级国产精品欧美在线观看| 哪里可以看免费的av片| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 我要搜黄色片| 精品一区二区三区av网在线观看| 国产精品一及| 三级毛片av免费| 欧美绝顶高潮抽搐喷水| 亚洲最大成人av| 日韩欧美在线二视频| 国产极品精品免费视频能看的| 一区福利在线观看| 在线看三级毛片| 国产精品国产高清国产av| 国产精品,欧美在线| 乱系列少妇在线播放| 国产极品精品免费视频能看的| 久久久久久大精品| 欧美国产日韩亚洲一区| 久久99热这里只有精品18| av女优亚洲男人天堂| 搡老熟女国产l中国老女人| 国内揄拍国产精品人妻在线| x7x7x7水蜜桃| 一个人看的www免费观看视频| 久久亚洲精品不卡| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 在线免费观看的www视频| 在线免费十八禁| 伦精品一区二区三区| 一区福利在线观看| 精品午夜福利视频在线观看一区| 永久网站在线| 日本爱情动作片www.在线观看 | 伦理电影大哥的女人| 亚洲精品色激情综合| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 偷拍熟女少妇极品色| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 热99re8久久精品国产| 又黄又爽又免费观看的视频| 日本精品一区二区三区蜜桃| 干丝袜人妻中文字幕| 欧美日韩综合久久久久久 | 老女人水多毛片| 嫩草影视91久久| 色精品久久人妻99蜜桃| 天堂av国产一区二区熟女人妻| 国产av不卡久久| 色av中文字幕| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久com| 亚洲性久久影院| 男女下面进入的视频免费午夜| 亚洲七黄色美女视频| 色精品久久人妻99蜜桃| 免费观看人在逋| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办 | 内射极品少妇av片p| 大型黄色视频在线免费观看| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 久久久久性生活片| 真实男女啪啪啪动态图| 三级男女做爰猛烈吃奶摸视频| 五月伊人婷婷丁香| 亚洲七黄色美女视频| 最新在线观看一区二区三区| 久久久久久久久久成人| 国产 一区精品| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 人人妻人人澡欧美一区二区| 亚洲精品国产成人久久av| 国产真实乱freesex| 日韩,欧美,国产一区二区三区 | 久久精品人妻少妇| 一本一本综合久久| 看十八女毛片水多多多| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 小蜜桃在线观看免费完整版高清| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| av黄色大香蕉| 国产精品免费一区二区三区在线| 欧美极品一区二区三区四区| 热99在线观看视频| 欧美3d第一页| 搡老岳熟女国产| 最近在线观看免费完整版| 国产精品国产高清国产av| 88av欧美| 真人做人爱边吃奶动态| 91麻豆精品激情在线观看国产| 91精品国产九色| 国产精品综合久久久久久久免费| 日韩高清综合在线| 三级国产精品欧美在线观看| 在线观看午夜福利视频| 欧美日韩黄片免| 天天躁日日操中文字幕| 日韩中文字幕欧美一区二区| 日日干狠狠操夜夜爽| 精品福利观看| 亚洲av第一区精品v没综合| 久久久久国产精品人妻aⅴ院| 欧美性猛交黑人性爽| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 成人精品一区二区免费| 97超视频在线观看视频| 国产精品永久免费网站| 亚洲av美国av| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 日本免费一区二区三区高清不卡| 99久久精品国产国产毛片| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 欧美日韩黄片免| 性插视频无遮挡在线免费观看| 最近最新中文字幕大全电影3| 日本-黄色视频高清免费观看| 欧美成人性av电影在线观看| 白带黄色成豆腐渣| 在线观看美女被高潮喷水网站| 一级黄色大片毛片| 国产成人影院久久av| 一个人看视频在线观看www免费| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 色av中文字幕| 成人三级黄色视频| 成人av在线播放网站| 99国产极品粉嫩在线观看| 久久九九热精品免费| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频| 国产成年人精品一区二区| 亚洲欧美精品综合久久99| 他把我摸到了高潮在线观看| 内地一区二区视频在线| 久久久久久久久久黄片| 国产av一区在线观看免费| 国产欧美日韩精品亚洲av| 国产aⅴ精品一区二区三区波| 亚洲熟妇熟女久久| 国产美女午夜福利| 欧美日韩精品成人综合77777| 国产久久久一区二区三区| 国产精品,欧美在线| 日韩欧美在线二视频| 国产精品人妻久久久影院| 天堂影院成人在线观看| 色综合站精品国产| 老师上课跳d突然被开到最大视频| 有码 亚洲区| 在线播放国产精品三级| 国产精品三级大全| 国产av麻豆久久久久久久| 亚洲av一区综合| 国产欧美日韩精品一区二区| 我要搜黄色片| 亚洲精华国产精华液的使用体验 | 精品人妻视频免费看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女视频黄频| 窝窝影院91人妻| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 一夜夜www| 国产伦一二天堂av在线观看| 最近最新免费中文字幕在线| 精品不卡国产一区二区三区| 午夜爱爱视频在线播放| av在线蜜桃| 欧美丝袜亚洲另类 | 亚洲精华国产精华精| 一个人看视频在线观看www免费| 国产精品女同一区二区软件 | 欧美日韩乱码在线| 日日摸夜夜添夜夜添av毛片 | 久久久久久久久久成人| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添av毛片 | 黄色配什么色好看| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 久久这里只有精品中国| 欧美成人免费av一区二区三区| 国产一区二区三区av在线 | 国产高清视频在线观看网站| 在线播放国产精品三级| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看毛片的网站| 亚洲18禁久久av| 亚洲成av人片在线播放无| 免费高清视频大片| 在线播放国产精品三级| 亚洲精品国产成人久久av| 国产av麻豆久久久久久久| 国产高清有码在线观看视频| 久久久精品大字幕| 2021天堂中文幕一二区在线观| 国产视频内射| 嫩草影视91久久| 亚洲不卡免费看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 精品一区二区三区人妻视频| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 在线看三级毛片| 午夜福利高清视频| 亚洲欧美日韩高清专用| 一级a爱片免费观看的视频| 成人二区视频| 日日啪夜夜撸| 乱码一卡2卡4卡精品| 久久久成人免费电影| 国产精品野战在线观看| 成年女人永久免费观看视频| 赤兔流量卡办理| 中亚洲国语对白在线视频| 日韩精品中文字幕看吧| 校园人妻丝袜中文字幕| 日本黄大片高清| 国产亚洲av嫩草精品影院| 精品久久久久久,| 成年免费大片在线观看| 亚洲av美国av| 又黄又爽又刺激的免费视频.| 免费大片18禁| 亚洲第一区二区三区不卡| 一边摸一边抽搐一进一小说| 波多野结衣高清无吗| 别揉我奶头 嗯啊视频| 久久精品国产清高在天天线| 国产伦一二天堂av在线观看| 免费大片18禁| 日韩,欧美,国产一区二区三区 | 舔av片在线| 欧美人与善性xxx| 国内精品宾馆在线| ponron亚洲| 欧美国产日韩亚洲一区| 亚洲精品粉嫩美女一区| 中文字幕高清在线视频| 性色avwww在线观看| 999久久久精品免费观看国产| 国产精品久久久久久久久免| 日本五十路高清| 国产高清三级在线| 国产精品精品国产色婷婷| 欧美日韩瑟瑟在线播放| 人妻少妇偷人精品九色| 国产精品久久久久久久电影| 久久草成人影院| 亚洲精品粉嫩美女一区| netflix在线观看网站| 一本久久中文字幕| 两个人的视频大全免费| 亚洲不卡免费看| 91久久精品国产一区二区三区| 不卡视频在线观看欧美| 乱系列少妇在线播放| 免费看a级黄色片| 淫妇啪啪啪对白视频| 天堂√8在线中文| h日本视频在线播放| 欧美xxxx黑人xx丫x性爽| 亚洲av五月六月丁香网| 毛片一级片免费看久久久久 | 精品乱码久久久久久99久播| 久久久久久久久久成人| 久久精品综合一区二区三区| 国产午夜精品论理片| 熟女电影av网| 日本黄大片高清| 国产精品一区www在线观看 | 国产午夜福利久久久久久| 午夜激情欧美在线| 亚洲专区中文字幕在线| 啪啪无遮挡十八禁网站| 国产激情偷乱视频一区二区| 亚洲av成人av| 精品人妻一区二区三区麻豆 | 99在线视频只有这里精品首页| 国产乱人伦免费视频| 日本爱情动作片www.在线观看 | 18禁在线播放成人免费| 成人美女网站在线观看视频| 全区人妻精品视频| 亚洲av一区综合| 又黄又爽又刺激的免费视频.| 97人妻精品一区二区三区麻豆| 久久午夜福利片| 成人国产麻豆网| 精品人妻熟女av久视频| 日韩精品中文字幕看吧| 91久久精品国产一区二区三区| 国产精品一区二区免费欧美| 亚洲熟妇熟女久久| 亚洲第一电影网av| 亚洲自拍偷在线| 在线免费观看不下载黄p国产 | 欧美bdsm另类|